cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A065040 Triangle read by rows: T(m,k) = exponent of the highest power of 2 dividing the binomial coefficient binomial(m,k).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 3, 1, 3, 2, 3, 0, 0, 0, 2, 2, 1, 1, 2, 2, 0, 0, 0, 1, 0, 3, 1, 2, 1, 3, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0
Offset: 0

Views

Author

Claude Lenormand (hlne.lenormand(AT)voono.net), Nov 05 2001

Keywords

Comments

T(m,k) is the number of 'carries' that occur when adding k and m-k in base 2 using the traditional addition algorithm. - Tom Edgar, Jun 10 2014

Examples

			Triangle begins:
[0]
[0, 0]
[0, 1, 0]
[0, 0, 0, 0]
[0, 2, 1, 2, 0]
[0, 0, 1, 1, 0, 0]
[0, 1, 0, 2, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 0]
[0, 3, 2, 3, 1, 3, 2, 3, 0]
[0, 0, 2, 2, 1, 1, 2, 2, 0, 0]
[0, 1, 0, 3, 1, 2, 1, 3, 0, 1, 0]
... - _N. J. A. Sloane_, Aug 21 2021
		

Crossrefs

Programs

  • Maple
    A065040 := (n, k) -> padic[ordp](binomial(n, k), 2):
    seq(seq(A065040(n,k), k=0..n), n=0..13); # Peter Luschny, Aug 15 2017
  • Mathematica
    T[m_, k_] := IntegerExponent[Binomial[m, k], 2]; Table[T[m, k], {m, 0, 13}, {k, 0, m}] // Flatten (* Jean-François Alcover, Oct 06 2016 *)
  • PARI
    T(m,k)=hammingweight(k)+hammingweight(m-k)-hammingweight(m)
    for(m=0,9,for(k=0,m,print1(T(m,k)", "))) \\ Charles R Greathouse IV, Mar 26 2013

Formula

As an array f(i,j) = f(j,i) = T(i+j,j) read by antidiagonals: f(0,j) = 0, f(1,j) = A007814(j+1), f(i,j) = Sum_{k=0..i-1} (f(1,j+k) - f(1,k)). [corrected by Kevin Ryde, Oct 07 2021]
The n-th term a(n) is equal to the binomial coefficient binomial(m,k), where m = floor((1+sqrt(8*n+1))/2) - 1 and k = n - m(m+1)/2. Also a(n) = g(m) - g(k) - g(m-k), where g(x) = Sum_{i=1..floor(log_2(x))} floor(x/2^i), m = floor((1+sqrt(8*n+1))/2) - 1, k = n - m(m+1)/2. - Hieronymus Fischer, May 05 2007
T(m,k) <= log_2 m, for m > 0. - Charles R Greathouse IV, Mar 26 2013
T(m,k) = log_2(A082907(m,k)). - Tom Edgar, Jun 10 2014
From Antti Karttunen, Oct 28 2014: (Start)
a(n) = A007814(A007318(n)).
a(n) * A047999(n) = 0 and a(n) + A047999(n) > 0 for all n.
(End)

Extensions

Name clarified by Antti Karttunen, Oct 28 2014

A067667 a(n) = (2^n)!/2^(2^n-1).

Original entry on oeis.org

1, 1, 3, 315, 638512875, 122529844256906551386796875, 13757108753595648665519665029568345104465749222289382342659100341796875
Offset: 0

Views

Author

Benoit Cloitre, Feb 04 2002

Keywords

Comments

a(n) is also the number of knockout tournament seedings with 2^n teams. - Alexander Karpov, Aug 09 2015
From Zhujun Zhang, Jun 17 2019: (Start)
a(n) is also the number of heap-ordered binomial trees of order n (i.e., binomial heaps with 2^n nodes), see the Mark R. Brown reference.
a(n) is also the largest odd divisor of (2^n)!. (End)

Crossrefs

Programs

Formula

From Alexander Karpov, Aug 09 2015: (Start)
a(n) = (2^n)!/2^(2^n-1).
a(n) = (2^n-1)!!*a(n-1).
a(n) = binomial(2^n-1, 2^(n-1)-1)*(a(n-1))^2 = A069954(n-1) * (a(n-1))^2.
(End)
a(n) = A049606(2^n). - Zhujun Zhang, Jun 16 2019
a(n) = Product_{odd k < 2^n} k^(n - floor(log_2(k))). - Harry Richman, May 18 2023

