cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 118 results. Next

A213714 Inverse function for injection A005187.

Original entry on oeis.org

0, 1, 0, 2, 3, 0, 0, 4, 5, 0, 6, 7, 0, 0, 0, 8, 9, 0, 10, 11, 0, 0, 12, 13, 0, 14, 15, 0, 0, 0, 0, 16, 17, 0, 18, 19, 0, 0, 20, 21, 0, 22, 23, 0, 0, 0, 24, 25, 0, 26, 27, 0, 0, 28, 29, 0, 30, 31, 0, 0, 0, 0, 0, 32, 33, 0, 34, 35, 0, 0, 36, 37, 0, 38, 39, 0, 0, 0, 40, 41, 0, 42, 43, 0, 0, 44, 45, 0, 46, 47, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 26 2012

Keywords

Comments

a(0)=0; thereafter if n occurs as a term of A005187, a(n)=its position in A005187, otherwise zero. This works as an "inverse" function for A005187 in a sense that a(A005187(n)) = n for all n.
a(n)*A234017(n) = 0 for all n.

Crossrefs

Can be used when computing A213715, A213723, A213724, A233275, A233277. Cf. A005187, A046699, A079559, A234017, A230414.

Programs

  • Haskell
    import Data.List (genericIndex)
    a213714 n = genericIndex a213714_list n
    a213714_list = f [0..] a005187_list 0 where
       f (x:xs) ys'@(y:ys) i | x == y    = i : f xs ys (i+1)
                             | otherwise = 0 : f xs ys' i
    -- Reinhard Zumkeller, May 01 2015
    
  • Python
    from sympy import factorial
    def a046699(n):
        if n<3: return 1
        s=1
        while factorial(2*s)%(2**(n - 1))>0: s+=1
        return s
    def a053644(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1)
    def a043545(n):
        x=bin(n)[2:]
        return int(max(x)) - int(min(x))
    def a079559(n): return 1 if n==0 else a043545(n + 1)*a079559(n + 1 - a053644(n + 1))
    def a(n): return 0 if n==0 else a079559(n)*(a046699(n + 2) - 1) # Indranil Ghosh, Jun 11 2017

Formula

a(0)=0, for n>0, a(n) = A079559(n) * (A046699(n+2)-1) [With A046699's October 2012 starting offset. Incorrect indexing shown in this formula corrected by Antti Karttunen, Dec 18 2013]

A160464 The Eta triangle.

Original entry on oeis.org

-1, -11, 2, -114, 29, -2, -3963, 1156, -122, 4, -104745, 32863, -4206, 222, -4, -3926745, 1287813, -184279, 12198, -366, 4, -198491580, 67029582, -10317484, 781981, -30132, 562, -4
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

The ES1 matrix coefficients are defined by ES1[2*m-1,n] = 2^(2*m-1) * int(y^(2*m-1)/(cosh(y))^(2*n),y=0..infinity)/(2*m-1)! for m = 1, 2, 3, .. and n = 1, 2, 3 .. .
This definition leads to ES1[2*m-1,n=1] = 2*eta(2*m-1) and the recurrence relation ES1[2*m-1,n] = ((2*n-2)/(2*n-1))*(ES1[2*m-1,n-1] - ES1[2*m-3,n-1]/(n-1)^2) which we used to extend our definition of the ES1 matrix coefficients to m = 0, -1, -2, .. . We discovered that ES1[ -1,n] = 0.5 for n = 1, 2, .. . As usual eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function.
The coefficients in the columns of the ES1 matrix, for m = 1, 2, 3, .. , and n = 2, 3, 4 .. , can be generated with the polynomials GF(z,n) for which we found the following general expression GF(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GF(z;n=1) + ETA(z,n))/p(n).
The CFN1(z,n) polynomials depend on the central factorial numbers A008955.
The ETA(z,n) are the Eta polynomials which lead to the Eta triangle.
The zero patterns of the Eta polynomials resemble a UFO. These patterns resemble those of the Zeta, Beta and Lambda polynomials, see A160474, A160480 and A160487.
The first Maple algorithm generates the coefficients of the Eta triangle. The second Maple algorithm generates the ES1[2*m-1,n] coefficients for m= 0, -1, -2, -3, .. .
The M(n) sequence, see the second Maple algorithm, leads to Gould's sequence A001316 and a sequence that resembles the denominators of the Taylor series for tan(x), A156769(n).
Some of our results are conjectures based on numerical evidence, see especially A160466.

