cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 254 results. Next

A037445 Number of infinitary divisors (or i-divisors) of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
The smallest number m with exactly 2^n infinitary divisors is A037992(n); for these values m, a(m) increases also to a new record. - Bernard Schott, Mar 09 2023

Examples

			For n = 8, n = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8, so a(8) = 4.
For n = 90, n = 2*5*9 where 2,5,9 are in A050376, so a(90) = 2^3 = 8.
		

Crossrefs

Programs

  • Haskell
    a037445 = product . map (a000079 . a000120) . a124010_row
    -- Reinhard Zumkeller, Mar 19 2013
    
  • Maple
    A037445 := proc(n)
        local a,p;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*2^wt(p[2]) ;
        end do:
        a ;
    end proc: # R. J. Mathar, May 16 2016
  • Mathematica
    Table[Length@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@
    Flatten[Outer[z, Sequence @@ bitty /@
    Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 240}]
    bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]
    y[n_] := Select[Range[0, n], BitOr[n, # ] == n & ] divisors[Infinity][1] := {1}
    divisors[Infinity][n_] := Sort[Flatten[Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^y[m])]]] Length /@ divisors[Infinity] /@ Range[105] (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *)
    a[1] = 1; a[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]&  /@ FactorInteger[n][[All, 2]] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 19 2013, after Reinhard Zumkeller *)
  • PARI
    A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[,2])) \\ Andrew Lelechenko, May 10 2014
    
  • Python
    from sympy import factorint
    def wt(n): return bin(n).count("1")
    def a(n):
        f=factorint(n)
        return 2**sum([wt(f[i]) for i in f]) # Indranil Ghosh, May 30 2017
  • Scheme
    (define (A037445 n) (if (= 1 n) n (* (A001316 (A067029 n)) (A037445 (A028234 n))))) ;; Antti Karttunen, May 28 2017
    

Formula

Multiplicative with a(p^e) = 2^A000120(e). - David W. Wilson, Sep 01 2001
Let n = q_1*...*q_k, where q_1,...,q_k are different terms of A050376. Then a(n) = 2^k (the number of subsets of a set with k elements is 2^k). - Vladimir Shevelev, Feb 19 2011.
a(n) = Product_{k=1..A001221(n)} A000079(A000120(A124010(n,k))). - Reinhard Zumkeller, Mar 19 2013
From Antti Karttunen, May 28 2017: (Start)
a(n) = A286575(A156552(n)). [Because multiplicative with a(p^e) = A001316(e).]
a(n) = 2^A064547(n). (End)
a(A037992(n)) = 2^n. - Bernard Schott, Mar 10 2023

Extensions

Corrected and extended by Naohiro Nomoto, Jun 21 2001

A036554 Numbers whose binary representation ends in an odd number of zeros.

Original entry on oeis.org

2, 6, 8, 10, 14, 18, 22, 24, 26, 30, 32, 34, 38, 40, 42, 46, 50, 54, 56, 58, 62, 66, 70, 72, 74, 78, 82, 86, 88, 90, 94, 96, 98, 102, 104, 106, 110, 114, 118, 120, 122, 126, 128, 130, 134, 136, 138, 142, 146, 150, 152, 154, 158, 160, 162, 166, 168, 170, 174
Offset: 1

Views

Author

Keywords

Comments

Fraenkel (2010) called these the "dopey" numbers.
Also n such that A035263(n)=0 or A050292(n) = A050292(n-1).
Indices of even numbers in A033485. - Philippe Deléham, Mar 16 2004
a(n) is an odious number (see A000069) for n odd; a(n) is an evil number (see A001969) for n even. - Philippe Deléham, Mar 16 2004
Indices of even numbers in A007913, in A001511. - Philippe Deléham, Mar 27 2004
This sequence consists of the increasing values of n such that A097357(n) is even. - Creighton Dement, Aug 14 2004
Numbers with an odd number of 2's in their prime factorization (e.g., 8 = 2*2*2). - Mark Dow, Sep 04 2007
Equals the set of natural numbers not in A003159 or A141290. - Gary W. Adamson, Jun 22 2008
Represents the set of CCW n-th moves in the standard Tower of Hanoi game; and terms in even rows of a [1, 3, 5, 7, 9, ...] * [1, 2, 4, 8, 16, ...] multiplication table. Refer to the example. - Gary W. Adamson, Mar 20 2010
Refer to the comments in A003159 relating to A000041 and A174065. - Gary W. Adamson, Mar 21 2010
If the upper s-Wythoff sequence of s is s, then s=A036554. (See A184117 for the definition of lower and upper s-Wythoff sequences.) Starting with any nondecreasing sequence s of positive integers, A036554 is the limit when the upper s-Wythoff operation is iterated. For example, starting with s=(1,4,9,16,...) = (n^2), we obtain lower and upper s-Wythoff sequences
a=(1,3,4,5,6,8,9,10,11,12,14,...) = A184427;
b=(2,7,12,21,31,44,58,74,...) = A184428.
Then putting s=a and repeating the operation gives
b'=(2,6,8,10,13,17,20,...), which has the same first four terms as A036554. - Clark Kimberling, Jan 14 2011
Or numbers having infinitary divisor 2, or the same, having factor 2 in Fermi-Dirac representation as a product of distinct terms of A050376. - Vladimir Shevelev, Mar 18 2013
Thus, numbers not in A300841 or in A302792. Equally, sequence 2*A300841(n) sorted into ascending order. - Antti Karttunen, Apr 23 2018

