cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 97 results. Next

A165900 a(n) = n^2 - n - 1.

Original entry on oeis.org

-1, -1, 1, 5, 11, 19, 29, 41, 55, 71, 89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379, 419, 461, 505, 551, 599, 649, 701, 755, 811, 869, 929, 991, 1055, 1121, 1189, 1259, 1331, 1405, 1481, 1559, 1639, 1721, 1805, 1891, 1979, 2069, 2161, 2255
Offset: 0

Views

Author

Philippe Deléham, Sep 29 2009

Keywords

Comments

Previous name was: Values of Fibonacci polynomial n^2 - n - 1.
Shifted version of the array denoted rB(0,2) in A132382, whose e.g.f. is exp(x)(1-x)^2. Taking the derivative gives the e.g.f. of this sequence. - Tom Copeland, Dec 02 2013
The Fibonacci numbers are generated by the series x/(1 - x - x^2). - T. D. Noe, Dec 04 2013
Absolute value of expression f(k)*f(k+1) - f(k-1)*f(k+2) where f(1)=1, f(2)=n. Sign is alternately +1 and -1. - Carmine Suriano, Jan 28 2014 [Can anybody clarify what is meant here? - Joerg Arndt, Nov 24 2014]
Carmine's formula is a special case related to 4 consecutive terms of a Fibonacci sequence. A generalization of this formula is |a(n)| = |f(k+i)*f(k+j) - f(k)*f(k+i+j)|/F(i)*F(j), where f denotes a Fibonacci sequence with the initial values 1 and n, and F denotes the original Fibonacci sequence A000045. The same results can be obtained with the simpler formula |a(n)| = |f(k+1)^2 - f(k)^2 - f(k+1)*f(k)|. Everything said so far is also valid for Fibonacci sequences f with the initial values f(1) = n - 2, f(2) = 2*n - 3. - Klaus Purath, Jun 27 2022
a(n) is the total number of dollars won when using the Martingale method (bet $1, if win then continue to bet $1, if lose then double next bet) for n trials of a wager with exactly one loss, n-1 wins. For the case with exactly one win, n-1 losses, see A070313. - Max Winnick, Jun 28 2022
Numbers m such that 4*m+5 is a square b^2, where b = 2*n -1, for m = a(n). - Klaus Purath, Jul 23 2022

Examples

			G.f. = -1 - x + x^2 + 5*x^3 + 11*x^4 + 19*x^5 + 29*x^6 + 41*x^7 + ... - _Michael Somos_, Mar 23 2023
		

Crossrefs

A028387 and A110331 are very similar sequences.

Programs

Formula

a(n+2) = (n+1)*a(n+1) - (n+2)*a(n).
G.f.: (x^2+2*x-1)/(1-x)^3.
E.g.f.: exp(x)*(x^2-1).
a(n) = - A188652(2*n) for n > 0. - Reinhard Zumkeller, Apr 13 2011
a(n) = A214803(A015614(n+1)) for n > 0. - Reinhard Zumkeller, Jul 29 2012
a(n+1) = a(n) + A005843(n) = A002378(n) - 1. - Ivan N. Ianakiev, Feb 18 2013
a(n+2) = A028387(n). - Michael B. Porter, Sep 26 2018
From Klaus Purath, Aug 25 2022: (Start)
a(2*n) = n*(a(n+1) - a(n-1)) -1.
a(2*n+1) = (2*n+1)*(a(n+1) - a(n)) - 1.
a(n+2) = a(n) + 4*n + 2.
a(n) = A014206(n-1) - 3 = A002061(n-1) - 2.
a(n) = A028552(n-2) + 1 = A014209(n-2) + 2 = 2* A034856(n-2) + 3.
a(n) = A008865(n-1) + n = A005563(n-1) - n.
a(n) = A014209(n-3) + 2*n = A028387(n-1) - 2*n.
a(n) = A152015(n)/n, n != 0.
(a(n+k) - a(n-k))/(2*k) = 2*n-1, for any k.
(End)
For n > 1, 1/a(n) = Sum_{k>=1} F(k)/n^(k+1), where F(n) = A000045(n). - Diego Rattaggi, Nov 01 2022
a(n) = a(1-n) for all n in Z. - Michael Somos, Mar 23 2023
For n > 1, 1/a(n) = Sum_{k>=1} F(2k)/((n+1)^(k+1)), where F(2n) = A001906(n). - Diego Rattaggi, Jan 20 2025
From Amiram Eldar, May 11 2025: (Start)
Sum_{n>=1} 1/a(n) = tan(sqrt(5)*Pi/2)*Pi/sqrt(5).
Product_{n>=3} 1 - 1/a(n) = -sec(sqrt(5)*Pi/2)*Pi/6.
Product_{n>=2} 1 + 1/a(n) = -sec(sqrt(5)*Pi/2)*Pi. (End)