Examples

			The first few rows of the triangle ETA(n,m) with n=2,3,.. and m=1,2,... are
  [ -1]
  [ -11, 2]
  [ -114, 29, -2]
  [ -3963, 1156, -122, 4].
The first few ETA(z,n) polynomials are
  ETA(z,n=2) = -1;
  ETA(z,n=3) = -11+2*z^2;
  ETA(z,n=4) = -114 + 29*z^2 - 2*z^4.
The first few CFN1(z,n) polynomials are
  CFN1(z,n=2) = (z^2-1);
  CFN1(z,n=3) = (z^4 - 5*z^2 + 4);
  CFN1(z,n=4) = (z^6 - 14*z^4 + 49*z^2 - 36).
The first few generating functions GF(z;n) are:
  GF(z;n=2) = ((-1)*2*(z^2 - 1)*GF(z;n=1) + (- 1))/3;
  GF(z;n=3) = (4*(z^4 - 5*z^2+4) *GF(z;n=1) + (-11 + 2*z^2))/30;
  GF(z;n=4) = ((-1)*4*(z^6 - 14*z^4 + 49*z^2 - 36)*GF(z;n=1) + (-114 + 29*z^2 - 2*z^4))/315.
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

The r(n) sequence equals A062383 (n>=1).
The p(n) sequence equals A160473(n) (n>=2).
The GCS(n) sequence equals the Geometric Connell sequence A049039(n).
The M(n-1) sequence equals A001316(n-1)/A156769(n) (n>=1).
The q(n) sequence leads to A081729 and the 'gossip sequence' A007456.
The first right hand column equals A053644 (n>=1).
The first left hand column equals A160465.
The row sums equal A160466.
The CFN1(z, n) and the cfn1(n, k) lead to A008955.
Cf. A094665 and A160468.
Cf. the Zeta, Beta and Lambda triangles A160474, A160480 and A160487.
Cf. A162440 (EG1 matrix).

Programs

  • Maple
    nmax:=8; c(2 ):= -1/3: for n from 3 to nmax do c(n) := (2*n-2)*c(n-1)/(2*n-1)-1/((n-1)*(2*n-1)) end do: for n from 2 to nmax do GCS(n-1) := ln(1/(2^(-(2*(n-1)-1-floor(ln(n-1)/ ln(2))))))/ln(2); p(n) := 2^(-GCS(n-1))*(2*n-1)!; ETA(n, 1) := p(n)*c(n); ETA(n, n) := 0 end do: mmax:=nmax: for m from 2 to mmax do for n from m+1 to nmax do q(n) := (1+(-1)^(n-3)*(floor(ln(n-1)/ln(2)) - floor(ln(n-2)/ln(2)))): ETA(n, m) := q(n)*((-1)*ETA(n-1, m-1)+(n-1)^2*ETA(n-1, m)) end do end do: seq(seq(ETA(n,m), m=1..n-1), n=2..nmax);
    # End first program.
    nmax1:=20; m:=1; ES1row:=1-2*m; with (combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: mmax1:=nmax1: for m1 from 1 to mmax1 do M(m1-1) := 2^(2*m1-2)/((2*m1-1)!); ES1[-2*m1+1,1] := 2*(1-2^(1-(1-2*m1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do ES1[1-2*m1, n] := (-1)^(n-1)*M(n-1)*sum((-1)^(k+1)*cfn1(n-1,k-1)* ES1[2*k-2*n-2*m1+1, 1], k=1..n) od: od: seq(ES1[1-2*m, n], n=1..nmax1-m+1);
    # End second program.

Formula

We discovered an interesting relation between the Eta triangle coefficients ETA(n,m) = q(n)*((-1)*ETA(n-1,m-1)+(n-1)^2*ETA(n-1,m)), for n = 3, 4, ... and m = 2, 3, ... , with
q(n) = 1 + (-1)^(n-3)*(floor(log(n-1)/log(2)) - floor(log(n-2)/log(2))) for n = 3, 4, ....
See A160465 for ETA(n,m=1) and furthermore ETA(n,n) = 0 for n = 2, 3, ....
The generating functions GF(z;n) of the coefficients in the matrix columns are defined by
GF(z;n) = sum_{m>=1} ES1[2*m-1,n] * z^(2*m-2), with n = 1, 2, 3, .... This leads to
GF(z;n=1) = (2*log(2) - Psi(z) - Psi(-z) + Psi(1/2*z) + Psi(-1/2*z)); Psi(z) is the digamma-function.
GF(z;n) = ((2*n-2)/(2*n-1)-2*z^2/((n-1)*(2*n-1)))*GF(z;n-1)-1/((n-1)*(2*n-1)).
We found for GF(z;n), for n = 2, 3, ..., the following general expression:
GF(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GF(z;n=1) + ETA(z,n) )/p(n) with
r(n) = 2^floor(log(n-1)/log(2)+1) and
p(n) = 2^(-GCS(n))*(2*n-1)! with
GCS(n) = log(1/(2^(-(2*(n-1)-1-floor(log(n-1)/ log(2))))))/log(2).