Examples

			From _Gary W. Adamson_, Mar 20 2010: (Start)
Equals terms in even numbered rows in the following multiplication table:
(rows are labeled 1,2,3,... as with the Towers of Hanoi disks)
   1,  3,  5,  7,  9, 11, ...
   2,  6, 10, 14, 18, 22, ...
   4, 12, 20, 28, 36, 44, ...
   8, 24, 40, 56, 72, 88, ...
   ...
As shown, 2, 6, 8, 10, 14, ...; are in even numbered rows, given the row with (1, 3, 5, 7, ...) = row 1.
The term "5" is in an odd row, so the 5th Towers of Hanoi move is CW, moving disc #1 (in the first row).
a(3) = 8 in row 4, indicating that the 8th Tower of Hanoi move is CCW, moving disc #4.
A036554 bisects the positive nonzero natural numbers into those in the A036554 set comprising 1/3 of the total numbers, given sufficiently large n.
This corresponds to 1/3 of the TOH moves being CCW and 2/3 CW. Row 1 of the multiplication table = 1/2 of the natural numbers, row 2 = 1/4, row 3 = 1/8 and so on, or 1 = (1/2 + 1/4 + 1/8 + 1/16 + ...). Taking the odd-indexed terms of this series given offset 1, we obtain 2/3 = 1/2 + 1/8 + 1/32 + ..., while sum of the even-indexed terms is 1/3. (End)
		

Crossrefs

Indices of odd numbers in A007814. Subsequence of A036552. Complement of A003159. Also double of A003159.
Cf. A000041, A003157, A003158, A005408, A052330, A072939, A079523, A096268 (characteristic function, when interpreted with offset 1), A141290, A174065, A300841.

Programs

  • Haskell
    a036554 = (+ 1) . a079523  -- Reinhard Zumkeller, Mar 01 2012
    
  • Magma
    [2*m:m in [1..100] | Valuation(m,2) mod 2 eq 0]; // Marius A. Burtea, Aug 29 2019
    
  • Mathematica
    Select[Range[200],OddQ[IntegerExponent[#,2]]&] (* Harvey P. Dale, Oct 19 2011 *)
  • PARI
    is(n)=valuation(n,2)%2 \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    def ok(n):
      c = 0
      while n%2 == 0: n //= 2; c += 1
      return c%2 == 1
    print([m for m in range(1, 175) if ok(m)]) # Michael S. Branicky, Feb 06 2021
    
  • Python
    from itertools import count, islice
    def A036554_gen(startvalue=1): return filter(lambda n:(~n & n-1).bit_length()&1,count(max(startvalue,1))) # generator of terms >= startvalue
    A036554_list = list(islice(A036554_gen(),30)) # Chai Wah Wu, Jul 05 2022
    
  • Python
    is_A036554 = lambda n: A001511(n)&1==0 # M. F. Hasler, Nov 26 2024
    
  • Python
    def A036554(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n) # Chai Wah Wu, Jan 29 2025

Formula

a(n) = A079523(n)+1 = A072939(n)-1.
a(n) = A003156(n) + n = A003157(n) - n = A003158(n) - n + 1. - Philippe Deléham, Apr 10 2004
Values of k such that A091297(k) = 2. - Philippe Deléham, Feb 25 2004
a(n) ~ 3n. - Charles R Greathouse IV, Nov 20 2012 [In fact, a(n) = 3n + O(log n). - Charles R Greathouse IV, Nov 27 2024]
a(n) = 2*A003159(n). - Clark Kimberling, Sep 30 2014
{a(n)} = A052330({A005408(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Aug 26 2019

Extensions

Incorrect equation removed from formula by Peter Munn, Dec 04 2020

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A064547 Sum of binary digits (or count of 1-bits) in the exponents of the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Wouter Meeussen, Oct 09 2001

Keywords

Comments

This sequence is different from A058061 for n containing 6th, 8th, ..., k-th powers in its prime decomposition, where k runs through the integers missing from A064548.
For n > 1, n is a product of a(n) distinct members of A050376. - Matthew Vandermast, Jul 13 2004
For n > 1: a(n) = length of n-th row in A213925. - Reinhard Zumkeller, Mar 20 2013
Number of Fermi-Dirac factors of n. - Peter Munn, Dec 27 2019

Examples

			For n = 54, n = 2^1 * 3^3 with exponents (1) and (11) in binary, so a(54) = A000120(1) + A000120(3) = 1 + 2 = 3.
		

