cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A242856 Number of 2-matchings of the n X n grid graph.

Original entry on oeis.org

2, 44, 224, 686, 1622, 3272, 5924, 9914, 15626, 23492, 33992, 47654, 65054, 86816, 113612, 146162, 185234, 231644, 286256, 349982, 423782, 508664, 605684, 715946, 840602, 980852, 1137944, 1313174, 1507886, 1723472, 1961372, 2223074, 2510114, 2824076, 3166592
Offset: 2

Views

Author

Ralf Stephan, May 24 2014

Keywords

Comments

Number of ways two dominoes can be placed on an n X n chessboard.

Crossrefs

Second column of A242861. Cf. A016742, A046092, A054000, A210662.

Programs

  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {2, 44, 224, 686, 1622}, 50] (* Paolo Xausa, May 20 2024 *)
  • PARI
    Vec(-2*x^2*(x^4-7*x^3+12*x^2+17*x+1)/(x-1)^5 + O(x^100)) \\ Colin Barker, Jun 26 2014
  • Sage
    def a(n):
        G = Graph(graphs.Grid2dGraph(n,n))
        G.relabel()
        return G.matching_polynomial()[n^2-4]
    

Formula

a(n) = 2*n^4 - 4*n^3 - 5*n^2 + 13*n - 4.
G.f.: -2*x^2*(x^4-7*x^3+12*x^2+17*x+1) / (x-1)^5. - Colin Barker, Jun 26 2014
a(n + 1) = (1/2)*A046092(n)*(A046092(n) - 1) - A016742(n) - A054000(n). - Nicolas Bělohoubek, May 15 2024
E.g.f.: 4 - 2*x + exp(x)*(2*x^4 + 8*x^3 - 3*x^2 + 6*x - 4). - Stefano Spezia, Jun 04 2024

Extensions

a(7)-a(36) from Alois P. Heinz, Jun 01 2014

A271624 a(n) = 2*n^2 - 4*n + 4.

Original entry on oeis.org

2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 4 is a perfect square.
For n > 2, the number of square a(n)-gonal numbers is finite. - Muniru A Asiru, Oct 16 2016

Examples

			a(1) = 2*1^2 - 4*1 + 4 = 2.
		

Crossrefs

Cf. A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9), A255843 (k = -8), A271649 (k = -7), A093328 (k = -6), A097080 (k = -5), this sequence (k = -4), A051890 (k = -3), A058331 (k = -2), A001844 (k = -1), A001105 (k = 0), A046092 (k = 1), A056222 (k = 2), A142463 (k = 3), A054000 (k = 4), A090288 (k = 5), A268581 (k = 6), A059993 (k = 7), (-1)*A147973 (k = 8), A139570 (k = 9), A271625 (k = 10), A222182 (k = 11), A152811 (k = 12), A181510 (k = 13), A161532 (k = 14), no sequence (k = 15).

Programs

  • Magma
    [ 2*n^2 - 4*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-4)];
    
  • Mathematica
    Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
  • PARI
    x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
    
  • PARI
    a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016

Formula

a(n) = 2*A002522(n-1).
G.f.: 2*x*(1 - x + 2*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = (1 + Pi*coth(Pi))/4 = 1.038337023734290587067... . - Vaclav Kotesovec, Apr 11 2016
a(n) = A005893(n-1), n > 1. - R. J. Mathar, Apr 12 2016
a(n) = 2 + 2*(n-1)^2. - Tyler Skywalker, Jul 21 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 - x + 2) - 2).
a(n) = 2*A160457(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A245300 Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 17 2014

Keywords

Examples

			First rows and their row sums (A245301):
   0                                                                  0;
   1,  4                                                              5;
   3,  7,  12                                                        22;
   6, 11,  17,  24                                                   58;
  10, 16,  23,  31,  40                                             120;
  15, 22,  30,  39,  49,  60                                        215;
  21, 29,  38,  48,  59,  71,  84                                   350;
  28, 37,  47,  58,  70,  83,  97, 112                              532;
  36, 46,  57,  69,  82,  96, 111, 127, 144                         768;
  45, 56,  68,  81,  95, 110, 126, 143, 161, 180                   1065;
  55, 67,  80,  94, 109, 125, 142, 160, 179, 199, 220              1430;
  66, 79,  93, 108, 124, 141, 159, 178, 198, 219, 241, 264         1870;
  78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312    2392.
		