A062050 n-th chunk consists of the numbers 1, ..., 2^n.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
Offset: 1

Views

Author

Marc LeBrun, Jun 30 2001

Keywords

Comments

a(k) is the distance between k and the largest power of 2 not exceeding k, where k = n + 1. [Consider the sequence of even numbers <= k; after sending the first term to the last position delete all odd-indexed terms; the final term that remains after iterating the process is the a(k)-th even number.] - Lekraj Beedassy, May 26 2005
Triangle read by rows in which row n lists the first 2^(n-1) positive integers, n >= 1; see the example. - Omar E. Pol, Sep 10 2013

Examples

			From _Omar E. Pol_, Aug 31 2013: (Start)
Written as irregular triangle with row lengths A000079:
  1;
  1, 2;
  1, 2, 3, 4;
  1, 2, 3, 4, 5, 6, 7, 8;
  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
  ...
Row sums give A007582.
(End)
		

Crossrefs

Programs

  • Haskell
    a062050 n = if n < 2 then n else 2 * a062050 n' + m - 1
                where (n',m) = divMod n 2
    -- Reinhard Zumkeller, May 07 2012
    
  • Maple
    A062050 := proc(n) option remember; if n < 4 then return [1, 1, 2][n] fi;
    2*A062050(floor(n/2)) + irem(n,2) - 1 end:
    seq(A062050(n), n=1..89); # Peter Luschny, Apr 27 2020
  • Mathematica
    Flatten[Table[Range[2^n],{n,0,6}]] (* Harvey P. Dale, Oct 12 2015 *)
  • PARI
    a(n)=floor(n+1-2^logint(n,2))
    
  • PARI
    a(n)= n - 1<Ruud H.G. van Tol, Dec 13 2024
    
  • Python
    def A062050(n): return n-(1<Chai Wah Wu, Jan 22 2023

Formula

a(n) = A053645(n) + 1.
a(n) = n - msb(n) + 1 (where msb(n) = A053644(n)).
a(n) = 1 + n - 2^floor(log(n)/log(2)). - Benoit Cloitre, Feb 06 2003; corrected by Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 25 2008
G.f.: 1/(1-x) * ((1-x+x^2)/(1-x) - Sum_{k>=1} 2^(k-1)*x^(2^k)). - Ralf Stephan, Apr 18 2003
a(1) = 1, a(2*n) = 2*a(n) - 1, a(2*n+1) = 2*a(n). - Ralf Stephan, Oct 06 2003
A005836(a(n+1)) = A107681(n). - Reinhard Zumkeller, May 20 2005
a(n) = if n < 2 then n else 2*a(floor(n/2)) - 1 + n mod 2. - Reinhard Zumkeller, May 07 2012
Without the constant 1, Ralf Stephan's g.f. becomes A(x) = x/(1-x)^2 - (1/(1-x)) * Sum_{k>=1} 2^(k-1)*x^(2^k) and satisfies the functional equation A(x) - 2*(1+x)*A(x^2) = x*(1 - x - x^2)/(1 - x^2). - Petros Hadjicostas, Apr 27 2020
For n > 0: a(n) = (A006257(n) + 1) / 2. - Frank Hollstein, Oct 25 2021

A006165 a(1) = a(2) = 1; thereafter a(2n+1) = a(n+1) + a(n), a(2n) = 2a(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43
Offset: 1

Views

Author

Keywords

Comments

a(n+1) is the second-order survivor of the n-person Josephus problem where every second person is marked until only one remains, who is then eliminated; the process is repeated from the beginning until all but one is eliminated. a(n) is first a power of 2 when n is three times a power of 2. For example, the first appearances of 2, 4, 8 and 16 are at positions 3, 6, 12 and 24, or (3*1),(3*2),(3*4) and (3*8). Eugene McDonnell (eemcd(AT)aol.com), Jan 19 2002, reporting on work of Boyko Bantchev (Bulgaria).
Appears to coincide with following sequence: Let n >= 1. Start with a bag B containing n 1's. At each step, replace the two least elements x and y in B with the single element x+y. Repeat until B contains 2 or fewer elements. Let a(n) be the largest element remaining in B at this point. - David W. Wilson, Jul 01 2003
Hsien-Kuei Hwang, S Janson, TH Tsai (2016) show that A078881 is the same sequence, apart from the offset. - N. J. A. Sloane, Nov 26 2017

Examples

			From _Peter Bala_, Aug 01 2022: (Start)
1) The sequence {n - a(a(n)) : n >= 1} begins [0, 1, 2, 3, 3, 4, 5, 6, 6, 6, 7, 8, 9, 10, 11, 12, 12, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, ...] has the repeated values 3 (twice), 6 (three times), 12 (five times), 24 (nine times), 48 (seventeen times) ..., conjecturally of the form 3*2^m
2) The sequence {n - a(a(a(n))) : n >= 1} begins [0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 28, 28, 28, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 56, 56, 56, 56, 56, 56, 56, 57, ...] has the repeated values 7 (twice), 14 (three times), 28 (five times), 56 (nine times) ..., conjecturally of the form 7*2^m. (End)
		