Extensions

a(0) prepended by Jianing Song, Jul 15 2021

A152656 Triangle read by rows: denominators of polynomials from A000142: P(0,x) = 1, P(n,x) = 1/n! + x*Sum_{i=0..n-1} P(n-i-1)/i!. Numerators are A152650.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 24, 3, 2, 1, 1, 120, 3, 2, 1, 1, 1, 720, 15, 8, 3, 2, 1, 1, 5040, 45, 40, 3, 6, 1, 1, 1, 40320, 315, 80, 15, 24, 1, 2, 1, 1, 362880, 315, 560, 45, 24, 1, 6, 1, 1, 1, 3628800, 2835, 4480, 315, 144, 5, 24, 3, 2, 1, 1
Offset: 0

Views

Author

Paul Curtz, Dec 10 2008

Keywords

Comments

a(n) is the last sequence of a trio with, first, A141412 and, second, A142048 (denominators).

Examples

			Contribution from _Vincenzo Librandi_, Dec 16 2012: (Start)
Triangle begins:
        1,
        1,    1,
        2,    1,    1,
        6,    1,    1,   1,
       24,    3,    2,   1,   1,
      120,    3,    2,   1,   1, 1,
      720,   15,    8,   3,   2, 1,  1,
     5040,   45,   40,   3,   6, 1,  1, 1,
    40320,  315,   80,  15,  24, 1,  2, 1, 1,
   362880,  315,  560,  45,  24, 1,  6, 1, 1, 1,
  3628800, 2835, 4480, 315, 144, 5, 24, 3, 2, 1, 1,
  ...
First column: A000142; second column: A049606. (End)
		

Crossrefs

Programs

  • Mathematica
    ClearAll[u, p]; u[n_] := 1/n!; p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n-i-1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Denominator (* Jean-François Alcover, Oct 02 2012 *)

Extensions

More terms from Jean-François Alcover, Oct 02 2012

A004130 Numerators in expansion of (1-x)^{-1/4}.

Original entry on oeis.org

1, 1, 5, 15, 195, 663, 4641, 16575, 480675, 1762475, 13042315, 48612265, 729183975, 2748462675, 20809788825, 79077197535, 4823709049635, 18443593425075, 141400882925575, 543277076503525, 8366466978154285, 32270658344309385
Offset: 0

Views

Author

Keywords

Comments

Numerators in expansion of sqrt(1/sqrt(1-4x)). - Paul Barry, Jul 12 2005
Denominators are in A088802. - Michael Somos, Aug 23 2007

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Binomial[-1/4, n] (-1)^n], {n, 0, 20}]
  • PARI
    {a(n) = if( n<0, 0, numerator( polcoeff( (1 - x +x*O(x^n))^(-1/4), n ) ) ) } /* Michael Somos, Aug 23 2007 */

Formula

a(n) = prod(k=1, n, (4k-3)/k * 2^A007814(k)), proved by Mitch Harris, following a conjecture by Ralf Stephan.
a(n) = 2^(e_2((2n)!)-n)/n! Product[4k+1,{k,0,n-1}], where e_2((2n)!) is the highest power of 2 that divides (2n)! (sequence A005187). - Emanuele Munarini, Jan 25 2011
Numerators in (1-4t)^(-1/4) = 1 + t + (5/2)t^2 + (15/2)t^3 + (195/8)t^4 + (663/8)t^5 + (4641/16)t^6 + (16575/16)t^7 + ... = 1 + t + 5*t^2/2! + 45*t^3/3! + 585*t^4/4! + ... = e.g.f. for the quartic factorials A007696 (cf. A094638). - Tom Copeland, Dec 04 2013

A139541 There are 4*n players who wish to play bridge at n tables. Each player must have another player as partner and each pair of partners must have another pair as opponents. The choice of partners and opponents can be made in exactly a(n)=(4*n)!/(n!*8^n) different ways.

Original entry on oeis.org

1, 3, 315, 155925, 212837625, 618718975875, 3287253918823875, 28845653137679503125, 388983632561608099640625, 7637693625347175036443671875, 209402646126143497974176151796875, 7752714167528210725497923667975703125, 377130780679409810741846496828678078515625
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 25 2008

Keywords

Comments

From Karol A. Penson, Oct 05 2009: (Start)
Integral representation as n-th moment of a positive function on a positive semi-axis (solution of the Stieltjes moment problem), in Maple notation:
a(n)=int(x^n*((1/4)*sqrt(2)*(Pi^(3/2)*2^(1/4)*hypergeom([], [1/2, 3/4], -(1/32)*x)*sqrt(x)-2*Pi*hypergeom([], [3/4, 5/4], -(1/32)*x)*GAMMA(3/4)*x^(3/4)+sqrt(Pi)*GAMMA(3/4)^2*2^(1/4)*hypergeom([], [5/4, 3/2],-(1/32)*x)*x)/(Pi^(3/2)*GAMMA(3/4)*x^(5/4))), x=0..infinity), n=0,1... .
This solution may not be unique. (End)

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Appendix: Problem 203.1, p164.