Crossrefs

Cf. A000028 (positions of odd terms), A000379 (of even terms).
Cf. A050376 (positions of ones), A268388 (terms larger than ones).
Row lengths of A213925.
A000120, A007814, A028234, A037445, A052331, A064989, A067029, A156552, A223491, A286574 are used in formulas defining this sequence.
Cf. A005117, A058061 (to which A064548 relates), A138302.
Cf. other sequences counting factors of n: A001221, A001222.
Cf. other sequences where a(n) depends only on the prime signature of n: A181819, A267116, A268387.
A003961, A007913, A008833, A059895, A059896, A059897, A225546 are used to express relationship between terms of this sequence.

Programs

  • Haskell
    a064547 1 = 0
    a064547 n = length $ a213925_row n  -- Reinhard Zumkeller, Mar 20 2013
    
  • Maple
    expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end;
    A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end:
    LamMos:= proc(n) local t1,t2,t3,i; t1:=expts(n); add( A000120(t1[i]),i=1..nops(t1)); end; # N. J. A. Sloane, Dec 20 2007
    # alternative Maple program:
    A064547:= proc(n) local F;
    F:= ifactors(n)[2];
    add(convert(convert(f[2],base,2),`+`),f=F)
    end proc:
    map(A064547,[$1..100]); # Robert Israel, May 17 2016
  • Mathematica
    Table[Plus@@(DigitCount[Last/@FactorInteger[k], 2, 1]), {k, 105}]
  • PARI
    a(n) = {my(f = factor(n)[,2]); sum(k=1, #f, hammingweight(f[k]));} \\ Michel Marcus, Feb 10 2016
    
  • Python
    from sympy import factorint
    def wt(n): return bin(n).count("1")
    def a(n):
        f=factorint(n)
        return sum([wt(f[i]) for i in f]) # Indranil Ghosh, May 30 2017
  • Scheme
    ;; uses memoizing-macro definec
    (definec (A064547 n) (cond ((= 1 n) 0) (else (+ (A000120 (A067029 n)) (A064547 (A028234 n))))))
    ;; Antti Karttunen, Feb 09 2016
    
  • Scheme
    ;; uses memoizing-macro definec
    (definec (A064547 n) (if (= 1 n) 0 (+ (A000120 (A007814 n)) (A064547 (A064989 n)))))
    ;; Antti Karttunen, Feb 09 2016
    

Formula

a(m*n) <= a(m)*a(n). - Reinhard Zumkeller, Mar 20 2013
From Antti Karttunen, Feb 09 2016: (Start)
a(1) = 0, and for n > 1, a(n) = A000120(A067029(n)) + a(A028234(n)).
a(1) = 0, and for n > 1, a(n) = A000120(A007814(n)) + a(A064989(n)).
(End)
a(n) = log_2(A037445(n)). - Vladimir Shevelev, May 13 2016
a(n) = A286574(A156552(n)). - Antti Karttunen, May 28 2017
Additive with a(p^e) = A000120(e). - Jianing Song, Jul 28 2018
a(n) = A000120(A052331(n)). - Peter Munn, Aug 26 2019
From Peter Munn, Dec 18 2019: (Start)
a(A000379(n)) mod 2 = 0.
a(A000028(n)) mod 2 = 1.
A001221(n) <= a(n) <= A001222(n).
A001221(n) < a(n) => a(n) < A001222(n).
a(n) = A001222(n) if and only if n is in A005117.
a(n) = A001221(n) if and only if n is in A138302.
a(n^2) = a(n).
a(A003961(n)) = a(n).
a(A225546(n)) = a(n).
a(n) = a(A007913(n)) + a(A008833(n)).
a(A050376(n)) = 1.
a(A059897(n,k)) + 2 * a(A059895(n,k)) = a(n) + a(k).
a(A059896(n,k)) + a(A059895(n,k)) = a(n) + a(k).
Alternative definition: a(1) = 0; a(n * m) = a(n) + 1 for m = A050376(k) > A223491(n).
(End)
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.13605447049622836522... (A382294), where f(x) = -x + Sum_{k>=0} x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 28 2023
a(n) << log n/log log n. - Charles R Greathouse IV, Nov 29 2024

A049417 a(n) = isigma(n): sum of infinitary divisors of n.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 15, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 60, 26, 42, 40, 40, 30, 72, 32, 51, 48, 54, 48, 50, 38, 60, 56, 90, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 120, 72, 120, 80, 90, 60, 120, 62, 96, 80, 85, 84, 144, 68, 90
Offset: 1

Views

Author

Yasutoshi Kohmoto, Dec 11 1999

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
This sequence is an infinitary analog of the Dedekind psi function A001615. Indeed, a(n) = Product_{q in Q_n}(q+1) = n*Product_{q in Q_n} (1+1/q), where {q} are terms of A050376 and Q_n is the set of distinct q's whose product is n. - Vladimir Shevelev, Apr 01 2014
1/a(n) is the asymptotic density of numbers that are infinitarily divided by n (i.e., numbers whose set of infinitary divisors includes n). - Amiram Eldar, Jul 23 2025

Examples

			If n = 8: 8 = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8; so a(8) = 1+2+4+8 = 15.
n = 90 = 2*5*9, where 2, 5, 9 are in A050376; so a(n) = 3*6*10 = 180. - _Vladimir Shevelev_, Feb 19 2011
		

Crossrefs

Cf. A049418 (3-infinitary), A074847 (4-infinitary), A097863 (5-infinitary).