Extensions

a(22) corrected by Reinhard Zumkeller, Apr 13 2011
Better name from Joerg Arndt, Oct 26 2024

A059317 Pascal's "rhombus" (actually a triangle T(n,k), n >= 0, 0<=k<=2n) read by rows: each entry is sum of 3 terms above it in previous row and one term above it two rows back.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 8, 9, 8, 3, 1, 1, 4, 13, 22, 29, 22, 13, 4, 1, 1, 5, 19, 42, 72, 82, 72, 42, 19, 5, 1, 1, 6, 26, 70, 146, 218, 255, 218, 146, 70, 26, 6, 1, 1, 7, 34, 107, 261, 476, 691, 773, 691, 476, 261, 107, 34, 7, 1, 1, 8, 43, 154, 428, 914, 1574, 2158
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2001

Keywords

Comments

The rows have lengths 1, 3, 5, 7, ...; cf. A005408.
T(n,k) is the number of paths in the right half-plane from (0,0) to (n,k-n), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: T(3,4)=8 because we have hhU, HU, hUh, Uhh, UH, DUU, UDU and UUD. Row sums yield A006190. - Emeric Deutsch, Sep 03 2007
Let p(n,x) denote the Fibonacci polynomial, defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x). The coefficients of the numerator polynomial of the rational function p(n, x + 1 + 1/x) form row n of the triangle A059317; the first three numerator polynomials are 1, 1 + x + x^2, 1 + 2*x + 4*x^2 + 2*x^3 + x^4. - Clark Kimberling, Nov 04 2013

Examples

			Triangle begins:
  1;
  1, 1, 1;
  1, 2, 4, 2, 1;
  1, 3, 8, 9, 8, 3, 1;
  ...
		

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Cf. A059318, A007318. Row sums give A006190. Central column is A059345.
Cf. also A006190, A140750.

Programs

  • Haskell
    -- import Data.List (zipWith4)
    a059317 n k = a059317_tabf !! n !! k
    a059317_row n = a059317_tabf !! n
    a059317_tabf = [1] : [1,1,1] : f [1] [1,1,1] where
       f ws vs = vs' : f vs vs' where
         vs' = zipWith4 (\r s t x -> r + s + t + x)
               (vs ++ [0,0]) ([0] ++ vs ++ [0]) ([0,0] ++ vs)
               ([0,0] ++ ws ++ [0,0])
    -- Reinhard Zumkeller, Jun 30 2012
  • Maple
    r:=proc(i,j) option remember; if i=0 then 0 elif i=1 and abs(j)>0 then 0 elif i=1 and j=0 then 1 elif i>=1 then r(i-1,j)+r(i-1,j-1)+r(i-1,j+1)+r(i-2,j) else 0 fi end: seq(seq(r(i,j),j=-i+1..i-1),i=0..9); # Emeric Deutsch, Jun 06 2004
    g:=1/(1-z-z*w-z*w^2-z^2*w^2): gser:=simplify(series(g,z=0,10)): for n from 0 to 8 do P[n]:=sort(coeff(gser,z,n)) end do: for n from 0 to 8 do seq(coeff(P[n],w,k),k=0..2*n) end do; # yields sequence in triangular form; Emeric Deutsch, Sep 03 2007
  • Mathematica
    t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1; t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2]; t[n_, k_] /; n < 0 || k < 0 || k > 2n = 0; Flatten[ Table[ t[n, k], {n, 0, 8}, {k, 0, 2n}]] (* Jean-François Alcover, Feb 01 2012 *)

