A134502
a(n) = Fibonacci(7n + 4).
Original entry on oeis.org
3, 89, 2584, 75025, 2178309, 63245986, 1836311903, 53316291173, 1548008755920, 44945570212853, 1304969544928657, 37889062373143906, 1100087778366101931, 31940434634990099905, 927372692193078999176, 26925748508234281076009
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
A163063
Lucas(3n+2) = Fibonacci(3n+1) + Fibonacci(3n+3).
Original entry on oeis.org
3, 11, 47, 199, 843, 3571, 15127, 64079, 271443, 1149851, 4870847, 20633239, 87403803, 370248451, 1568397607, 6643838879, 28143753123, 119218851371, 505019158607, 2139295485799, 9062201101803, 38388099893011
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((3+r)*(2+r)^n+(3-r)*(2-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
-
[Lucas(3*n+2): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
with(combinat):A163063:=proc(n)return fibonacci(3*n+1) + fibonacci(3*n+3): end:seq(A163063(n), n=0..21); # Nathaniel Johnston, Apr 18 2011
-
Table[Fibonacci[3n + 1] + Fibonacci[3n + 3], {n, 0, 21}] (* Alonso del Arte, Nov 29 2010 *)
LinearRecurrence[{4,1},{3,11},30] (* Harvey P. Dale, Apr 14 2021 *)
-
Vec((3-x)/(1-4*x-x^2) + O(x^100)) \\ Altug Alkan, Dec 10 2015
A107857
a(n) = floor[(phi + n mod 2)*a(n-1)], a(1)=1.
Original entry on oeis.org
1, 1, 2, 3, 7, 11, 28, 45, 117, 189, 494, 799, 2091, 3383, 8856, 14329, 37513, 60697, 158906, 257115, 673135, 1089155, 2851444, 4613733, 12078909, 19544085, 51167078, 82790071, 216747219, 350704367, 918155952, 1485607537, 3889371025
Offset: 1
-
[ n eq 1 select 1 else Floor(((Sqrt(5)+1)/2+(n mod 2))*Self(n-1)): n in [1..35] ];
-
Phi = N[(Sqrt[5] + 1)/2] F[1] = 1; F[n__] := F[n] = If[Mod[n, 2] == 0, Floor[Phi*F[n - 1]], Floor[(Phi + 1)*F[n -1]]] a = Table[F[n], {n, 1, 50}]
LinearRecurrence[{1,4,-4,1,-1},{1,1,2,3,7},40] (* Harvey P. Dale, Mar 31 2023 *)
-
a(n)=if(n<2,1,floor((phi+n%2)*a(n-1)))
Original entry on oeis.org
1, 1, 9, 33, 145, 609, 2585, 10945, 46369, 196417, 832041, 3524577, 14930353, 63245985, 267914297, 1134903169, 4807526977, 20365011073, 86267571273, 365435296161, 1548008755921, 6557470319841, 27777890035289, 117669030460993, 498454011879265, 2111485077978049
Offset: 0
-
a:=[1,1,9];; for n in [4..30] do a[n]:=3*a[n-1]+5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 08 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)^2/((1+x)*(1-4*x-x^2)) )); // G. C. Greubel, Jun 08 2019
-
LinearRecurrence[{3,5,1},{1,1,9},30] (* or *) CoefficientList[Series[ (1-x)^2/((1+x)(1-4*x-x^2)),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2011 *)
-
Vec((1-x)^2/((1+x)*(1-4*x-x^2)) + O(x^30)) \\ Colin Barker, Jun 06 2017
-
((1-x)^2/((1+x)*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 08 2019
A048878
Generalized Pellian with second term of 9.
Original entry on oeis.org
1, 9, 37, 157, 665, 2817, 11933, 50549, 214129, 907065, 3842389, 16276621, 68948873, 292072113, 1237237325, 5241021413, 22201322977, 94046313321, 398386576261, 1687592618365, 7148757049721, 30282620817249, 128279240318717, 543399582092117, 2301877568687185
Offset: 0
a(n) = 4a(n-1) + a(n-2); a(0)=1, a(1)=9.
-
with(combinat): a:=n->5*fibonacci(n-1,4)+fibonacci(n,4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
-
LinearRecurrence[{4,1},{1,9},31] (* or *) CoefficientList[ Series[ (1+5x)/(1-4x-x^2),{x,0,30}],x] (* Harvey P. Dale, Jul 12 2011 *)
-
{ default(realprecision, 2000); for (n=0, 2000, a=round(((7+sqrt(5))*(2+sqrt(5))^n - (7-sqrt(5))*(2-sqrt(5))^n )/10*sqrt(5)); if (a > 10^(10^3 - 6), break); write("b048878.txt", n, " ", a); ); } \\ Harry J. Smith, May 31 2009
A110526
a(n+3) = 3*a(n+2) + 5*a(n+1) + a(n), a(0) = 0, a(1) = 1, a(2) = 3.
Original entry on oeis.org
0, 1, 3, 14, 58, 247, 1045, 4428, 18756, 79453, 336567, 1425722, 6039454, 25583539, 108373609, 459077976, 1944685512, 8237820025, 34895965611, 147821682470, 626182695490, 2652552464431, 11236392553213, 47598122677284
Offset: 0
-
seriestolist(series(-x/((1+x)*(x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1jbaseseq[(- 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj')(+ .5'i + .5i' + .5'jj' + .5'kk')]
-
Table[(Fibonacci[3n+1]-(-1)^n)/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
-
concat(0, Vec(x/((1+x)*(1-x^2-4*x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
A122070
Triangle given by T(n,k) = Fibonacci(n+k+1)*binomial(n,k) for 0<=k<=n.