References

  • J. Arkin, D. C. Arney, L. S. Dewald and W. E. Ebel, Jr., Families of recursive sequences, J. Rec. Math., 22 (No. 22, 1990), 85-94.
  • Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := proc (n) option remember; if n = 1 then 1 else n - a(n - a(a(n-1))) end if end proc: seq(a(n), n = 1..100); # Peter Bala, Jul 31 2022
  • Mathematica
    t = {1, 1}; Do[If[OddQ[n], AppendTo[t, t[[Floor[n/2]]] + t[[Ceiling[n/2]]]], AppendTo[t, 2*t[[n/2]]]], {n, 3, 128}] (* T. D. Noe, May 25 2011 *)
  • PARI
    a(n) = my(i=logint(n,2)-1); if(bittest(n,i), 2<Kevin Ryde, Aug 06 2022
    
  • PARI
    a(n)=if(n<2,1,n-a(n-a(n\2))); \\ Benoit Cloitre, May 12 2024
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A006165(n): return 1 if n <= 2 else A006165(n//2) + A006165((n+1)//2) # Chai Wah Wu, Mar 08 2022
    
  • Python
    def A006165(n): return min(n-(m:=1<1 else 1 # Chai Wah Wu, Oct 22 2024
    

Formula

For n >= 2, if a(n) >= A006257(n), i.e., if msb(n) > n - a(n)/2, then a(n+1) = a(n)+1, otherwise a(n+1) = a(n). - Henry Bottomley, Jan 21 2002
a(n+1) = min(msb(n), 1+n-msb(n)/2) for all n (msb = most significant bit, A053644). - Boyko Bantchev (bantchev(AT)math.bas.bg), May 17 2002
a(1)=1, a(n) = n - a(n - a(a(n-1))). - Benoit Cloitre, Nov 08 2002
a(1)=1, a(n) = n - a(n - a(floor(n/2))). - Benoit Cloitre, May 12 2024
For k > 0, 0 <= i <= 2^k-1, a(2^k+i) = 2^(k-1)+i; for 2^k-2^(k-2) <= x <= 2^k a(x) = 2^(k-1); (also a(m*2^k) = a(m)*2^k for m >= 2). - Benoit Cloitre, Dec 16 2002
G.f.: x * (1/(1+x) + (1/(1-x)^2) * Sum_{k>=0} t^2*(1-t)) where t = x^2^k. - Ralf Stephan, Sep 12 2003
a(n) = A005942(n+1)/2 - n = n - A060973(n) = 2n - A007378(n). - Ralf Stephan, Sep 13 2003
a(n) = A080776(n-1) + A060937(n). - Ralf Stephan
From Peter Bala, Jul 31 2022: (Start)
For k a positive integer, define the k-th iterated sequence a^(k) of a by a^(1)(n) = a(n) and setting a^(k)(n) = a^(k-1)(a(n)) for k >= 2. For example, a^(2)(n) = a(a(n)) and a^(3)(n) = a(a(a(n))).
Conjectures: for n >= 2 there holds
(i) a(n) + a(n - a(n - a(n - a(n - a(n))))) = n;
(ii) a(n - a(n - a(n - a(n)))) = a(n - a(n - a(n - a(n - a(n - a(n))))));
(iii) a^2(n) = a(n - a(n - a(n - a(n))));
(iv) n - a(n) = a(n - a^(2)(n));
(v) a(n - a(n)) = a^(2)(n - a^(2)(n - a^(2)(n - a^(2)(n))));
(vi) for k >= 2, a^(k)(n - a^(k)(n)) = a^(k)(n - a^(k)(n - a^(k)(n - a^(k)(n)))).
(vii) for k >= 1, the sequence {n - a^(k)(n) : n >= 1} has first differences either 0 or 1. We conjecture that the repeated values of the sequence are of the form (2^k - 1)*2^m. The number of repeated values appears to always be 2, 3, 5, 9, 17, 35, ..., independent of k, conjecturally A000051. Two examples are given below.
A similar property may hold for the sequences {n - A060973^(k)(n) : n >= 2^(k-1)}, k = 1,2,3,.... (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 12 2002

A092482 Sequence contains no 3-term arithmetic progression, other than its initial terms 1, 2, 3.

Original entry on oeis.org

1, 2, 3, 6, 7, 14, 15, 17, 18, 36, 37, 39, 40, 45, 46, 48, 49, 98, 99, 101, 102, 107, 108, 110, 111, 125, 126, 128, 129, 134, 135, 137, 138, 276, 277, 279, 280, 285, 286, 288, 289, 303, 304, 306, 307, 312, 313, 315, 316, 357, 358, 360, 361, 366, 367, 369, 370
Offset: 1

Views

Author

Ralf Stephan, Apr 04 2004

Keywords

Comments

a(1)=1, a(2)=2, a(3)=3; a(n) is least k such that no three terms of a(1), a(2), ..., a(n-1), k form an arithmetic progression, except for the first triple (1,2,3).