Crossrefs

Programs

  • Haskell
    a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
    a245300_row n = map (a245300 n) [0..n]
    a245300_tabl = map a245300_row [0..]
    a245300_list = concat a245300_tabl
    
  • Magma
    [k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
    
  • Mathematica
    Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
  • Sage
    flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021

Formula

T(n, 0) = A000217(n).
T(n, n) = A046092(n).
T(2*n, n) = A062725(n) (central terms).
Sum_{k=0..n} T(n, k) = A245301(n).
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000124(n+1) = A134869(n+1), n >= 1.
T(n, 2) = A152948(n+4), n >= 2.
T(n, 3) = A152950(n+4), n >= 3.
T(n, 4) = A145018(n+5), n >= 4.
T(n, 5) = A167499(n+4), n >= 5.
T(n, 6) = A166136(n+5), n >= 6.
T(n, 7) = A167487(n+6), n >= 7.
T(n, n-1) = A056220(n), n >= 1.
T(n, n-2) = A142463(n-1), n >= 2.
T(n, n-3) = A054000(n-1), n >= 3.
T(n, n-4) = A090288(n-3), n >= 4.
T(n, n-5) = A268581(n-4), n >= 5.
T(n, n-6) = A059993(n-4), n >= 6.
T(n, n-7) = (-1)*A147973(n), n >= 7.
T(n, n-8) = A139570(n-5), n >= 8.
T(n, n-9) = A271625(n-5), n >= 9.
T(n, n-10) = A222182(n-4), n >= 10.
T(2*n, n-1) = A081270(n-1), n >= 1.
T(2*n, n+1) = A117625(n+1), n >= 1. (End)

A271649 a(n) = 2*(n^2 - n + 2).

Original entry on oeis.org

4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 7 is a perfect square.
Galois numbers for three-dimensional vector space, defined as the total number of subspaces in a three-dimensional vector space over GF(n-1), when n-1 is a power of a prime. - Artur Jasinski, Aug 31 2016, corrected by Robert Israel, Sep 23 2016

Examples

			a(1) = 2*(1^2 - 1 + 2) = 4.
		

Crossrefs

Numbers h such that 2*h + k is a perfect square: no sequence (k=-9), A255843 (k=-8), this sequence (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), A271625 (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 - 2*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-7)];
    
  • Maple
    A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
  • Mathematica
    Table[2 (n^2 - n + 2), {n, 53}] (* or *)
    Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
    Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{4,8,16},60] (* Harvey P. Dale, Jun 14 2022 *)
  • PARI
    a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*A000124(n).
a(n) = 2*A014206(n).
a(n) = A137882(n), n > 1. - R. J. Mathar, Apr 12 2016
Sum_{n>=1} 1/a(n) = tanh(sqrt(7)*Pi/2)*Pi/(2*sqrt(7)). - Amiram Eldar, Jul 30 2024
From Elmo R. Oliveira, Nov 18 2024: (Start)
G.f.: 4*x*(1 - x + x^2)/(1 - x)^3.
E.g.f.: 2*(exp(x)*(x^2 + 2) - 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A211394 T(n,k) = (k+n)*(k+n-1)/2-(k+n-1)*(-1)^(k+n)-k+2; n , k > 0, read by antidiagonals.

Original entry on oeis.org

1, 5, 6, 2, 3, 4, 12, 13, 14, 15, 7, 8, 9, 10, 11, 23, 24, 25, 26, 27, 28, 16, 17, 18, 19, 20, 21, 22, 38, 39, 40, 41, 42, 43, 44, 45, 29, 30, 31, 32, 33, 34, 35, 36, 37, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 80
Offset: 1

