A045754
7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).
Original entry on oeis.org
1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0
Cf. k-fold factorials:
A000142,
A001147 (and
A000165,
A006882),
A007559 (and
A032031,
A008544,
A007661),
A007696 (and
A001813,
A008545,
A047053,
A007662),
A008548 (and
A052562,
A047055,
A085157),
A008542 (and
A085158),
A045755.
Unsigned row sums of triangle
A051186 (scaled Stirling1).
First column of triangle
A132056 (S2(8)).
-
List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
-
[1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
-
f := n->product( (7*k+1), k=0..(n-1));
G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
-
FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
-
a(n)=prod(k=0,n-1,7*k+1)
-
[7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
A051188
Sept-factorial numbers.
Original entry on oeis.org
1, 7, 98, 2058, 57624, 2016840, 84707280, 4150656720, 232436776320, 14643516908160, 1025046183571200, 78928556134982400, 6629998715338521600, 603329883095805465600, 59126328543388935628800
Offset: 0
Cf.
A000142,
A000165,
A032031,
A045754,
A047053,
A047058,
A049209,
A051186,
A052562,
A053106,
A084947,
A092516,
A092750,
A144827,
A144739,
A147585.
A004747
Triangle read by rows: the Bell transform of the triple factorial numbers A008544 without column 0.
Original entry on oeis.org
1, 2, 1, 10, 6, 1, 80, 52, 12, 1, 880, 600, 160, 20, 1, 12320, 8680, 2520, 380, 30, 1, 209440, 151200, 46480, 7840, 770, 42, 1, 4188800, 3082240, 987840, 179760, 20160, 1400, 56, 1, 96342400, 71998080, 23826880, 4583040, 562800, 45360, 2352, 72, 1
Offset: 1
Triangle begins:
1;
2, 1;
10, 6, 1;
80, 52, 12, 1;
880, 600, 160, 20, 1;
12320, 8680, 2520, 380, 30, 1;
209440, 151200, 46480, 7840, 770, 42, 1;
Tree combinatorics for T(3,2)=6: Consider first the unordered forest of m=2 plane trees with n=3 vertices, namely one vertex with out-degree r=0 (root) and two different trees with two vertices (one root with out-degree r=1 and a leaf with r=0). The 6 increasing labelings come then from the forest with rooted (x) trees x, o-x (1,(3,2)), (2,(3,1)) and (3,(2,1)) and similarly from the second forest x, x-o (1,(2,3)), (2,(1,3)) and (3,(1,2)).
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) #09.8.3.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) #09.3.3.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Index entries for sequences related to Bessel functions or polynomials
-
function T(n,k) // T = A004747
if k eq 0 then return 0;
elif k eq n then return 1;
else return (3*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
T := (n, m) -> 3^n/m!*(1/3*m*GAMMA(n-1/3)*hypergeom([1-1/3*m, 2/3-1/3*m, 1/3-1/3*m], [2/3, 4/3-n], 1)/GAMMA(2/3)-1/6*m*(m-1)*GAMMA(n-2/3)*hypergeom( [1-1/3*m, 2/3-1/3*m, 4/3-1/3*m], [4/3, 5/3-n], 1)/Pi*3^(1/2)*GAMMA(2/3)):
for n from 1 to 6 do seq(simplify(T(n,k)),k=1..n) od;
# Karol A. Penson, Feb 06 2004
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> mul(3*k+2, k=(0..n-1)), 9); # Peter Luschny, Jan 29 2016
-
(* First program *)
T[1,1]= 1; T[, 0]= 0; T[0, ]= 0; T[n_, m_]:= (3*(n-1)-m)*T[n-1, m]+T[n-1, m-1];
Flatten[Table[T[n, m], {n,12}, {m,n}] ][[1 ;; 45]] (* Jean-François Alcover, Jun 16 2011, after recurrence *)
(* Second program *)
f[n_, m_]:= m/n Sum[Binomial[k, n-m-k] 3^k (-1)^(n-m-k) Binomial[n+k-1, n-1], {k, 0, n-m}]; Table[n! f[n, m]/(m! 3^(n-m)), {n,12}, {m,n}]//Flatten (* Michael De Vlieger, Dec 23 2015 *)
(* Third program *)
rows = 12;
T[n_, m_]:= BellY[n, m, Table[Product[3k+2, {k, 0, j-1}], {j, 0, rows}]];
Table[T[n, m], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
# uses [bell_transform from A264428]
triplefactorial = lambda n: prod(3*k+2 for k in (0..n-1))
def A004747_row(n):
trifact = [triplefactorial(k) for k in (0..n)]
return bell_transform(n, trifact)
[A004747_row(n) for n in (0..10)] # Peter Luschny, Dec 21 2015
A051141
Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).