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n < 4, n, For[k = a[n - 1] + 1, True, k++, sp = SequencePosition[Append[Array[a, n - 1], k], {x_, _, y_, _, z_} /; y - x == z - y, 2]; If[sp == {{1, 3}}, Return[k]]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 512}]
    (* Comparing with data from conjectured formula: *)
    b[n_] := If[n < 4, n, 1 + 2^(Length[id = IntegerDigits[n - 2, 2]] - 1) + FromDigits[id, 3]];
    Table[b[n], {n, 1, 512}] (* Jean-François Alcover, Jan 15 2019 *)
    (* Second [much faster] program: *)
    upto[m_] := Module[{n, v, i, j}, n = Max[m, 3]; v = Table[1, {n}]; For[i = 3, i <= n-1, i++, If[v[[i]] == 1, For[j = Max[1, 2i-n], j <= Min[2n-i, i-1], j++, If[v[[j]] == 1, v[[2i-j]] = 0]]]]; Position[v, 1] // Flatten]; upto[12000] (* Jean-François Alcover, Jan 16 2019, after David A. Corneth *)
  • PARI
    upto(n) = n=max(n,3); v=vector(n, i, 1); for(i=3, n-1, if(v[i]==1, for(j = max(1, 2*i-n), min(2*n-i,i-1), c=2*i - j; if(v[j]==1, v[2*i-j]=0; )))); select(x -> x==1, v, 1) \\ David A. Corneth, Jan 15 2019

Formula

For n > 2, a(n+2) = 1 + 2^floor(log_2(n)) + Sum_{k=1..n} (3^A007814(n) + 1)/2 = 1 + A053644(n) + A005836(n) (conjectured and checked up to n=512).

Extensions

Name clarified by Charles R Greathouse IV, Jan 30 2014

A253317 Indices in A261283 where records occur.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 11, 128, 129, 130, 131, 136, 137, 138, 139, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 2147483648, 2147483649, 2147483650, 2147483651, 2147483656, 2147483657
Offset: 1

Views

Author

Philippe Beaudoin, Dec 30 2014

Keywords

Comments

From Gus Wiseman, Dec 29 2023: (Start)
These are numbers whose binary indices are all powers of 2, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, the terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
10: 1010 ~ {2,4}
11: 1011 ~ {1,2,4}
128: 10000000 ~ {8}
129: 10000001 ~ {1,8}
130: 10000010 ~ {2,8}
131: 10000011 ~ {1,2,8}
136: 10001000 ~ {4,8}
137: 10001001 ~ {1,4,8}
138: 10001010 ~ {2,4,8}
139: 10001011 ~ {1,2,4,8}
For powers of 3 we have A368531.
(End)

Crossrefs

Cf. A053644 (most significant bit).
A048793 lists binary indices, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Maple
    a := proc(n) local k, A:
    A := [seq(0,i=1..n)]: A[1]:=0:
    for k from 1 to n-1 do
       A[k+1] := A[k-2^ilog2(k)+1]+2^(2^ilog2(k)-1): od:
    return A[n]: end proc: # Lorenzo Sauras Altuzarra, Dec 18 2019
    # second Maple program:
    a:= n-> (l-> add(l[i+1]*2^(2^i-1), i=0..nops(l)-1))(Bits[Split](n-1)):
    seq(a(n), n=1..38);  # Alois P. Heinz, Dec 13 2023
  • Mathematica
    Nest[Append[#1, #1[[-#2]] + 2^(#2 - 1)] & @@ {#, 2^(IntegerLength[Length[#], 2] - 1)} &, {0, 1}, 36] (* Michael De Vlieger, May 08 2020 *)
  • PARI
    a(n)={if(n<=1, 0, my(t=1<Andrew Howroyd, Dec 20 2019

Formula

a(1) = 0 and a(n) = a(n-A053644(n-1)) + 2^(A053644(n-1)-1). - Lorenzo Sauras Altuzarra, Dec 18 2019
a(n) = A358126(n-1) / 2. - Tilman Piesk, Dec 18 2022
a(2^n+1) = 2^(2^n-1) = A058891(n+1). - Gus Wiseman, Dec 29 2023
a(2^n) = A072639(n). - Gus Wiseman, Dec 29 2023
G.f.: 1/(1-x) * Sum_{k>=0} (2^(-1+2^k))*x^2^k/(1+x^2^k). - John Tyler Rascoe, May 22 2024

Extensions

Corrected reference in name from A253315 to A261283. - Tilman Piesk, Dec 18 2022

A048678 Binary expansion of nonnegative integers expanded to "Zeckendorffian format" with rewrite rules 0->0, 1->01.