Crossrefs

Programs

Formula

a(n) = (4*n)!/(n!*8^n).
a(n) = A001147(n)*A001147(2*n).
a(n) = A008977(n)*(A049606(n)/A001316(n))^3. - Reinhard Zumkeller, Apr 28 2008

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 07 2020

A160624 Denominator of Laguerre(n, 2).

Original entry on oeis.org

1, 1, 1, 3, 3, 15, 45, 315, 315, 2835, 14175, 155925, 467775, 6081075, 42567525, 638512875, 58046625, 10854718875, 8881133625, 1856156927625, 9280784638125, 194896477400625, 2143861251406875, 3792985290950625, 147926426347074375
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Examples

			1, -1, -1, -1/3, 1/3, 11/15, 37/45, 209/315, 113/315, 23/2835, -4381/14175, -84389/155925, -310517/467775, ... = A160623/A160624.
		

Crossrefs

For numerators see A160623. Different from A049606.
Cf. A295382.

Programs

  • Magma
    [Denominator((&+[Binomial(n,k)*((-2)^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 06 2018
  • Maple
    seq(denom(orthopoly[L](n,2)), n=0 .. 100); # Robert Israel, Jul 23 2015
  • Mathematica
    Denominator[LaguerreL[Range[0,30],2]] (* Vincenzo Librandi, May 24 2012 *)
  • PARI
    for(n=0,30, print1(denominator(sum(k=0,n, binomial(n,k)*((-2)^k/k!))), ", ")) \\ G. C. Greubel, May 06 2018
    
  • PARI
    a(n) = denominator(pollaguerre(n, 0, 2)); \\ Michel Marcus, Feb 05 2021
    

Formula

Denominators of coefficients in expansion of exp(-2*x/(1 - x))/(1 - x). - Ilya Gutkovskiy, Aug 29 2018

A375932 The largest unitary k-free divisor of n where k = A051903(n) is the maximum exponent in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 11, 5, 1, 1, 3, 1, 2, 1, 13, 1, 2, 1, 7, 1, 1, 1, 15, 1, 1, 7, 1, 1, 1, 1, 17, 1, 1, 1, 9, 1, 1, 3, 19, 1, 1, 1, 5, 1, 1, 1, 21, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2024

Keywords

Comments

The product of the prime powers in the prime factorization of n that have an exponent that is smaller than the maximum exponent in this factorization.

Examples

			60 = 2^2 * 3 * 5, and the maximum exponent in the prime factorization of 60 is 2, which is the exponent of its prime factor 2. Therefore a(60) = 3 * 5 = 15.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{f = FactorInteger[n], p, e, i, m}, p = f[[;; , 1]]; e = f[[;; , 2]]; m = Max[e]; i = Position[e, m] // Flatten; n / (Times @@ p[[i]])^m]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e = f[,2], m); if(n == 1, 1, m = vecmax(e); prod(i = 1, #p, if(e[i] < m, p[i]^e[i], 1)));}

Formula

If n = Product_{i} p_i^e_i (where p_i are distinct primes) then a(n) = Product_{i} p_i^(e_i * [e_i < max_{j} e_j]), where [] is the Iverson bracket.
a(n) = n / A375931(n).
a(n) = 1 if and only if n is a power of a squarefree number (A072774).
A051903(a(n)) = A375933(n).
a(n!) = A049606(n) for n != 3.

A067655 Denominators of the coefficients in exp(2x/(1-x)) power series.

Original entry on oeis.org

1, 1, 3, 3, 15, 45, 315, 315, 2835, 14175, 155925, 467775, 6081075, 3869775, 638512875, 638512875, 10854718875, 8881133625, 1856156927625, 9280784638125, 194896477400625, 2143861251406875, 2595200462229375
Offset: 1

Views

Author

Benoit Cloitre, Feb 03 2002

Keywords

Comments

Differs from A049606 at positions enumerated by A097324.

References

  • K. Knopp, Theory and application of infinite series, Dover, p. 547.
  • O. Perron, Über das infinitäre Verhalten der Koeffizienten einer gewissen Potenzreihe, Archiv d. Math. u. Phys. (3), Vol. 22, pp. 329-340, 1914.

Crossrefs

Cf. A067654.

Formula

a(n) is the denominator in Sum_{i=1..n} binomial(n-1, i-1)*2^i/i!.