Original entry on oeis.org
1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1
Triangle starts:
1;
-3, 1;
18, -9, 1;
-162, 99, -18, 1;
1944, -1350, 315, -30, 1;
-29160, 22194, -6075, 765, -45, 1;
524880, -428652, 131544, -19845, 1575, -63, 1;
---
Row polynomial E(3,x) = 18*x-9*x^2+x^3.
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix
3, 1;
9, 6, 1;
27, 27, 9, 1;
81, 108, 54, 12, 1;
243, 405, 270, 90, 15, 1;
729, 1458, 1215, 540, 135, 18, 1;
...
which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962), 1-77.
First (m=1) column sequence is:
A032031(n-1).
Row sums (signed triangle):
A008544(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A007559(n).
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = a[n-1, m-1] - 3(n-1)*a[n-1, m]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]] (* _Jean-François Alcover, Jun 01 2011, after formula *)
Table[StirlingS1[n, m]*3^(n - m), {n, 1, 10}, {m, 1, n}]//Flatten (* G. C. Greubel, Oct 24 2017 *)
-
for(n=1,10, for(m=1,n, print1(stirling(n,m,1)*3^(n-m), ", "))) \\ G. C. Greubel, Oct 24 2017
-
# uses[bell_transform from A264428]
triplefactorial = lambda n: 3^n*factorial(n)
def A051141_row(n):
trifact = [triplefactorial(k) for k in (0..n)]
return bell_transform(n, trifact)
[A051141_row(n) for n in (0..8)] # Peter Luschny, Dec 21 2015
Name clarified using a formula of the author by
Peter Luschny, Dec 23 2015
A114799
Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0
a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
Cf. k-fold factorials:
A000142,
A001147 (and
A000165,
A006882),
A007559 (and
A032031,
A008544,
A007661),
A007696 (and
A001813,
A008545,
A047053,
A007662),
A008548 (and
A052562,
A047055,
A085157),
A085158 (and
A008542,
A047058,
A047657),
A045755.
-
a:= function(n)
if n<1 then return 1;
else return n*a(n-7);
fi;
end;
List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
-
b:= func< n | (n lt 8) select n else n*Self(n-7) >;
[1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
-
A114799 := proc(n)
option remember;
if n < 1 then
1;
else
n*procname(n-7) ;
end if;
end proc:
seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
-
a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
-
A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
-
def a(n):
if (n<1): return 1
else: return n*a(n-7)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
A144739
7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.
Original entry on oeis.org
1, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 1990648483200, 131382799891200, 9590944392057600, 767275551364608000, 66752972968720896000, 6274779459059764224000, 633752725365036186624000, 68445294339423908155392000, 7871208849033749437870080000
Offset: 0
a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...
Cf.
A114799,
A001710,
A001147,
A032031,
A008545,
A047056,
A011781,
A045754,
A084947,
A144827,
A147585,
A049209,
A051188.
-
List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # G. C. Greubel, Aug 19 2019
-
[ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // Klaus Brockhaus, Nov 10 2008
-
a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 19 2019
-
Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
-
a(n)=prod(i=1,n,7*i-4) \\ Charles R Greathouse IV, Jul 02 2013
-
[product(7*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
A010845
a(n) = 3*n*a(n-1) + 1, a(0) = 1.