Original entry on oeis.org

0, 1, 2, 5, 4, 9, 10, 21, 8, 17, 18, 37, 20, 41, 42, 85, 16, 33, 34, 69, 36, 73, 74, 149, 40, 81, 82, 165, 84, 169, 170, 341, 32, 65, 66, 133, 68, 137, 138, 277, 72, 145, 146, 293, 148, 297, 298, 597, 80, 161, 162, 325, 164, 329, 330, 661, 168, 337, 338, 677, 340
Offset: 0

Views

Author

Keywords

Comments

No two adjacent 1-bits. Permutation of A003714.
Replace 1 with 01 in binary. - Ralf Stephan, Oct 07 2003

Examples

			11=1011 in binary, thus is rewritten as 100101 = 37 in decimal.
		

Crossrefs

MASKTRANS transform of A053644.
Cf. A124108.

Programs

  • Haskell
    a048678 0 = 0
    a048678 x = 2 * (b + 1) * a048678 x' + b
                where (x', b) = divMod x 2
    -- Reinhard Zumkeller, Mar 31 2015
    
  • Maple
    rewrite_0to0_1to01 := proc(n) option remember; if(n < 2) then RETURN(n); else RETURN(((2^(1+(n mod 2))) * rewrite_0to0_1to01(floor(n/2))) + (n mod 2)); fi; end;
  • Mathematica
    f[n_] := FromDigits[ Flatten[IntegerDigits[n, 2] /. {1 -> {0, 1}}], 2]; Table[f@n, {n, 0, 60}] (* Robert G. Wilson v, Dec 11 2009 *)
  • PARI
    a(n)=if(n<1,0,(3-(-1)^n)*a(floor(n/2))+(1-(-1)^n)/2)
    
  • PARI
    a(n) = if(n == 0, 0, my(A = -2); sum(i = 0, logint(n, 2), A++; if(bittest(n, i), 1 << (A++)))) \\ Mikhail Kurkov, Mar 14 2024
    
  • Python
    def a(n):
        return 0 if n==0 else (3 - (-1)**n)*a(n//2) + (1 - (-1)**n)//2
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 30 2017
    
  • Python
    def A048678(n): return int(bin(n)[2:].replace('1','01'),2) # Chai Wah Wu, Mar 18 2024

Formula

a(n) = rewrite_0to0_1to01(n) [ Each 0->1, 1->10 in binary expansion of n ].
a(0)=0; a(n) = (3-(-1)^n)*a(floor(n/2))+(1-(-1)^n)/2. - Benoit Cloitre, Aug 31 2003
a(0)=0, a(2n) = 2a(n), a(2n+1) = 4a(n) + 1. - Ralf Stephan, Oct 07 2003

A265705 Triangle read by rows: T(n,k) = k IMPL n, 0 <= k <= n, bitwise logical IMPL.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 3, 3, 3, 3, 7, 6, 5, 4, 7, 7, 7, 5, 5, 7, 7, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 15, 14, 13, 12, 11, 10, 9, 8, 15, 15, 15, 13, 13, 11, 11, 9, 9, 15, 15, 15, 14, 15, 14, 11, 10, 11, 10, 15, 14, 15, 15, 15, 15, 15, 11, 11, 11, 11, 15
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 15 2015

Keywords

Examples

			.          10 | 1010                            12 | 1100
.           4 |  100                             6 |  110
.   ----------+-----                     ----------+-----
.   4 IMPL 10 | 1011 -> T(10,4)=11       6 IMPL 12 | 1101 -> T(12,6)=13
.
First 16 rows of the triangle, where non-symmetrical rows are marked, see comment concerning A158582 and A089633:
.   0:                                 0
.   1:                               1   1
.   2:                             3   2   3
.   3:                           3   3   3   3
.   4:                         7   6   5   4   7    X
.   5:                       7   7   5   5   7   7
.   6:                     7   6   7   6   7   6   7
.   7:                   7   7   7   7   7   7   7   7
.   8:                15  14  13  12  11  10   9   8  15    X
.   9:              15  15  13  13  11  11   9   9  15  15    X
.  10:            15  14  15  14  11  10  11  10  15  14  15    X
.  11:          15  15  15  15  11  11  11  11  15  15  15  15
.  12:        15  14  13  12  15  14  13  12  15  14  13  12  15    X
.  13:      15  15  13  13  15  15  13  13  15  15  13  13  15  15
.  14:    15  14  15  14  15  14  15  14  15  14  15  14  15  14  15
.  15:  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15 .
		

Crossrefs

Cf. A003817, A007088, A029578, A089633, A158582, A247648, A265716 (central terms), A265736 (row sums).
Other triangles: A080099 (AND), A080098 (OR), A051933 (XOR), A102037 (CNIMPL).