Formula

T(n+1, k) = T(n, k-1) + T(n, k) + T(n, k+1) + T(n-1, k).
Another definition: T(i, j) is defined for i >= 0, -infinity <= j <= infinity; T(i, j) = T(i-1, j) + T(i-1, j-1) + T(i-1, j-2) + T(i-2, j-2) for i >= 2, all j; T(0, 0) = T(1, 1) = T(1, 1) = T(1, 2) = 1; T(0, j) = 0 for j != 0; T(1, j) = 0 for j != 0, 1, 2.
G.f.: Sum_{n>=0, k=0..2*n} T(n, k)*z^n*w^k = 1/(1-z-z*w-z*w^2-z^2*w^2).
There does not seem to be a simple expression for T(n, k). [That may have been true in 2001, but it is no longer true, as the following formulas show. - N. J. A. Sloane, Jan 22 2016]
If the rows of the sequence are displayed in the shape of an isosceles triangle, then, for k>=0, columns k and -k have g.f. z^k*g^k/sqrt((1+z-z^2)(1-3z-z^2)), where g=1+zg+z^2*g+z^2*g^2=[1-z-z^2-sqrt((1+z-z^2)(1-3z--z^2))]/(2z^2). - Emeric Deutsch, Sep 03 2007
T(i,j) = Sum_{m=0..i} Sum_{l=0..i-j-2*m} binomial(2*m+j,m)*binomial(l+j+2*m,l)*binomial(l,i-j-2*m-l) (see Ramirez link). - José Luis Ramírez Ramírez, Nov 18 2015
The e.g.f of the j-th column of the Pascal rhombus is L_j(x)=(F(x)^(j+1)*C(F(x)^2)^j)/(x*(1-2*F(x)^2*C(F(x)^2))), where F(x) and C(x) are the generating function of the Fibonacci numbers and Catalan numbers. - José Luis Ramírez Ramírez, Nov 18 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 30 2001

A026998 Triangular array T read by rows: T(n, k) = t(n, 2k), t given by A027960, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 4, 8, 1, 1, 4, 11, 13, 1, 1, 4, 11, 26, 19, 1, 1, 4, 11, 29, 54, 26, 1, 1, 4, 11, 29, 73, 101, 34, 1, 1, 4, 11, 29, 76, 171, 174, 43, 1, 1, 4, 11, 29, 76, 196, 370, 281, 53, 1, 1, 4, 11, 29, 76, 199, 487, 743, 431, 64, 1
Offset: 0

Views

Author

Keywords

Comments

Right-edge columns are polynomials approximating Lucas(2n+1).

Examples

			  .................................... 1;
  ................................. 1, 1;
  ............................. 1,  4, 1;
  ........................ 1,   4,  8, 1;
  ................... 1,   4,  11, 13, 1;
  .............. 1,   4,  11,  26, 19, 1;
  .......... 1,  4,  11,  29,  54, 26, 1;
  ...... 1,  4, 11,  29,  73, 101, 34, 1;
  .. 1,  4, 11, 29,  76, 171, 174, 43, 1;
  1, 4, 11, 29, 76, 196, 370, 281, 53, 1;
		

Crossrefs

This is a bisection of the "Lucas array" A027960, see A027011 for the other bisection.
Row sums give A095121.
Signed row sums give A090132.
Diagonal sums give A027010.
Right-edge columns include A034856, A027966, A027968, A027970, A027972.
Cf. A000032.