Original entry on oeis.org
1, 4, 25, 226, 2713, 40696, 732529, 15383110, 369194641, 9968255308, 299047659241, 9868572754954, 355268619178345, 13855476147955456, 581929998214129153, 26186849919635811886, 1256968796142518970529
Offset: 0
1 + 4*x + 25*x^2 + 226*x^3 + 2713*x^4 + 40696*x^5 + 732529*x^6 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
-
Table[ Gamma[ n, 1/3 ]*Exp[ 1/3 ]*3^(n-1), {n, 1, 24} ]
a[ n_] := If[ n<0, 0, Floor[ n! E^(1/3) 3^n ]] (* Michael Somos, Sep 04 2013 *)
Range[0, 20]! CoefficientList[Series[Exp[x]/(1 - 3 x), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 17 2014 *)
-
{a(n) = if( n<0, 0, n! * sum(k=0, n, 3^(n-k) / k!))} /* Michael Somos, Sep 04 2013 */
A225470
Triangle read by rows, s_3(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 1, 10, 7, 1, 80, 66, 15, 1, 880, 806, 231, 26, 1, 12320, 12164, 4040, 595, 40, 1, 209440, 219108, 80844, 14155, 1275, 57, 1, 4188800, 4591600, 1835988, 363944, 39655, 2415, 77, 1, 96342400, 109795600, 46819324, 10206700, 1276009, 95200, 4186, 100, 1
Offset: 0
Triangle starts:
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 2, 1,
[2] 10, 7, 1,
[3] 80, 66, 15, 1,
[4] 880, 806, 231, 26, 1,
[5] 12320, 12164, 4040, 595, 40, 1,
[6] 209440, 219108, 80844, 14155, 1275, 57, 1.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence (see Maple program): T(4, 2) = T(3, 1) + (3*4 - 1)*T(3, 2) = 66 + 11*15 = 231.
Boas-Buck type recurrence for column k = 2 and n = 4: T(4, 2) = (4!/2)*(3*(2 + 6*(5/12))*T(2, 2)/2! + 1*(2 + 6*(1/2))*T(3,2)/3!) = (4!/2)*(3*9/4 + 5*15/3!) = 231. (End)
-
SF_C := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m) end:
seq(print(seq(SF_C(n, k, 3), k = 0..n)), n = 0..8);
-
SFC[0, 0, ] = 1; SFC[n, k_, ] /; (k > n || k < 0) = 0; SFC[n, k_, m_] := SFC[n, k, m] = SFC[n-1, k-1, m] + (m*n-1)*SFC[n-1, k, m]; Table[SFC[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
A051604
a(n) = (3*n+4)!!!/4!!!.
Original entry on oeis.org
1, 7, 70, 910, 14560, 276640, 6086080, 152152000, 4260256000, 132067936000, 4490309824000, 166141463488000, 6645658539520000, 285763317199360000, 13145112591170560000, 644110516967357440000, 33493746882302586880000, 1842156078526642278400000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(7/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
With[{nn = 30}, CoefficientList[Series[1/(1-3*x)^(7/3), {x, 0, nn}], x]* Range[0,nn]! ] (* G. C. Greubel, Aug 15 2018 *)
With[{c=Times@@Range[4,1,-3]},Table[(Times@@Range[3n+4,1,-3])/c,{n,0,20}]] (* Harvey P. Dale, Feb 06 2023 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(7/3))) \\ G. C. Greubel, Aug 15 2018
A051605
a(n) = (3*n+5)!!!/5!!!.
Original entry on oeis.org
1, 8, 88, 1232, 20944, 418880, 9634240, 250490240, 7264216960, 232454942720, 8135922995200, 309165073817600, 12675768026521600, 557733793166950400, 26213488278846668800, 1310674413942333440000, 69465743938943672320000, 3890081660580845649920000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
RecurrenceTable[{a[0]==1,a[n]==(3n+5)a[n-1]},a,{n,20}] (* Harvey P. Dale, Oct 19 2013 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(8/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(8/3))) \\ G. C. Greubel, Aug 15 2018
Previous
Showing 11-20 of 49 results.
Next
Comments