Programs

  • Haskell
    a049417 1 = 1
    a049417 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000079_list $ map (+ 1) $ a030308_row e)
               (map (subtract 1 . (p ^)) a000079_list)
    -- Reinhard Zumkeller, Sep 18 2015
    
  • Maple
    isidiv := proc(d, n)
        local n2, d2, p, j;
        if n mod d <> 0 then
            return false;
        end if;
        for p in numtheory[factorset](n) do
            padic[ordp](n,p) ;
            n2 := convert(%, base, 2) ;
            padic[ordp](d,p) ;
            d2 := convert(%, base, 2) ;
            for j from 1 to nops(d2) do
                if op(j, n2) = 0 and op(j, d2) <> 0 then
                    return false;
                end if;
            end do:
        end do;
        return true;
    end proc:
    idivisors := proc(n)
        local a, d;
        a := {} ;
        for d in numtheory[divisors](n) do
            if isidiv(d, n) then
                a := a union {d} ;
            end if;
        end do:
        a ;
    end proc:
    A049417 := proc(n)
        local d;
        add(d, d=idivisors(n)) ;
    end proc:
    seq(A049417(n),n=1..100) ; # R. J. Mathar, Feb 19 2011
  • Mathematica
    bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]; Table[Plus@@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@ Flatten[Outer[z, Sequence @@ bitty /@ Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 120}]
    (* Second program: *)
    a[n_] := If[n == 1, 1, Sort @ Flatten @ Outer[ Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] // Total;
    Array[a, 100] (* Jean-François Alcover, Mar 23 2020, after Paul Abbott in A077609 *)
  • PARI
    A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[,2], b = binary(f[k,2]); prod(j=1, #b, if(b[j], 1+f[k,1]^(2^(#b-j)), 1)))} \\ Andrew Lelechenko, Apr 22 2014
    
  • PARI
    isigma(n)=vecprod([vecprod([f[1]^2^k+1|k<-[0..exponent(f[2])], bittest(f[2],k)])|f<-factor(n)~]) \\ M. F. Hasler, Oct 20 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A049417(n): return prod(p**(1<Chai Wah Wu, Jul 11 2024

Formula

Multiplicative: If e = Sum_{k >= 0} d_k 2^k (binary representation of e), then a(p^e) = Product_{k >= 0} (p^(2^k*{d_k+1}) - 1)/(p^(2^k) - 1). - Christian G. Bower and Mitch Harris, May 20 2005 [This means there is a factor p^2^k + 1 if d_k = 1, otherwise the factor is 1. - M. F. Hasler, Oct 20 2022]
Let n = Product(q_i) where {q_i} is a set of distinct terms of A050376. Then a(n) = Product(q_i + 1). - Vladimir Shevelev, Feb 19 2011
If n is squarefree, then a(n) = A001615(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{k>=1} A077609(n,k). - R. J. Mathar, Oct 04 2017
a(n) = A126168(n)+n. - R. J. Mathar, Oct 05 2017
Multiplicative with a(p^e) = Product{k >= 0, e_k = 1} p^2^k + 1, where e = Sum e_k 2^k, i.e., e_k is bit k of e. - M. F. Hasler, Oct 20 2022
a(n) = iphi(n^2)/iphi(n), where iphi(n) = A091732(n). - Amiram Eldar, Sep 21 2024

Extensions

More terms from Wouter Meeussen, Sep 02 2001

A059897 Symmetric square array read by antidiagonals: A(n,k) is the product of all factors that occur in one, but not both, of the Fermi-Dirac factorizations of n and k.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 6, 6, 4, 5, 8, 1, 8, 5, 6, 10, 12, 12, 10, 6, 7, 3, 15, 1, 15, 3, 7, 8, 14, 2, 20, 20, 2, 14, 8, 9, 4, 21, 24, 1, 24, 21, 4, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 5, 27, 2, 35, 1, 35, 2, 27, 5, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24, 33
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Old name: Square array read by antidiagonals: T(i,j) = product prime(k)^(Ei(k) XOR Ej(k)) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; XOR is the bitwise operation on binary representation of the exponents.
Analogous to multiplication, with XOR replacing +.
From Peter Munn, Apr 01 2019: (Start)
(1) Defines an abelian group whose underlying set is the positive integers. (2) Every element is self-inverse. (3) For all n and k, A(n,k) is a divisor of n*k. (4) The terms of A050376, sometimes called Fermi-Dirac primes, form a minimal set of generators. In ordered form, it is the lexicographically earliest such set.
The unique factorization of positive integers into products of distinct terms of the group's lexicographically earliest minimal set of generators seems to follow from (1) (2) and (3).
From (1) and (2), every row and every column of the table is a self-inverse permutation of the positive integers. Rows/columns numbered by nonmembers of A050376 are compositions of earlier rows/columns.
It is a subgroup of the equivalent group over the nonzero integers, which has -1 as an additional generator.
As generated by A050376, the subgroup of even length words is A000379. The complementary set of odd length words is A000028.
The subgroup generated by A000040 (the primes) is A005117 (the squarefree numbers).
(End)
Considered as a binary operation, the result is (the squarefree part of the product of its operands) times the square of (the operation's result when applied to the square roots of the square parts of its operands). - Peter Munn, Mar 21 2022