Programs

  • Magma
    function t(n, k) // t = A027960
          if k le n then return Lucas(k+1);
          elif k gt 2*n then return 0;
          else return t(n-1, k-2) + t(n-1, k-1);
          end if;
    end function;
    A026998:= func< n,k | t(n, 2*k) >;
    [A026998(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2025
    
  • Mathematica
    f[n_, k_]:= f[n, k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n];
    A026998[n_, k_]:= A027960[n,2*k];
    Table[A026998[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 09 2025 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A027960
        if (k>2*n): return 0
        elif (kA026998(n,k): return t(n, 2*k)
    print(flatten([[A026998(n, k) for k in (0..n)] for n in (0..12)])) # G. C. Greubel, Jul 09 2025

Formula

T(n, k) = Lucas(2*n+1) = A002878(n) for 2*k <= n, otherwise the (2*n-2*k)-th coefficient of the power series for (1+2*x)/( (1-x-x^2)*(1-x)^(2*k-n) ).

Extensions

Edited by Ralf Stephan, May 05 2005

A185787 Sum of first k numbers in column k of the natural number array A000027; by antidiagonals.

Original entry on oeis.org

1, 7, 25, 62, 125, 221, 357, 540, 777, 1075, 1441, 1882, 2405, 3017, 3725, 4536, 5457, 6495, 7657, 8950, 10381, 11957, 13685, 15572, 17625, 19851, 22257, 24850, 27637, 30625, 33821, 37232, 40865, 44727, 48825, 53166, 57757, 62605, 67717, 73100, 78761, 84707, 90945, 97482, 104325, 111481, 118957, 126760, 134897, 143375
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2011

Keywords

Comments

This is one of many interesting sequences and arrays that stem from the natural number array A000027, of which a northwest corner is as follows:
1....2.....4.....7...11...16...22...29...
3....5.....8....12...17...23...30...38...
6....9....13....18...24...31...39...48...
10...14...19....25...32...40...49...59...
15...20...26....33...41...50...60...71...
21...27...34....42...51...61...72...84...
28...35...43....52...62...73...85...98...
Blocking out all terms below the main diagonal leaves columns whose sums comprise A185787. Deleting the main diagonal and then summing give A185787. Analogous treatments to the left of the main diagonal give A100182 and A101165. Further sequences obtained directly from this array are easily obtained using the following formula for the array: T(n,k)=n+(n+k-2)(n+k-1)/2.
Examples:
row 1: A000124
row 2: A022856
row 3: A016028
row 4: A145018
row 5: A077169
col 1: A000217
col 2: A000096
col 3: A034856
col 4: A055998
col 5: A046691
col 6: A052905
col 7: A055999
diag. (1,5,...) ...... A001844
diag. (2,8,...) ...... A001105
diag. (4,12,...)...... A046092
diag. (7,17,...)...... A056220
diag. (11,23,...) .... A132209
diag. (16,30,...) .... A054000
diag. (22,38,...) .... A090288
diag. (3,9,...) ...... A058331
diag. (6,14,...) ..... A051890
diag. (10,20,...) .... A005893
diag. (15,27,...) .... A097080
diag. (21,35,...) .... A093328
antidiagonal sums: (1,5,15,34,...)=A006003=partial sums of A002817.
Let S(n,k) denote the n-th partial sum of column k. Then
S(n,k)=n*(n^2+3k*n+3*k^2-6*k+5)/6.
S(n,1)=n(n+1)(n+2)/6
S(n,2)=n(n+1)(n+5)/6
S(n,3)=n(n+2)(n+7)/6
S(n,4)=n(n^2+12n+29)/6
S(n,5)=n(n+5)(n+10)/6
S(n,6)=n(n+7)(n+11)/6
S(n,7)=n(n+10)(n+11)/6
Weight array of T: A144112
Accumulation array of T: A185506
Second rectangular sum array of T: A185507
Third rectangular sum array of T: A185508
Fourth rectangular sum array of T: A185509

Crossrefs

Programs

  • Magma
    [n*(7*n^2-6*n+5)/6: n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    f[n_,k_]:=n+(n+k-2)(n+k-1)/2;
    s[k_]:=Sum[f[n,k],{n,1,k}];
    Factor[s[k]]
    Table[s[k],{k,1,70}]  (* A185787 *)
    CoefficientList[Series[(3*x^2+3*x+1)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)

Formula

a(n)=n*(7*n^2-6*n+5)/6.
G.f.: x*(3*x^2+3*x+1)/(1-x)^4. - Vincenzo Librandi, Jul 04 2012

Extensions

Edited by Clark Kimberling, Feb 25 2023

A244049 Sum of all proper divisors of all positive integers <= n.