Views

Author

Boris Putievskiy, Feb 08 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). The order of the list:
T(1,1)=1;
T(1,3), T(2,2), T(3,1);
T(1,2), T(2,1);
. . .
T(1,n), T(2,n-1), T(3,n-2), ... T(n,1);
T(1,n-1), T(2,n-3), T(3,n-4),...T(n-1,1);
. . .
First row matches with the elements antidiagonal {T(1,n), ... T(n,1)},
second row matches with the elements antidiagonal {T(1,n-1), ... T(n-1,1)}.
Table contains:
row 1 is alternation of elements A130883 and A096376,
row 2 accommodates elements A033816 in even places,
row 3 accommodates elements A100037 in odd places,
row 5 accommodates elements A100038 in odd places;
column 1 is alternation of elements A084849 and A000384,
column 2 is alternation of elements A014106 and A014105,
column 3 is alternation of elements A014107 and A091823,
column 4 is alternation of elements A071355 and |A168244|,
column 5 accommodates elements A033537 in even places,
column 7 is alternation of elements A100040 and A130861,
column 9 accommodates elements A100041 in even places;
the main diagonal is A058331,
diagonal 1, located above the main diagonal is A001844,
diagonal 2, located above the main diagonal is A001105,
diagonal 3, located above the main diagonal is A046092,
diagonal 4, located above the main diagonal is A056220,
diagonal 5, located above the main diagonal is A142463,
diagonal 6, located above the main diagonal is A054000,
diagonal 7, located above the main diagonal is A090288,
diagonal 9, located above the main diagonal is A059993,
diagonal 10, located above the main diagonal is |A147973|,
diagonal 11, located above the main diagonal is A139570;
diagonal 1, located under the main diagonal is A051890,
diagonal 2, located under the main diagonal is A005893,
diagonal 3, located under the main diagonal is A097080,
diagonal 4, located under the main diagonal is A093328,
diagonal 5, located under the main diagonal is A137882.

Examples

			The start of the sequence as table:
  1....5...2..12...7..23..16...
  6....3..13...8..24..17..39...
  4...14...9..25..18..40..31...
  15..10..26..19..41..32..60...
  11..27..20..42..33..61..50...
  28..21..43..34..62..51..85...
  22..44..35..63..52..86..73...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  5,6;
  2,3,4;
  12,13,14,15;
  7,8,9,10,11;
  23,24,25,26,27,28;
  16,17,18,19,20,21,22;
  . . .
Row number r matches with r numbers segment {(r+1)*r/2-r*(-1)^(r+1)-r+2,... (r+1)*r/2-r*(-1)^(r+1)+1}.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := (n+k)(n+k-1)/2 - (-1)^(n+k)(n+k-1) - k + 2;
    Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 06 2018 *)
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    j=(t*t+3*t+4)/2-n
    result=(t+2)*(t+1)/2-(t+1)*(-1)**t-j+2

Formula

T(n,k) = (k+n)*(k+n-1)/2-(k+n-1)*(-1)^(k+n)-k+2.
As linear sequence
a(n) = A003057(n)*A002024(n)/2- A002024(n)*(-1)^A003056(n)-A004736(n)+2.
a(n) = (t+2)*(t+1)/2 - (t+1)*(-1)^t-j+2, where j=(t*t+3*t+4)/2-n and t=int((math.sqrt(8*n-7) - 1)/ 2).

A205813 Triangle T(n,k), read by rows, given by (0, 2, 1, 1, 1, 1, 1, 1, 1, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 20, 16, 6, 1, 0, 70, 64, 30, 8, 1, 0, 252, 256, 140, 48, 10, 1, 0, 924, 1024, 630, 256, 70, 12, 1, 0, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 0, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 01 2012

Keywords

Comments

Riordan array (1, x/sqrt(1-4*x)). Inverse of Riordan array (1, x*exp(arcsinh(-2*x))).
T is the convolution triangle of the shifted central binomial coefficients binomial(2*(n-1), n-1). - Peter Luschny, Oct 19 2022

Examples

			Triangle begins:
  1;
  0,   1;
  0,   2,   1;
  0,   6,   4,   1;
  0,  20,  16,   6,   1;
  0,  70,  64,  30,   8,   1;
  0, 252, 256, 140,  48,  10,   1;
		

Crossrefs

Cf. A054335 and columns listed there.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022

Formula

T(n,n) = 1 = A000012(n); T(n+1,n) = 2*n = A005843(n); T(n+2,n) = 2*n*(n+2) = A054000(n+1).
Sum_{k=0..n} T(n,k)*x^k = -A081696(n-1), A000007(n), A026671(n-1), A084868(n) for x = -1, 0, 1, 2 respectively.
G.f.: sqrt(1-4*x)/(sqrt(1-4*x)-y*x).
Sum_{k=0..n} T(n,k)*A090192(k) = A000108(n), A000108 = Catalan numbers.