Examples

			A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 XOR 3) * 3^(3 XOR 5) = 2^6 * 3^6 = 46656.
The top left 12 X 12 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12
   2,  1,  6,  8, 10,  3, 14,  4,  18,   5,  22,  24
   3,  6,  1, 12, 15,  2, 21, 24,  27,  30,  33,   4
   4,  8, 12,  1, 20, 24, 28,  2,  36,  40,  44,   3
   5, 10, 15, 20,  1, 30, 35, 40,  45,   2,  55,  60
   6,  3,  2, 24, 30,  1, 42, 12,  54,  15,  66,   8
   7, 14, 21, 28, 35, 42,  1, 56,  63,  70,  77,  84
   8,  4, 24,  2, 40, 12, 56,  1,  72,  20,  88,   6
   9, 18, 27, 36, 45, 54, 63, 72,   1,  90,  99, 108
  10,  5, 30, 40,  2, 15, 70, 20,  90,   1, 110, 120
  11, 22, 33, 44, 55, 66, 77, 88,  99, 110,   1, 132
  12, 24,  4,  3, 60,  8, 84,  6, 108, 120, 132,   1
From _Peter Munn_, Apr 04 2019: (Start)
The subgroup generated by {6,8,10}, the first three integers > 1 not in A050376, has the following table:
    1     6     8    10    12    15    20   120
    6     1    12    15     8    10   120    20
    8    12     1    20     6   120    10    15
   10    15    20     1   120     6     8    12
   12     8     6   120     1    20    15    10
   15    10   120     6    20     1    12     8
   20   120    10     8    15    12     1     6
  120    20    15    12    10     8     6     1
(End)
		

Crossrefs

Cf. A284567 (A000142 or A003418-analog for this operation).
Rows/columns: A073675 (2), A120229 (3), A120230 (4), A307151 (5), A307150 (6), A307266 (8), A307267 (24).
Particularly significant subgroups or cosets: A000028, A000379, A003159, A005117, A030229, A252895. See also the lists in A329050, A352273.
Sequences that relate this sequence to multiplication: A000188, A007913, A059895.

Programs

  • Mathematica
    a[i_, i_] = 1;
    a[i_, j_] := Module[{f1 = FactorInteger[i], f2 = FactorInteger[j], e1, e2}, e1[] = 0; Scan[(e1[#[[1]]] = #[[2]])&, f1]; e2[] = 0; Scan[(e2[#[[1]]] = #[[2]])&, f2]; Times @@ (#^BitXor[e1[#], e2[#]]& /@ Union[f1[[All, 1]], f2[[All, 1]]])];
    Table[a[i - j + 1, j], {i, 1, 15}, {j, 1, i}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
  • PARI
    T(n,k) = {if (n==1, return (k)); if (k==1, return (n)); my(fn=factor(n), fk=factor(k)); vp = setunion(fn[,1]~, fk[,1]~); prod(i=1, #vp, vp[i]^(bitxor(valuation(n, vp[i]), valuation(k, vp[i]))));} \\ Michel Marcus, Apr 03 2019
    
  • PARI
    T(i, j) = {if(gcd(i, j) == 1, return(i * j)); if(i == j, return(1)); my(f = vecsort(concat(factor(i)~, factor(j)~)), t = 1, res = 1); while(t + 1 <= #f, if(f[1, t] == f[1, t+1], res *= f[1, t] ^ bitxor(f[2, t] , f[2, t+1]); t+=2; , res*= f[1, t]^f[2, t]; t++; ) ); if(t == #f, res *= f[1, #f] ^ f[2, #f]); res } \\ David A. Corneth, Apr 03 2019
    
  • PARI
    A059897(n,k) = if(n==k, 1, core(n*k) * A059897(core(n,1)[2],core(k,1)[2])^2) \\ Peter Munn, Mar 21 2022
  • Scheme
    (define (A059897 n) (A059897bi (A002260 n) (A004736 n)))
    (define (A059897bi a b) (let loop ((a a) (b b) (m 1)) (cond ((= 1 a) (* m b)) ((= 1 b) (* m a)) ((equal? (A020639 a) (A020639 b)) (loop (A028234 a) (A028234 b) (* m (expt (A020639 a) (A003987bi (A067029 a) (A067029 b)))))) ((< (A020639 a) (A020639 b)) (loop (/ a (A028233 a)) b (* m (A028233 a)))) (else (loop a (/ b (A028233 b)) (* m (A028233 b)))))))
    ;; Antti Karttunen, Apr 11 2017
    