Original entry on oeis.org

0, 0, 0, 2, 2, 7, 7, 13, 16, 23, 23, 38, 38, 47, 55, 69, 69, 89, 89, 110, 120, 133, 133, 168, 173, 188, 200, 227, 227, 268, 268, 298, 312, 331, 343, 397, 397, 418, 434, 483, 483, 536, 536, 575, 607, 632, 632, 707, 714, 756, 776, 821, 821, 886, 902
Offset: 1

Views

Author

Omar E. Pol, Jun 24 2014

Keywords

Comments

The proper divisors of n are all divisors except 1 and n itself. Therefore noncomposite numbers have no proper divisors.
For the sum of all aliquot divisors of all positive integers <= n see A153485.
For the sum all divisors of all positive integers <= n see A024916.
a(n) = a(n - 1) if and only if n is prime.
For n >= 3 a(n) equals the area of an arrowhead-shaped polygon formed by two zig-zag paths and the Dyck path described in the n-th row of A237593 as shown in the Links section. Note that there is a similar diagram of A153485(n) in A153485. - Omar E. Pol, Jun 14 2022

Examples

			a(4) = 2 because the only proper divisor of 4 is 2 and the previous n contributed no proper divisors to the sum.
a(5) = 2 because 5 is prime and contributes no proper divisors to the sum.
a(6) = 7 because the proper divisors of 6 are 2 and 3, which add up to 5, and a(5) + 5 = 2 + 5 = 7.
		

Crossrefs

Programs

  • Mathematica
    propDivsRunSum[1] := 0; propDivsRunSum[n_] := propDivsRunSum[n] = propDivsRunSum[n - 1] + (Plus@@Divisors[n]) - (n + 1); Table[propDivsRunSum[n], {n, 60}] (* Alonso del Arte, Jun 30 2014 *)
    Accumulate[Join[{0},Table[Total[Most[Divisors[n]]]-1,{n,2,60}]]] (* Harvey P. Dale, Aug 12 2016 *)
    Accumulate[Join[{0}, Table[DivisorSigma[1, n] - n - 1, {n, 2, 55}]]] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    a(n) = sum(k=2, n, sigma(k)-k-1); \\ Michel Marcus, Mar 30 2021
    
  • Python
    from math import isqrt
    def A244049(n): return ((-n*(n+3)-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)))>>1)+1 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A024916(n) - A034856(n).
a(n) = A153485(n) - n + 1.
G.f.: (1/(1 - x))*Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017
a(n) = A161680(n-1) - A004125(n). - Omar E. Pol, Mar 25 2021
a(n) = A000290(n) - A034856(n) - A004125(n). - Omar E. Pol, Mar 26 2021
a(n) = c * n^2 + O(n*log(n)), where c = Pi^2/12 - 1/2 = 0.322467... . - Amiram Eldar, Nov 27 2023

A077241 Combined Diophantine Chebyshev sequences A054488 and A077413.

Original entry on oeis.org

1, 2, 8, 13, 47, 76, 274, 443, 1597, 2582, 9308, 15049, 54251, 87712, 316198, 511223, 1842937, 2979626, 10741424, 17366533, 62605607, 101219572, 364892218, 589950899, 2126747701, 3438485822, 12395593988, 20040964033, 72246816227, 116807298376
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

-8*a(n)^2 + b(n)^2 = 17, with the companion sequence b(n)= A077242(n).
The number a > 0 belongs to the sequence A077241, if a^2 belongs to the sequence A034856. - Alzhekeyev Ascar M, Apr 27 2012
Numbers k such that k^2 + 2 is a triangular number (see A214838). - Alex Ratushnyak, Mar 07 2013

Examples

			8*a(2)^2 + 17 = 8*8^2+17 = 529 = 23^2 = A077242(2)^2.
		

