A002943 a(n) = 2*n*(2*n+1).
0, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8190, 8556, 8930
Offset: 0
Examples
64--65--66--67--68--69--70--71--72 | 63 36--37--38--39--40--41--42 | | | 62 35 16--17--18--19--20 43 | | | | | 61 34 15 4---5---6 21 44 | | | | | | | 60 33 14 3 0 7 22 45 | | | | | | | | 59 32 13 2---1 8 23 46 | | | | | | 58 31 12--11--10---9 24 47 | | | | 57 30--29--28--27--26--25 48 | | 56--55--54--53--52--51--50--49
References
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Leo Tavares, Illustration: Twin Diamond Stars.
- Eric Weisstein's World of Mathematics, Crown Graph.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, King Graph.
- Eric Weisstein's World of Mathematics, Queen Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A001477, A007395, A007494, A007742, A014105, A016813, A033954, A045896, A046092, A054000, A118729, A173511.
Same as A033951 except start at 0.
Sequences from spirals: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, this sequence, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, this sequence = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Programs
-
Haskell
a002943 n = 2 * n * (2 * n + 1) -- Reinhard Zumkeller, Jan 12 2014
-
Magma
[ 4*n^2+2*n: n in [0..50]]; // Vincenzo Librandi, Nov 25 2012
-
Maple
A002943 := proc(n) 2*n*(2*n+1) ; end proc: # R. J. Mathar, Jun 28 2013
-
Mathematica
LinearRecurrence[{3, -3, 1}, {0, 6, 20}, 40] (* Harvey P. Dale, Aug 11 2011 *) Table[2 n (2 n + 1), {n, 0, 40}] (* Harvey P. Dale, Aug 11 2011 *)
-
PARI
a(n)=2*n*(2*n+1) \\ Charles R Greathouse IV, Nov 20 2012
Formula
a(n) = 4*n^2 + 2*n.
a(n) = 2*A014105(n). - Omar E. Pol, May 21 2008
a(n) = floor((2*n + 1/2)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n+a(n-1) - 2 with a(0)=0. - Vincenzo Librandi, Jul 20 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 11 2011
a(n+1) = A045896(2*n+1). - Reinhard Zumkeller, Dec 12 2011
G.f.: 2*x*(3+x)/(1-x)^3. - Colin Barker, Jan 14 2012
From R. J. Mathar, Jan 15 2013: (Start)
Sum_{n>=1} 1/a(n) = 1 - log(2).
Sum_{n>=1} 1/a(n)^2 = 2*log(2) + Pi^2/6 - 3. (End)
a(n) = A118729(8*n+5). - Philippe Deléham, Mar 26 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 + log(2)/2 - 1. - Amiram Eldar, Feb 22 2022
E.g.f.: 2*exp(x)*x*(3 + 2*x). - Stefano Spezia, Apr 24 2024
a(n) = A002939(-n) for all n in Z. - Charles Kusniec, Aug 12 2025
Extensions
Formula fixed by Reinhard Zumkeller, Apr 09 2010
Comments