Programs

  • Haskell
    a265705_tabl = map a265705_row [0..]
    a265705_row n = map (a265705 n) [0..n]
    a265705 n k = k `bimpl` n where
       bimpl 0 0 = 0
       bimpl p q = 2 * bimpl p' q' + if u <= v then 1 else 0
                   where (p', u) = divMod p 2; (q', v) = divMod q 2
    
  • Julia
    using IntegerSequences
    for n in 0:15 println(n == 0 ? [0] : [Bits("IMP", k, n) for k in 0:n]) end  # Peter Luschny, Sep 25 2021
  • Maple
    A265705 := (n, k) -> Bits:-Implies(k, n):
    seq(seq(A265705(n, k), k=0..n), n=0..11); # Peter Luschny, Sep 23 2019
  • Mathematica
    T[n_, k_] := If[n == 0, 0, BitOr[2^Length[IntegerDigits[n, 2]]-1-k, n]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 25 2021, after David A. Corneth's PARI code *)
  • PARI
    T(n, k) = if(n==0,return(0)); bitor((2<David A. Corneth, Sep 24 2021
    

Formula

T(n,0) = T(n,n) = A003817(n).
T(2*n,n) = A265716(n).
Let m = A089633(n): T(m,k) = T(m,m-k), k = 0..m.
Let m = A158582(n): T(m,k) != T(m,m-k) for at least one k <= n.
Let m = A247648(n): T(2*m,m) = 2*m.
For n > 0: A029578(n+2) = number of odd terms in row n; no even terms in odd-indexed rows.
A265885(n) = T(prime(n),n).
A053644(n) = smallest k such that row k contains n.

A082662 Numbers k such that the odd part of k is less than sqrt(2k).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 384, 400, 416, 432, 448, 464, 480, 496, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800
Offset: 1

Views

Author

Naohiro Nomoto, May 18 2003

Keywords

Comments

Theorem: The following eight definitions are equivalent.
(P1) Numbers k such that the odd part of k (A000265(k)) is < sqrt(2k).
(P1) is the new definition, repeated here for convenience. Note that this is not the same as saying A000265(k) < A172471(k), since A172471(k) = floor(sqrt(2*k)).
(P2) Numbers k such that the odd divisors of k are < sqrt(2k).
(P2) and (P1) are obviously equivalent.
(P3) The numbers 1, S_0, S_1, S_2, ..., where
S_m = { 2^(m+1)*(2^m+i) : i = 0 .. 3*2^m - 1 }.
So S_0 = {2,4,6}, S_1 = {8,12,16,20,24,28}, S_2 = {32,40,48,...,120}, S_3 = {128,144,...,496}, ...
The proof that (P3) and (P1) are the same sequence is not difficult and will be added later. (P3) is equivalent to a formula stated without proof (it may have been only an empirical observation) in the original version of this entry.
(P4) Numbers k such that the odd part of k is <= A003056(k).
That is, the odd part of k is <= floor((sqrt(1+8*n)-1)/2). It is more difficult to show this is equivalent to (P1), but it is true.
(P5) Numbers k such that the odd divisors of k are <= A003056(k).
(P5) and (P4) are obviously equivalent.
(P6) Numbers k such that A001227(k) = A082647(k).
(P6) was the original definition. In words, it says that the number of odd divisors of k is equal to the number of ways to write k as a sum of an odd number of consecutive positive integers, or equivalently as a sum of d consecutive positive integers for some d dividing k. To show that (P6) is equivalent to (P1) one makes use of the Hirschhorn-Hirschhorn article.
(P7) Numbers k such that the odd part of k is <= the sum of divisors of the even part.
(P7) was contributed by Jaycob Coleman, Jun 21 2014. To show (P7) is equivalent to (P1), write k as 2^m*s where s is odd. Equality holds if and only if k is an even perfect number.
(P8) Numbers k such that A000265(k) <= A000203(A006519(k)) or also such that A000265(k) <= A038712(k).
(P8) was contributed by Michel Marcus, Aug 14 2014. It is a restatement of (P7).
(End of theorem)
A further equivalent property, (P9), follows at once from (P4). This was conjectured by Omar E. Pol, Apr 18 2017
(P9) These are the numbers k such that the sequence of successive widths in the symmetric representation of sigma(k) is unimodal.
Yet another equivalent property:
(P10) Numbers k >= 1 such if k = i + (i+1) + (i+2) + ... + (i+j-1) for some i >= 1 and j >= 1 then j is odd [Caballero, 2019]. - Michel Marcus, Jan 16 2020
This is a subsequence of A005153. - Jaycob Coleman, Jun 21 2014
The complement of this sequence is A281005. - Omar E. Pol, Apr 18 2017
Subsequence of A174973. - Omar E. Pol, Feb 01 2021