Programs

  • Magma
    I:=[1,2,8,13]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
  • Mathematica
    LinearRecurrence[{0, 6, 0, -1}, {1, 2, 8, 13}, 30] (* Bruno Berselli, Mar 10 2013 *)
    CoefficientList[Series[(1 + x) (1 + x + x^2)/(1 - 6 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 18 2014 *)
  • Maxima
    makelist(expand((-1)^n*((4-5*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor((n+1)/2))+(4+5*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor((n+1)/2)))/8), n, 0, 30); /* Bruno Berselli, Mar 10 2013 */
    

Formula

a(2k) = A054488(k) and a(2k+1)= A077413(k) for k>=0.
G.f.: (1+x)*(1+x+x^2)/(1-6*x^2+x^4).
a(n) = (-1)^n*((4-5*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor((n+1)/2))+(4+5*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor((n+1)/2)))/8. [Bruno Berselli, Mar 10 2013]

A220212 Convolution of natural numbers (A000027) with tetradecagonal numbers (A051866).

Original entry on oeis.org

0, 1, 16, 70, 200, 455, 896, 1596, 2640, 4125, 6160, 8866, 12376, 16835, 22400, 29240, 37536, 47481, 59280, 73150, 89320, 108031, 129536, 154100, 182000, 213525, 248976, 288666, 332920, 382075, 436480, 496496, 562496, 634865, 714000, 800310, 894216, 996151
Offset: 0

Views

Author

Bruno Berselli, Dec 08 2012

Keywords

Comments

Partial sums of A172073.
Apart from 0, all terms are in A135021: a(n) = A135021(A034856(n+1)) with n>0.

Crossrefs

Cf. convolution of the natural numbers (A000027) with the k-gonal numbers (* means "except 0"):
k= 2 (A000027 ): A000292;
k= 3 (A000217 ): A000332 (after the third term);
k= 4 (A000290 ): A002415 (after the first term);
k= 5 (A000326 ): A001296;
k= 6 (A000384*): A002417;
k= 7 (A000566 ): A002418;
k= 8 (A000567*): A002419;
k= 9 (A001106*): A051740;
k=10 (A001107*): A051797;
k=11 (A051682*): A051798;
k=12 (A051624*): A051799;
k=13 (A051865*): A055268.
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12 listed in A264850.

Programs

  • Magma
    A051866:=func; [&+[(n-k+1)*A051866(k): k in [0..n]]: n in [0..37]];
    
  • Magma
    I:=[0,1,16,70,200]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    A051866[k_] := k (6 k - 5); Table[Sum[(n - k + 1) A051866[k], {k, 0, n}], {n, 0, 37}]
    CoefficientList[Series[x (1 + 11 x) / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)

Formula

G.f.: x*(1+11*x)/(1-x)^5.
a(n) = n*(n+1)*(n+2)*(3*n-2)/6.
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(3*sqrt(3)*Pi + 27*log(3) - 17)/80.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(6*sqrt(3)*Pi - 64*log(2) + 37)/80. (End)

A286156 A(n,k) = T(remainder(n,k), quotient(n,k)), where T(n,k) is sequence A001477 considered as a two-dimensional table, square array read by descending antidiagonals.

Original entry on oeis.org

1, 2, 3, 2, 1, 6, 2, 5, 4, 10, 2, 5, 1, 3, 15, 2, 5, 9, 4, 7, 21, 2, 5, 9, 1, 8, 6, 28, 2, 5, 9, 14, 4, 3, 11, 36, 2, 5, 9, 14, 1, 8, 7, 10, 45, 2, 5, 9, 14, 20, 4, 13, 12, 16, 55, 2, 5, 9, 14, 20, 1, 8, 3, 6, 15, 66, 2, 5, 9, 14, 20, 27, 4, 13, 7, 11, 22, 78, 2, 5, 9, 14, 20, 27, 1, 8, 19, 12, 17, 21, 91, 2, 5, 9, 14, 20, 27, 35, 4, 13, 3, 18, 10, 29, 105
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Examples