A370890 A(n, k) = 2^n*Pochhammer(k/2, floor((n+1)/2)). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 4, 3, 1, 0, 12, 16, 6, 4, 1, 0, 60, 32, 30, 8, 5, 1, 0, 120, 192, 60, 48, 10, 6, 1, 0, 840, 384, 420, 96, 70, 12, 7, 1, 0, 1680, 3072, 840, 768, 140, 96, 14, 8, 1, 0, 15120, 6144, 7560, 1536, 1260, 192, 126, 16, 9, 1
Offset: 0

Views

Author

Peter Luschny, Mar 04 2024

Keywords

Examples

			The array starts:
[0] 1,  1,   1,   1,   1,    1,    1,    1,    1,    1, ...
[1] 0,  1,   2,   3,   4,    5,    6,    7,    8,    9, ...
[2] 0,  2,   4,   6,   8,   10,   12,   14,   16,   18, ...
[3] 0,  6,  16,  30,  48,   70,   96,  126,  160,  198, ...
[4] 0, 12,  32,  60,  96,  140,  192,  252,  320,  396, ...
[5] 0, 60, 192, 420, 768, 1260, 1920, 2772, 3840, 5148, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,   1;
[2] 0,   1,   1;
[3] 0,   2,   2,  1;
[4] 0,   6,   4,  3,  1;
[5] 0,  12,  16,  6,  4,  1;
[6] 0,  60,  32, 30,  8,  5, 1;
[7] 0, 120, 192, 60, 48, 10, 6, 1;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> 2^n*pochhammer(k/2, iquo(n+1,2)):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    A370890[n_, k_] := 2^n*Pochhammer[k/2, Floor[(n+1)/2]];
    Table[A370890[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
  • SageMath
    # Note the use of different kinds of division.
    def A(n, k): return 2**n * rising_factorial(k/2, (n+1)//2)
    for n in range(0, 9): print([A(n, k) for k in range(0, 9)])

A122538 Riordan array (1, x*f(x)) where f(x)is the g.f. of A006318.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 22, 16, 6, 1, 0, 90, 68, 30, 8, 1, 0, 394, 304, 146, 48, 10, 1, 0, 1806, 1412, 714, 264, 70, 12, 1, 0, 8558, 6752, 3534, 1408, 430, 96, 14, 1, 0, 41586, 33028, 17718, 7432, 2490, 652, 126, 16, 1, 0, 206098, 164512, 89898, 39152, 14002, 4080, 938, 160, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 18 2006

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 2, 1, 2, 1, 2, 1, ...] DELTA [1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938 . Inverse is Riordan array (1, x*(1-x)/(1+x)).
T(n, r) gives the number of [0,r]-covering hierarchies with n segments terminating at r (see Kreweras work). - Michel Marcus, Nov 22 2014

Examples

			Triangle begins:
  1;
  0,    1:
  0,    2,    1;
  0,    6,    4,    1;
  0,   22,   16,    6,    1;
  0,   90,   68,   30,    8,   1;
  0,  394,  304,  146,   48,  10,  1;
  0, 1806, 1412,  714,  264,  70, 12,  1;
  0, 8558, 6752, 3534, 1408, 430, 96, 14, 1;
Production matrix is:
  0...1
  0...2...1
  0...2...2...1
  0...2...2...2...1
  0...2...2...2...2...1
  0...2...2...2...2...2...1
  0...2...2...2...2...2...2...1
  0...2...2...2...2...2...2...2...1
  0...2...2...2...2...2...2...2...2...1
  ... - _Philippe Deléham_, Feb 09 2014
		

Crossrefs

Another version : A080247, A080245, A033877.
Diagonals: A000012, A005843, A054000.
Sums include: A001003 (row and alternating sign), A006603 (diagonal).
Cf. A103885.