Original entry on oeis.org
1, 1, 2, 2, 6, 5, 3, 15, 24, 13, 5, 32, 78, 84, 34, 8, 65, 210, 340, 275, 89, 13, 126, 510, 1100, 1335, 864, 233, 21, 238, 1155, 3115, 5040, 4893, 2639, 610, 34, 440, 2492, 8064, 16310, 21112, 17080, 7896, 1597, 55, 801, 5184, 19572, 47502, 76860, 82908, 57492, 23256, 4181
Offset: 0
Triangle begins:
1;
1, 2;
2, 6, 5;
3, 15, 24, 13;
5, 32, 78, 84, 34;
8, 65, 210, 340, 275, 89;
13, 126, 510, 1100, 1335, 864, 233;
(0, 1, 1, -1, 0, 0, ...) DELTA (1, 1, 1, 0, 0, ...) begins :
1;
0, 1;
0, 1, 2;
0, 2, 6, 5;
0, 3, 15, 24, 13;
0, 5, 32, 78, 84, 34;
0, 8, 65, 210, 340, 275, 89;
0, 13, 126, 510, 1100, 1335, 864, 233;
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n+ k+1) ))); # G. C. Greubel, Oct 02 2019
-
[Binomial(n,k)*Fibonacci(n+k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 02 2019
-
with(combinat): seq(seq(binomial(n,k)*fibonacci(n+k+1), k=0..n), n=0..10); # G. C. Greubel, Oct 02 2019
-
Table[Fibonacci[n+k+1]*Binomial[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 02 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n+k+1);
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 02 2019
-
[[binomial(n,k)*fibonacci(n+k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Oct 02 2019
A363753
a(n) = Sum_{k=0..n} (-1)^k*F(k-1)*F(k)*F(k+1)/2, where F(n) is the Fibonacci number A000045(n).
Original entry on oeis.org
0, 0, 1, -2, 13, -47, 213, -879, 3762, -15873, 67342, -285098, 1207966, -5116586, 21674919, -91815276, 388937619, -1647563169, 6979194475, -29564334305, 125236542640, -530510487155, 2247278519916, -9519624520452, 40325776676748, -170822731106052, 723616701297373
Offset: 0
Other sequences with the product of three Fibonacci numbers as a summand (the sequence may have a shifted [and scaled] version of the summand given here).
A256178: F(2k)*F(2k+1)*F(2k+2), this sequence: (-1)^k*F(k-1)*F(k)*F(k+1),
-
LinearRecurrence[{-2, 9, -3, -4, 1}, {0, 0, 1, -2, 13}, 27]
A100232
Triangle, read by rows, of the coefficients of [x^k] in G100231(x)^n such that the row sums are 5^n-1 for n>0, where G100231(x) is the g.f. of A100231.
Original entry on oeis.org
1, 1, 3, 1, 6, 17, 1, 9, 39, 75, 1, 12, 70, 220, 321, 1, 15, 110, 470, 1165, 1363, 1, 18, 159, 852, 2895, 5922, 5777, 1, 21, 217, 1393, 5943, 16807, 29267, 24475, 1, 24, 284, 2120, 10822, 38536, 93468, 141688, 103681, 1, 27, 360, 3060, 18126, 77274, 236748
Offset: 0
Rows begin:
[1],
[1,3],
[1,6,17],
[1,9,39,75],
[1,12,70,220,321],
[1,15,110,470,1165,1363],
[1,18,159,852,2895,5922,5777],
[1,21,217,1393,5943,16807,29267,24475],
[1,24,284,2120,10822,38536,93468,141688,103681],...
where row sums form 5^n-1 for n>0:
5^1-1 = 1+3 = 4
5^2-1 = 1+6+17 = 24
5^3-1 = 1+9+39+75 = 124
5^4-1 = 1+12+70+220+321 = 624
5^5-1 = 1+15+110+470+1165+1363 = 3124.
The main diagonal forms A100233 = [1,3,17,75,321,1363,5777,...],
where Sum_{n>=1} A100233(n)/n*x^n = log((1-x)/(1-4*x-x^2)).
A110527
a(n+3) = 3*a(n+2) + 5*a(n+1) + a(n), a(0) = 0, a(1) = 1, a(2) = 8.
Original entry on oeis.org
0, 1, 8, 29, 128, 537, 2280, 9653, 40896, 173233, 733832, 3108557, 13168064, 55780809, 236291304, 1000946021, 4240075392, 17961247585, 76085065736, 322301510525, 1365291107840, 5783465941881, 24499154875368
Offset: 0
-
seriestolist(series(-x*(1+5*x)/((1+x)*(x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1lesseq[(- 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj')(+ .5'i + .5i' + .5'jj' + .5'kk')], apart from initial term.
-
LinearRecurrence[{3,5,1},{0,1,8},30] (* Harvey P. Dale, Feb 12 2015 *)
-
x='x+O('x^50); concat(0, Vec(-x*(1+5*x)/((1+x)*(x^2+4*x-1)))) \\ G. C. Greubel, Aug 30 2017
Comments