			The top left 15 X 15 corner of the array:
    1,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,   2,   2
    3,  1,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,   5,   5
    6,  4,  1,  9,  9,  9,  9,  9,  9,  9,  9,  9,  9,   9,   9
   10,  3,  4,  1, 14, 14, 14, 14, 14, 14, 14, 14, 14,  14,  14
   15,  7,  8,  4,  1, 20, 20, 20, 20, 20, 20, 20, 20,  20,  20
   21,  6,  3,  8,  4,  1, 27, 27, 27, 27, 27, 27, 27,  27,  27
   28, 11,  7, 13,  8,  4,  1, 35, 35, 35, 35, 35, 35,  35,  35
   36, 10, 12,  3, 13,  8,  4,  1, 44, 44, 44, 44, 44,  44,  44
   45, 16,  6,  7, 19, 13,  8,  4,  1, 54, 54, 54, 54,  54,  54
   55, 15, 11, 12,  3, 19, 13,  8,  4,  1, 65, 65, 65,  65,  65
   66, 22, 17, 18,  7, 26, 19, 13,  8,  4,  1, 77, 77,  77,  77
   78, 21, 10,  6, 12,  3, 26, 19, 13,  8,  4,  1, 90,  90,  90
   91, 29, 16, 11, 18,  7, 34, 26, 19, 13,  8,  4,  1, 104, 104
  105, 28, 23, 17, 25, 12,  3, 34, 26, 19, 13,  8,  4,   1, 119
  120, 37, 15, 24,  6, 18,  7, 43, 34, 26, 19, 13,  8,   4,   1
		

Crossrefs

Cf. A286157 (transpose), A286158 (lower triangular region), A286159 (lower triangular region transposed).
Cf. A000217 (column 1), A000012 (the main diagonal), A000096 (superdiagonal), A034856.

Programs

  • Mathematica
    Map[((#1 + #2)^2 + 3 #1 + #2)/2 & @@ # & /@ Reverse@ # &, Table[Function[m, Reverse@ QuotientRemainder[m, k]][n - k + 1], {n, 14}, {k, n}]] // Flatten (* Michael De Vlieger, May 20 2017 *)
  • Python
    def T(a, b): return ((a + b)**2 + 3*a + b)//2
    def A(n, k): return T(n%k, n//k)
    for n in range(1, 21): print([A(k, n - k + 1) for k in range(1, n + 1)])  # Indranil Ghosh, May 20 2017
  • Scheme
    (define (A286156 n) (A286156bi (A002260 n) (A004736 n)))
    (define (A286156bi row col) (if (zero? col) -1 (let ((a (remainder row col)) (b (quotient row col))) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2))))
    

Formula

A(n,k) = T(remainder(n,k), quotient(n,k)), where T(n,k) is sequence A001477 considered as a two-dimensional table, that is, as a pairing function from [0, 1, 2, 3, ...] x [0, 1, 2, 3, ...] to [0, 1, 2, 3, ...]. This sequence lists only values for indices n >= 1, k >= 1.

A137743 Number T(m,n) of different strings of length n obtained from "123...m" by iteratively duplicating any substring; formatted as upper right triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 21, 13, 5, 1, 1, 32, 54, 40, 19, 6, 1, 1, 64, 138, 119, 66, 26, 7, 1, 1, 128, 355, 348, 218, 100, 34, 8, 1, 1, 256, 924, 1014, 700, 360, 143, 43, 9, 1, 1, 512, 2432, 2966, 2218, 1246, 555, 196, 53, 10, 1
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2008

Keywords

Comments

The sequence T(m,m+3) = 1,8,21,40,66,100,143,196,260,... = A137742.

