cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A006061 Star numbers (A003154) that are squares.

Original entry on oeis.org

1, 121, 11881, 1164241, 114083761, 11179044361, 1095432263641, 107341182792481, 10518340481399521, 1030690025994360601, 100997104206965939401, 9896685522256667700721, 969774184076946468731281
Offset: 1

Views

Author

Keywords

Examples

			a(2)=121 because this is the 2nd star number (A003154) that is a square.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 121, p. 42, Ellipses, Paris 2008.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 22.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A007667 is 3*a(n)+2, sqrt(a(n)) is A054320.
Cf. A003154.

Programs

  • GAP
    a:=[1,121,11881];; for n in [4..20] do a[n]:=99*a[n-1]-99*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+22*x+x^2)/((1-x)*(1-98*x+x^2)) )); // G. C. Greubel, Jul 23 2019
    
  • Maple
    Digits := 1000:q := seq(floor(evalf(( (5+2*sqrt(6))^n*(sqrt(6)-2)-(5-2*sqrt(6))^n*(sqrt(6)+2))^2/16)),n=1..100);
    A006061:=-(1+22*z+z**2)/(z-1)/(z**2-98*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(1+22*x+x^2)/((1-x)*(1-98*x+x^2)), {x,0,20}], x] (* or *) LinearRecurrence[{99,-99,1}, {1,121,11881}, 20] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+22*x+x^2)/((1-x)*(1-98*x+x^2))) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    ((1+22*x+x^2)/((1-x)*(1-98*x+x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

A007667 = 3*square star numbers (A006061) + 2.
a(n) = denominator of kappa(sqrt(6)/A054320(n)) where kappa(x) is the sum of successive remainders by computing the Euclidean algorithm for (1, x). - Thomas Baruchel, Nov 29 2003
From Ignacio Larrosa Cañestro, Feb 27 2000: (Start)
a(n) = 99*(a(n-1) - a(n-2)) + a(n-3).
a(n) = (5 - 2*sqrt(6))/8*(sqrt(3) + sqrt(2))^(4*n) + (5 + 2*sqrt(6))/8*(sqrt(3) - sqrt(2))^(4*n) - 1/4. (End)
a(n) = 98*a(n-1) - a(n-2) + 24. - Lekraj Beedassy, Jul 14 2008

Extensions

More terms from Eric W. Weisstein and Sascha Kurz, Mar 24 2002

A007667 The sum of both two and three consecutive squares.

Original entry on oeis.org

5, 365, 35645, 3492725, 342251285, 33537133085, 3286296790925, 322023548377445, 31555021444198565, 3092070077983081805, 302991312620897818205, 29690056566770003102165
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 365 = 13^2+14^2 = 10^2+11^2+12^2.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 22.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[5, 365, 35645];; for n in [4..20] do a[n]:=99*a[n-1]-99*a[n-2] + a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)) )); // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    CoefficientList[Series[5*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)),{x,0,20}],x] (* Vincenzo Librandi, Apr 16 2012 *)
    LinearRecurrence[{99,-99,1},{5,365,35645},20] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    my(x='x+O('x^20)); Vec(5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2))) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    (5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

From Ignacio Larrosa Cañestro, Feb 27 2000: (Start)
a(n) = (b(n)-1)^2 + b(n)^2 + (b(n)+1)^2 = c(n)^2 + (c(n)+1)^2, where b(n) = A054320(n) and c(n) = A031138(n).
a(n) = 3*A006061(n) + 2.
a(n) = 99*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 3*(5 - 2*sqrt(6))/8*(sqrt(3) + sqrt(2))^(4*n) + 3*(5 + 2*sqrt(6))/8*(sqrt(3) - sqrt(2))^(4*n) + 5/4. (End)
G.f.: 5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)). - Colin Barker, Apr 14 2012

Extensions

Corrected by T. D. Noe, Nov 07 2006

A123479 Coefficients of series giving the best rational approximations to sqrt(6).

Original entry on oeis.org

20, 1980, 194040, 19013960, 1863174060, 182572043940, 17890197132080, 1753056746899920, 171781670999060100, 16832850701160989900, 1649447587042777950120, 161629030679491078121880, 15837995559003082877994140, 1551961935751622630965303860
Offset: 1

Views

Author

Gene Ward Smith, Sep 28 2006

Keywords

Comments

The partial sums of the series 5/2 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(6), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [2;2], [2;2,4,2], [2;2,4,2,4,2], [2;2,4,2,4,2,4,2] and so forth.
Sequence of numbers x=a(n) such 4*x+1 and 6*x+1 are both square, and their square roots are A138288(n) and A054320(n). - Paul Cleary, Jun 23 2014

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{99,-99,1},{0,20,1980},{2, 25}] (* Paul Cleary, Jun 23 2014 *)
  • PARI
    Vec(-20*x/((x-1)*(x^2-98*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014

Formula

a(n+3) = 99*a(n+2) - 99*a(n+1) + a(n).
a(n) = -5/24 + (( + 2*6^(1/2))/48)*(49 + 20*6^(1/2))^n + ((5 - 2*6^(1/2))/48)*(49 - 20*6^(1/2))^n.
G.f.: -20*x / ((x-1)*(x^2-98*x+1)). - Colin Barker, Jun 23 2014

Extensions

More terms from Colin Barker, Jun 23 2014

A138281 a(n) = floor((sqrt(2) + sqrt(3))^n).