Formula

For all x, y >= 1, A(x,y) * A059895(x,y)^2 = x*y. - Antti Karttunen, Apr 11 2017
From Peter Munn, Apr 01 2019: (Start)
A(n,1) = A(1,n) = n
A(n, A(m,k)) = A(A(n,m), k)
A(n,n) = 1
A(n,k) = A(k,n)
if i_1 <> i_2 then A(A050376(i_1), A050376(i_2)) = A050376(i_1) * A050376(i_2)
if A(n,k_1) = n * k_1 and A(n,k_2) = n * k_2 then A(n, A(k_1,k_2)) = n * A(k_1,k_2)
(End)
T(k, m) = k*m for coprime k and m. - David A. Corneth, Apr 03 2019
if A(n*m,m) = n, A(n*m,k) = A(n,k) * A(m,k) / k. - Peter Munn, Apr 04 2019
A(n,k) = A007913(n*k) * A(A000188(n), A000188(k))^2. - Peter Munn, Mar 21 2022

Extensions

New name from Peter Munn, Mar 21 2022

A138302 Exponentially 2^n-numbers: 1 together with positive integers k such that all exponents in prime factorization of k are powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Vladimir Shevelev, May 07 2008

Keywords

Comments

Previous name: sequence consists of products of distinct relatively prime terms of A084400. - Vladimir Shevelev, Sep 24 2015
These numbers are also called "compact integers."
The density of this sequence exists and equals 0.872497...
There exist only seven compact factorials A000142(n) for n=1,2,3,6,7,10 and 11.
For a general definition of exponentially S-numbers, see comments in A209061. - Vladimir Shevelev, Sep 24 2015
The first 1000 digits of the density of the sequence were calculated by Juan Arias-de-Reyna in A271727. - Vladimir Shevelev, Apr 18 2016
A225546 maps the set of terms 1:1 onto A268375. - Peter Munn, Jan 26 2020
Numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide. - Amiram Eldar, Dec 23 2020

Examples

			60 = 2^(2^1)*3^(2^0)*5^(2^0).
		

Crossrefs

Programs

  • Maple
    isA000079 := proc(n)
        if n = 1 then
            true;
        else
            type(n,'even') and nops(numtheory[factorset](n))=1 ;
            simplify(%) ;
        end if;
    end proc:
    isA138302 := proc(n)
        local p;
        if n = 1 then
            return true;
        end if;
        for p in ifactors(n)[2] do
            if not isA000079(op(2,p)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for n from 1 to 100 do
        if isA138302(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 27 2016
  • Mathematica
    lst={}; Do[p=Prime[n]; s=p^(1/3); f=Floor[s]; a=f^3; d=p-a; AppendTo[lst,d], {n,100}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
    selQ[n_] := AllTrue[FactorInteger[n][[All, 2]], IntegerQ[Log[2, #]]&];
    Select[Range[100], selQ] (* Jean-François Alcover, Oct 29 2018 *)
  • PARI
    is(n)=if(n<8, n>0, vecmin(apply(n->n>>valuation(n,2)==1, factor(n)[,2]))) \\ Charles R Greathouse IV, Dec 07 2012

Formula

Identities arising from the calculation of the density h of the sequence (cf. [Shevelev] and comment for a generalization in A209061):
h = Product_{prime p} Sum_{j in {0 and 2^k}}(p-1)/p^(j+1) = Product_{prime p} (1 + Sum_{j>=2} (u(j) - u(j-1))/p^j) = (1/zeta(2))* Product_{p}(1 + 1/(p+1))*Sum_{i>=1}p^(-(2^i-1)), where u(n) is the characteristic function of set {2^k, k>=0}. - Vladimir Shevelev, Sep 24 2015

Extensions

Incorrect comment removed by Charles R Greathouse IV, Dec 07 2012
Simpler name from Vladimir Shevelev, Sep 24 2015
Edited by N. J. A. Sloane, Nov 07 2015

A037274 Home primes: for n >= 2, a(n) = the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached (a(n) = -1 if no prime is ever reached).

Original entry on oeis.org

1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277
Offset: 1

Views

Author

Keywords

Comments

The initial 1 could have been omitted.
Probabilistic arguments give exactly zero for the chance that the sequence of integers starting at n contains no prime, the expected number of primes being given by a divergent sequence. - J. H. Conway
After over 100 iterations, a(49) is still composite - see A056938 for the latest information.
More terms:
a(50) to a(60) are 3517, 317, 2213, 53, 2333, 773, 37463, 1129, 229, 59, 35149;
a(61) to a(65) are 61, 31237, 337, 1272505013723, 1381321118321175157763339900357651;
a(66) to a(76) are 2311, 67, 3739, 33191, 257, 71, 1119179, 73, 379, 571, 333271.
This is different from A195264. Here 8 = 2^3 -> 222 -> ... -> 3331113965338635107 (a prime), whereas in A195264 8 = 2^3 -> 23 (a prime). - N. J. A. Sloane, Oct 12 2014

Examples

			9 = 3*3 -> 33 = 3*11 -> 311, prime, so a(9) = 311.
The trajectory of 8 is more interesting:
8 ->
2 * 2 * 2 ->
2 * 3 * 37 ->
3 * 19 * 41 ->
3 * 3 * 3 * 7 * 13 * 13 ->
3 * 11123771 ->
7 * 149 * 317 * 941 ->
229 * 31219729 ->
11 * 2084656339 ->
3 * 347 * 911 * 118189 ->
11 * 613 * 496501723 ->
97 * 130517 * 917327 ->
53 * 1832651281459 ->
3 * 3 * 3 * 11 * 139 * 653 * 3863 * 5107
and 3331113965338635107 is prime, so a(8) = 3331113965338635107.
		