A095987 a(n) = gcd(n!!, (n-1)!!) where n!! = A006882.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 15, 15, 45, 45, 315, 315, 315, 315, 2835, 2835, 14175, 14175, 155925, 155925, 467775, 467775, 6081075, 6081075, 42567525, 42567525, 638512875, 638512875, 638512875, 638512875, 10854718875, 10854718875, 97692469875, 97692469875
Offset: 0

Views

Author

Leroy Quet, Jul 18 2004

Keywords

Comments

Let f_n(m) be a multifactorial: for m = positive integer, f_n(m) = Product_{k=0..floor((m-1)/n)} (m - k*n). E.g., f_2(m) = m!!. f_n(0) is defined as 1.

Crossrefs

a(2n) gives A049606.

Programs

  • Maple
    a:= n-> (d-> gcd(d(n), d(n-1)))(doublefactorial):
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 26 2019
  • Mathematica
    f[n_] := GCD[n!!, (n - 1)!! ]; Table[ f[n], {n, 35}]
    GCD@@#&/@Partition[Range[0,40]!!,2,1] (* Harvey P. Dale, May 04 2015 *)

Formula

a(2m) = a(2m+1) = A049606(m).

Extensions

Edited and extended by Robert G. Wilson v, Jul 19 2004
Missing a(0)=1 inserted by Alois P. Heinz, Oct 26 2019

A123746 Numerators of partial sums of a series for 1/sqrt(2).

Original entry on oeis.org

1, 1, 7, 9, 107, 151, 835, 1241, 26291, 40427, 207897, 327615, 3296959, 5293843, 26189947, 42685049, 1666461763, 2749521971, 13266871709, 22115585443, 211386315749, 355490397193, 1684973959237, 2855358497999, 53747636888759
Offset: 0

Views

Author

Wolfdieter Lang, Nov 10 2006

Keywords

Comments

Denominators are given by A046161(n),n>=0.
The alternating sum over central binomial coefficients scaled by powers of 4, r(n) = Sum_{k=0..n} (-1)^k*binomial(2*k,k)/4^k, has the limit s = lim_{n->infinity} r(n) = 1/sqrt(2). From the expansion of 1/sqrt(1-x) for |x|<1 which extends to x=-1 due to Abel's limit theorem and the convergence of the series s. See the W. Lang link.
(2^n)*n!*r(n) = A003148(n). - Wolfdieter Lang, Oct 06 2008

Examples

			a(3)=9 because r(n)=1-1/2+3/8-5/16 = 9/16 = a(3)/A046161(3).
		

Crossrefs

Cf. A120088/(2*A120777) partial sums for a series of sqrt(2).
Equals A003148 divided by A049606. - Johannes W. Meijer, Nov 23 2009

Programs

  • GAP
    List([0..30], n-> NumeratorRat(Sum([0..n], k-> Binomial(2*k,k)/(-4)^k )) ); # G. C. Greubel, Aug 10 2019
  • Magma
    [Numerator( (&+[Binomial(2*k,k)/(-4)^k: k in [0..n]])): n in [0..30]]; // G. C. Greubel, Aug 10 2019
    
  • Maple
    A123746:=n-> numer(add(binomial(2*k,k)/(-4)^k, k=0..n)); seq(A123746(n), n=0..30); # G. C. Greubel, Aug 10 2019
    a := n -> numer(add(binomial(-1/2, j), j=0..n));
    seq(a(n), n=0..24); # Peter Luschny, Sep 26 2019
  • Mathematica
    Table[Numerator[Sum[Binomial[2*k, k]/(-4)^k, {k,0,n}]], {n,0,30}] (* G. C. Greubel, Mar 28 2018 *)
  • PARI
    {r(n) = sum(k=0,n,(-1/4)^k*binomial(2*k,k))};
    vector(30, n, n--; numerator(r(n)) ) \\ G. C. Greubel, Mar 28 2018
    
  • Sage
    [numerator( sum(binomial(2*k,k)/(-4)^k for k in (0..n)) ) for n in (0..30)] # G. C. Greubel, Aug 10 2019
    

Formula

a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k* binomial(2*k,k)/4^k, n>=0.
r(n) = Sum_{k=0..n} (-1)^k*(2*k-1)!!/(2*k)!!, n>=0, with the double factorials A001147 and A000165.
r(n) = 1/sqrt(2) - binomial(-1/2, 1 + n)*hypergeom([1, 3/2 + n], [2 + n], -1). - Peter Luschny, Sep 26 2019
Previous Showing 11-20 of 34 results. Next