Programs

  • Magma
    function T(n,k) // T = A122538
      if k eq 0 then return 0^n;
      elif k eq n then return 1;
      else return T(n-1,k-1) + T(n-1,k) + T(n,k+1);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
  • Mathematica
    T[n_, n_]= 1; T[, 0]= 0; T[n, k_]:= T[n, k]= T[n-1, k-1] + T[n-1, k] + T[n, k+1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    def A122538_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k)*prec(n, k) for k in (0..n)]
    for n in (0..12): print(A122538_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n,k+1) if k > 0, with T(n, 0) = 0^n, and T(n, n) = 1.
Sum_{k=0..n} T(n, k) = A001003(n).
From G. C. Greubel, Oct 27 2024: (Start)
T(2*n, n) = A103885(n).
Sum_{k=0..n} (-1)^k*T(n, k) = -A001003(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] + 0*[n=1] + A006603(n-2)*[n>1]. (End)

A132354 Integers m such that 7*m + 1 is a square.

Original entry on oeis.org

0, 5, 9, 24, 32, 57, 69, 104, 120, 165, 185, 240, 264, 329, 357, 432, 464, 549, 585, 680, 720, 825, 869, 984, 1032, 1157, 1209, 1344, 1400, 1545, 1605, 1760, 1824, 1989, 2057, 2232, 2304, 2489, 2565, 2760, 2840, 3045, 3129, 3344, 3432, 3657, 3749, 3984, 4080
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

Numbers of the form m*(7*m + 2) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018

Crossrefs

Programs

Formula

a(2*k) = k*(7*k + 2), a(2*k + 1) = 7*k^2 + 12*k + 5.
a(n) = n^2 + n + 3*ceiling(n/2)^2. - Gary Detlefs, Feb 23 2010
G.f.: -x*(5*x^2 + 4*x + 5)/((x - 1)^3*(x + 1)^2). - Colin Barker, Oct 24 2012
Sum_{n>=1} 1/a(n) = 7/4 - cot(2*Pi/7)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009
Better definition from Max Alekseyev, Oct 24 2012

A269457 a(n) = 5*(n + 1)*(n + 4)/2.

Original entry on oeis.org

10, 25, 45, 70, 100, 135, 175, 220, 270, 325, 385, 450, 520, 595, 675, 760, 850, 945, 1045, 1150, 1260, 1375, 1495, 1620, 1750, 1885, 2025, 2170, 2320, 2475, 2635, 2800, 2970, 3145, 3325, 3510, 3700, 3895, 4095, 4300, 4510, 4725, 4945, 5170, 5400, 5635
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*(n + 1)*(n - 1 + k)/2 is (k*(k - 1)/2 + (k*(3 - k)/2)*x)/(1 - x)^3 (see links section).

Examples

			a(0) = 0 + 1 + 2 + 3 + 4 = 10;
a(1) = 0 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 5 = 25;
a(2) = 0 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 45, etc.
		

Crossrefs

Programs

  • Magma
    [5*(n+1)*(n+4)/2: n in [0..50]]; // Vincenzo Librandi, Feb 28 2016
    
  • Mathematica
    Table[5 (n + 1) ((n + 4)/2), {n, 0, 45}]
    Table[Sum[5 (k + 2), {k, 0, n}], {n, 0, 45}]
    LinearRecurrence[{3, -3, 1}, {10, 25, 45}, 46]
  • PARI
    a(n) = 5*(n + 1)*(n + 4)/2; \\ Michel Marcus, Feb 29 2016
    
  • PARI
    Vec(5*(2-x)/(1-x)^3 + O(x^100)) \\ Altug Alkan, Mar 04 2016

Formula

G.f.: 5*(2 - x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} 5*(k + 2) = Sum_{k=0..n} A008587(k + 2).
Sum_{n>=0} 1/a(n) = 11/45 = 0.24444444444... = A040002.
a(n) = 5*A000096(n+1).
a(n) = A055998(2*n+2) + A055998(n+1). - Bruno Berselli, Sep 23 2016
E.g.f.: 5*exp(x)*(4 + 6*x + x^2)/2. - Elmo R. Oliveira, Dec 24 2024
Previous Showing 21-30 of 42 results. Next