Examples

			The full matrix is:
[ 1, 1, 1, 1, 1, 1, 1,_ 1,_ 1,__ 1,__ 1,...] (= A000012)
[[], 1, 2, 4, 8,16,32, 64,128, 256, 512,...] (= A000079)
[[],[], 1, 3, 8,21,54,138,355, 924,2432,...] (= A135473)
[[],[],[], 1, 4,13,40,119,348,1014,2966,...] (= A137744)
[[],[],[],[], 1, 5,19, 66,218, 700,2218,...] (= A137745)
[[],[],[],[],[], 1, 6, 26,100, 360,1246,...] (= A137746)
[[],[],[],[],[],[], 1,_ 7, 34, 143, 555,...] (= A137747)
...
		

Crossrefs

Programs

  • PARI
    A135473(Nmax,d=3 /* # digits in the initial string = row of the triangular matrix */)={ local( t,tt,ee,lsb, L=vector(Nmax,i,[]) /*store separately words of given length*/, w=log(d-.5)\log(2)+1/* bits required to code d distinct digits*/); L[d]=Set(sum(i=1,d-1,i<<(w*i))); for( i=d,Nmax-1, for( j=1, #t=eval(L[i]), forstep( ee=w,w*i,w, /*upper cutting point*/ forstep( len=w, min(ee,w*(Nmax-i)),w, /* length of substring */ lsb = bitand( tt=t[j], 1<A137743(10,d)))

Formula

T(m,n)=0 for n < m, T(m,m)=T(1,n)=1, T(m,m+1)=m, T(m,m+2)=C(m+2,2)-2 = A034856(m); T(2,2+n)=2^n.
For m > 3, T(m,m+2) = T(m-1,m+1) + T(m,m+1) + T(m+1,m+1). - Thomas Anton, Nov 05 2018

Extensions

More terms from Alois P. Heinz, Aug 31 2011

A144042 Square array A(n,k), n>=1, k>=1, read by antidiagonals, with A(1,k)=1 and sequence a_k of column k shifts left when Euler transform applied k times.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 9, 1, 1, 5, 13, 25, 20, 1, 1, 6, 19, 51, 77, 48, 1, 1, 7, 26, 89, 197, 258, 115, 1, 1, 8, 34, 141, 410, 828, 871, 286, 1, 1, 9, 43, 209, 751, 2052, 3526, 3049, 719, 1, 1, 10, 53, 295, 1260, 4337, 10440, 15538, 10834, 1842, 1, 1, 11, 64
Offset: 1

Views

Author

Alois P. Heinz, Sep 08 2008

Keywords

Examples

			Square array begins:
    1,   1,    1,     1,     1,     1,      1,      1, ...
    1,   1,    1,     1,     1,     1,      1,      1, ...
    2,   3,    4,     5,     6,     7,      8,      9, ...
    4,   8,   13,    19,    26,    34,     43,     53, ...
    9,  25,   51,    89,   141,   209,    295,    401, ...
   20,  77,  197,   410,   751,  1260,   1982,   2967, ...
   48, 258,  828,  2052,  4337,  8219,  14379,  23659, ...
  115, 871, 3526, 10440, 25512, 54677, 106464, 192615, ...
		

Crossrefs

Rows n=2-4 give: A000012, A000027, A034856.
Main diagonal gives A305725.
Cf. A316101.

Programs

  • Maple
    etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1,
            add(add(d*p(d), d=numtheory[divisors](j))*b(n-j), j=1..n)/n)
          end end:
    g:= proc(k) option remember; local b, t; b[0]:= j->
          `if`(j<2, j, b[k](j-1)); for t to k do
           b[t]:= etr(b[t-1]) od: eval(b[0])
        end:
    A:= (n, k)-> g(k)(n):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);  # revised Alois P. Heinz, Aug 27 2018
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = Module[{d, j}, If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]]; b]; A[n_, k_] := Module[{a, b, t}, b[1] = etr[a]; For[t = 2, t <= k, t++, b[t] = etr[b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m-1]]]; a[n]]; Table[Table[A[n, 1 + d-n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Dec 20 2013, translated from Maple *)
Previous Showing 21-30 of 97 results. Next