References

  • Jeffrey Heleen, Family Numbers: Mathemagical Black Holes, Recreational and Educational Computing, 5:5, pp. 6, 1990.
  • Jeffrey Heleen, Family numbers: Constructing Primes by Prime Factor Splicing, J. Recreational Math., Vol. 28 #2, 1996-97, pp. 116-119.

Crossrefs

Cf. A195264 (use exponents instead of repeating primes).
Cf. A084318 (use only one copy of each prime), A248713 (Fermi-Dirac analog: use unique representation of n>1 as a product of distinct terms of A050376).
Cf. also A120716 and related sequences.

Programs

  • Maple
    b:= n-> parse(cat(sort(map(i-> i[1]$i[2], ifactors(n)[2]))[])):
    a:= n-> `if`(isprime(n) or n=1, n, a(b(n))):
    seq(a(n), n=1..48);  # Alois P. Heinz, Jan 09 2021
  • Mathematica
    f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], { #[[2]] }] & /@ FactorInteger@n, 2]; g[n_] := NestWhile[ f@# &, n, !PrimeQ@# &]; g[1] = 1; Array[g, 41] (* Robert G. Wilson v, Sep 22 2007 *)
  • PARI
    step(n)=my(f=factor(n),s="");for(i=1,#f~,for(j=1,f[i,2],s=Str(s,f[i,1]))); eval(s)
    a(n)=if(n<4,return(n)); while(!isprime(n), n=step(n)); n \\ Charles R Greathouse IV, May 14 2015
    
  • Python
    from sympy import factorint, isprime
    def f(n): return int("".join(str(p)*e for p, e in factorint(n).items()))
    def a(n):
        if n == 1: return 1
        fn = n
        while not isprime(fn): fn = f(fn)
        return fn
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Jul 11 2022
  • SageMath
    def digitLen(x,n):
        r=0
        while(x>0):
            x//=n
            r+=1
        return r
    def concatPf(x,n):
        r=0
        f=list(factor(x))
        for c in range(len(f)):
            for d in range(f[c][1]):
                r*=(n**digitLen(f[c][0],n))
                r+=f[c][0]
        return r
    def hp(x,n):
        x1=concatPf(x,n)
        while(x1!=x):
            x=x1
            x1=concatPf(x1,n)
        return x
    #example: prints the home prime of 8 in base 10
    print(hp(8,10))
    

Extensions

Corrected and extended by Karl W. Heuer, Sep 30 2003

A052330 Let S_k denote the first 2^k terms of this sequence and let b_k be the smallest positive integer that is not in S_k; then the numbers b_k*S_k are the next 2^k terms.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 7, 14, 21, 42, 28, 56, 84, 168, 35, 70, 105, 210, 140, 280, 420, 840, 9, 18, 27, 54, 36, 72, 108, 216, 45, 90, 135, 270, 180, 360, 540, 1080, 63, 126, 189, 378, 252, 504, 756, 1512, 315, 630, 945, 1890
Offset: 0

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

Inverse of sequence A064358 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
This sequence is not exactly a permutation because it has offset 0 but doesn't contain 0. A052331 is its exact inverse, which has offset 1 and contains 0. See also A064358.
Are there any other values of n besides 4 and 36 with a(n) = n? - Thomas Ordowski, Apr 01 2005
4 = 100 = 4^1 * 3^0 * 2^0, 36 = 100100 = 9^1 * 7^0 * 5^0 * 4^1 * 3^0 * 2^0. - Thomas Ordowski, May 26 2005
Ordering of positive integers by increasing "Fermi-Dirac representation", which is a representation of the "Fermi-Dirac factorization", term implying that each prime power with a power of two as exponent may appear at most once in the "Fermi-Dirac factorization" of n. (Cf. comment in A050376; see also the OEIS Wiki page.) - Daniel Forgues, Feb 11 2011
The subsequence consisting of the squarefree terms is A019565. - Peter Munn, Mar 28 2018
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k). A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. Then a(n) is the number whose binary indices are the parts of the strict integer partition with FDH-number n. - Gus Wiseman, Aug 19 2019
The set of indices of odd-valued terms has asymptotic density 0. In this sense (using the order they appear in this permutation) 100% of numbers are even. - Peter Munn, Aug 26 2019

Examples

			Terms following 5 are 10, 15, 30, 20, 40, 60, 120; this is followed by 7 as 6 has already occurred. - _Philippe Deléham_, Jun 03 2015
From _Antti Karttunen_, Apr 13 2018, after also _Philippe Deléham_'s Jun 03 2015 example: (Start)
This sequence can be regarded also as an irregular triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., that is, it can be represented as a binary tree, where each left hand child contains A300841(k), and each right hand child contains 2*A300841(k), when their parent contains k:
                                     1
                                     |
                  ...................2...................
                 3                                       6
       4......../ \........8                  12......../ \........24
      / \                 / \                 / \                 / \
     /   \               /   \               /   \               /   \
    /     \             /     \             /     \             /     \
   5       10         15       30         20       40         60      120
  7 14   21  42     28  56   84  168    35  70  105  210   140 280  420 840
  etc.
Compare also to trees like A005940 and A283477, and sequences A207901 and A302783.
(End)
		

Crossrefs

Subsequences: A019565 (squarefree terms), A050376 (the left edge from 2 onward), A336882 (odd terms).