Crossrefs

Programs

  • Mathematica
    cnt[n_] := DivisorSum[n, Boole[OddQ[#] && #>Sqrt[2n]]&]; Select[Range[800], cnt[#]==0&] (* Jean-François Alcover, Feb 16 2017 *)
  • PARI
    isok(n) = my(q = sqrt(2*n)); (sumdiv(n, d, (d%2) && (d < q)) == sumdiv(n, d, d%2)); \\ Michel Marcus, Jul 04 2014

Formula

G.f. = 1 + (1/(1-x)^2) * Sum_{m >= 0} (2^(m+1)*x^(3*2^m-2) * ( x^(3*2^m)*(2^(m+2)*(x-1)-x) - 2^m*(x-1) + x ) ). (This follows from (P3).) :w
- N. J. A. Sloane, Feb 02 2021
a(n+1) = a(n) + A053644(A000196(2*a(n))). - Peter Munn, Oct 03 2023

Extensions

Edited by N. J. A. Sloane, Jan 28 2021: Replaced original indirect definition by simple direct definition; rearranged comments; provided proofs (not yet included here) that the various definitions are equivalent

A030109 Write n in binary, reverse bits, subtract 1, divide by 2.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 0, 4, 2, 6, 1, 5, 3, 7, 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15, 0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 0, 32, 16, 48, 8, 40, 24, 56, 4, 36, 20, 52, 12, 44, 28, 60, 2, 34, 18, 50
Offset: 1

Views

Author

Keywords

Comments

The sequence divides naturally into blocks of length 2^k, k = 0, 1, 2, ... On block k, let n go from 0 to 2^k-1, write n in binary using k bits and reverse the bits. - N. J. A. Sloane, Jun 11 2002
For example: the 3-bit strings are 000, 001, 010, 011, 100, 101, 110 and 111. When they are bit-reversed, we get 000, 100, 010, 110, 001, 101, 011, 111. Or, in decimal representation 0,4,2,6,1,5,3,7.
In other words: Given any n>1, the set of numbers A030109[i] for indexes i ranging from 2^n to 2^(n+1)-1 is a permutation of the set of consecutive integers {0,1,2,...,2^n-1}. Example: for n=2, we have the permutation of {0,2,1,3} of {0,1,2,3} This is important in the standard FFT algorithms requiring a starting (or ending) bit-reversal permutation of indices. - Stanislav Sykora, Mar 15 2012

Examples

			As an irregular triangle, first few rows are:
  0;
  0,1;
  0,2,1,3;
  0,4,2,6,1,5,3,7;
  0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15;
  ...
		

Crossrefs

Cf. A030101. A049773 is another version.

Programs

  • Haskell
    a030109 = flip div 2 . subtract 1 . a030101
    -- Reinhard Zumkeller, Mar 14 2015
    
  • MATLAB
    % To get the irregular triangle
    function T = ITriang(rows)
      T = cell(rows, 1);
      T{1} = [0];
      for r = 1:rows - 1;
        T{r + 1} = [2*T{r} (2*T{r} + 1)];
      end
    end
    % Miguel Vargas, May 04 2024
  • Maple
    a:= proc(n) option remember; local r; `if`(n<3, 0,
          `if`(irem(n, 2, 'r')=0, a(r), a(r) +2^ilog2(r)))
        end:
    seq(a(n), n=1..127);  # Alois P. Heinz, Oct 08 2012
  • Mathematica
    Table[(FromDigits[Reverse[IntegerDigits[n,2]],2]-1)/2,{n,90}] (* Harvey P. Dale, Oct 26 2013 *)
  • PARI
    a(n) = (fromdigits(Vecrev(binary(n)), 2) - 1)/2; \\ Michel Marcus, Oct 01 2019
    
  • R
    maxrow <- 10 # by choice
    a <- 0
    for(m in 0:maxrow) for(k in 0:(2^m-1)) {
      a[2^(m+1)+    k] <- 2*a[2^m+k]
      a[2^(m+1)+2^m+k] <-   a[2^(m+1)+k]+1
    }
    a
    # Yosu Yurramendi, Jan 24 2015
    

Formula

a(n) = A059893(n) - A053644(n). If 2*2^k<= n<3*2^k then a(n) = 2*a(n-2^k); if 3*2^k<= n<4*2^k then a(n) = 1+ a(n-2^k) starting with a(1) = 0. - Henry Bottomley, Sep 13 2001
a(2n) = a(n), a(2n+1) = a(n) + 2^[log_2(n)]. - Ralf Stephan, Aug 22 2003
a(2^m*(2*A072758(n)+1)) = n for m and n >= 0. - Yosu Yurramendi, Jan 24 2015

Extensions

More terms from Patrick De Geest, Jun 15 1998
Previous Showing 31-40 of 118 results. Next