Programs

  • Mathematica
    a = {1}; Do[a = Join[a, a*Min[Complement[Range[Max[a] + 1], a]]], {n, 1, 6}]; a (* Ivan Neretin, May 09 2015 *)
  • PARI
    up_to_e = 13; \\ Good for computing up to n = (2^13)-1
    v050376 = vector(up_to_e);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A050376(n) = v050376[n];
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); }; \\ Antti Karttunen, Apr 12 2018

Formula

a(0)=1; a(n+2^k)=a(n)*b(k) for n < 2^k, k = 0, 1, ... where b is A050376. - Thomas Ordowski, Mar 04 2005
The binary representation of n, n = Sum_{i=0..1+floor(log_2(n))} n_i * 2^i, n_i in {0,1}, is taken as the "Fermi-Dirac representation" (A182979) of a(n), a(n) = Product_{i=0..1+floor(log_2(n))} (b_i)^(n_i) where b_i is A050376(i), i.e., the i-th "Fermi-Dirac prime" (prime power with exponent being a power of 2). - Daniel Forgues, Feb 12 2011
From Antti Karttunen, Apr 12 & 17 2018: (Start)
a(0) = 1; a(2n) = A300841(a(n)), a(2n+1) = 2*A300841(a(n)).
a(n) = A207901(A006068(n)) = A302783(A003188(n)) = A302781(A302845(n)).
(End)

Extensions

Entry revised Mar 17 2005 by N. J. A. Sloane, based on comments from several people, especially David Wasserman and Thomas Ordowski

A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1

Views

Author

Keywords

Comments

From Antti Karttunen, Aug 21 2018: (Start)
a(n) is the denominator of any rational-valued sequence f(n) which has been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d
Proof:
Proof is by induction. We assume as our induction hypothesis that the given multiplicative formula for A046644 (resp. additive formula for A046645) holds for all proper divisors d|n, dA046645(p) = 1. [Remark: for squares of primes, f(p^2) = (4*b(p^2) - 1)/8, thus a(p^2) = 8.]
First we note that A005187(x+y) <= A005187(x) + A005187(y), with equivalence attained only when A004198(x,y) = 0, that is, when x and y do not have any 1-bits in the shared positions. Let m = Sum_{e} A005187(e), with e ranging over the exponents in prime factorization of n.
For [case A] any n in A268388 it happens that only when d (and thus also n/d) are infinitary divisors of n will Sum_{e} A005187(e) [where e now ranges over the union of multisets of exponents in the prime factorizations of d and n/d] attain value m, which is the maximum possible for such sums computed for all divisor pairs d and n/d. For any n in A268388, A037445(n) = 2^k, k >= 2, thus A037445(n) - 2 = 2 mod 4 (excluding 1 and n from the count, thus -2). Thus, in the recursive formula above, the maximal denominator that occurs in the sum is 2^m which occurs k times, with k being an even number, but not a multiple of 4, thus the factor (1/2) in the front of the whole sum will ensure that the denominator of the whole expression is 2^m [which thus is equal to 2^A046645(n) = a(n)].
On the other hand [case B], for squares in A050376 (A082522, numbers of the form p^(2^k) with p prime and k>0), all the sums A005187(x)+A005187(y), where x+y = 2^k, 0 < x <= y < 2^k are less than A005187(2^k), thus it is the lonely "middle pair" f(p^(2^(k-1))) * f(p^(2^(k-1))) among all the pairs f(d)*f(n/d), 1 < d < n = p^(2^k) which yields the maximal denominator. Furthermore, as it occurs an odd number of times (only once), the common factor (1/2) for the whole sum will increase the exponent of 2 in denominator by one, which will be (2*A005187(2^(k-1))) + 1 = A005187(2^k) = A046645(p^(2^k)).
(End)
From Antti Karttunen, Aug 21 2018: (Start)
The following list gives a few such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n). Here ε stands for sequence A063524 (1, 0, 0, ...).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
(End)
This sequence gives an upper bound for the denominators of any rational-valued sequence obtained as the "Dirichlet Square Root" of any integer-valued sequence. - Andrew Howroyd, Aug 23 2018

Crossrefs

See A046643 for more details. See also A046645, A317940.
Cf. A299150, A299152, A317832, A317926, A317932, A317934 (for denominator sequences of other similar constructions).

Programs

Formula

From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = 2^A005187(n).
a(1) = 1; for n > 1, a(n) = A000079(A005187(A067029(n))) * a(A028234(n)).
a(n) = A000079(A046645(n)).
(End)
Sum_{j=1..n} A046643(j)/A046644(j) ~ n / sqrt(Pi*log(n)) * (1 + (1 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 04 2025
Previous Showing 71-80 of 254 results. Next