Original entry on oeis.org

1, 3, 9, 31, 97, 308, 969, 3051, 9601, 30210, 95049, 299052, 940897, 2960313, 9313929, 29304086, 92198401, 290080547, 912670089, 2871501385, 9034502497, 28424933309, 89432354889, 281377831710, 885289046401, 2785353383794, 8763458109129, 27572156006234
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 12 2008

Keywords

Crossrefs

Programs

  • Magma
    [Floor((Sqrt(2) + Sqrt(3))^n): n in [0..50]]; // G. C. Greubel, Jan 27 2018
  • Mathematica
    Table[Floor[(Sqrt[2] + Sqrt[3])^n], {n, 0, 50}] (* G. C. Greubel, Jan 27 2018 *)
  • PARI
    for(n=0,50, print1(floor((sqrt(2) + sqrt(3))^n), ", ")) \\ G. C. Greubel, Jan 27 2018
    

Formula

a(2*n) = floor(A001079(n) + A001078(n)*sqrt(6));
(sqrt(2) + sqrt(3))^(2*n) = A001079(n) + A001078(n)*sqrt(6);
a(2*n+1) = floor(A054320(n)*sqrt(2) + A138288(n)*sqrt(3));
(sqrt(2)+sqrt(3))^(2*n+1) = A054320(n)*sqrt(2) + A138288(n)*sqrt(3).

Extensions

Terms a(16) and a(18) corrected, terms a(19) onward added by G. C. Greubel, Jan 27 2018

A153111 Solutions of the Pell-like equation 1 + 6*A*A = 7*B*B, with A, B integers.

Original entry on oeis.org

1, 25, 649, 16849, 437425, 11356201, 294823801, 7654062625, 198710804449, 5158826853049, 133930787374825, 3477041644892401, 90269151979827601, 2343520909830625225, 60841274503616428249, 1579529616184196509249, 41006928746285492812225
Offset: 1

Views

Author

Ctibor O. Zizka, Dec 18 2008

Keywords

Comments

B is of the form B(i) = 26*B(i-1) - B(i-2) for B(0) = 1, B(1) = 25 (this sequence).
A is of the form A(i) = 26*A(i-1) - A(i-2) for A(0) = 1, A(1) = 27.
In general a Pell-like equation of the form 1 + X*A*A = (X + 1)*B*B has the solution A(i) = (4*X + 2)*A(i-1) - A(i-2), for A(0) = 1 and A(1) = (4*X + 3), and B(i) = (4*X + 2)*B(i-1) - B(i-2) for B(0) = 1 and B(1) = (4*X + 1).
Examples in the OEIS:
X = 1 gives A002315 for A(i) and A001653 for B(i);
X = 2 gives A054320 for A(i) and A072256 for B(i);
X = 3 gives A028230 for A(i) and A001570 for B(i);
X = 4 gives A049629 for A(i) and A007805 for B(i);
X = 5 gives A133283 for A(i) and A157014 for B(i);
X = 6 gives A157461 for A(i) and this sequence for B(i).
Positive values of x (or y) satisfying x^2 - 26*x*y + y^2 + 24 = 0. - Colin Barker, Feb 20 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,25]; [n le 2 select I[n] else 26*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 22 2014
  • Mathematica
    CoefficientList[Series[(1 - x)/(x^2 - 26 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 22 2014 *)
    LinearRecurrence[{26, -1}, {1, 25}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(-x*(x-1)/(x^2-26*x+1) + O(x^100)) \\ Colin Barker, Feb 20 2014
    

Formula

a(n) = 26*a(n-1) - a(n-2). - Colin Barker, Feb 20 2014
G.f.: -x*(x - 1) / (x^2 - 26*x + 1). - Colin Barker, Feb 20 2014
a(n) = (1/14)*(7 - sqrt(42))*(1 + (13 + 2*sqrt(42))^(2*n - 1))/(13 + 2*sqrt(42))^(n - 1). - Bruno Berselli, Feb 25 2014
E.g.f.: (1/7)*(7*cosh(2*sqrt(42)*x) - sqrt(42)*sinh(2*sqrt(42)*x))*exp(13*x) - 1. - Franck Maminirina Ramaharo, Jan 07 2019

Extensions

More terms from Philippe Deléham, Sep 19 2009; corrected by N. J. A. Sloane, Sep 20 2009
Additional term from Colin Barker, Feb 20 2014

A157084 Consider all consecutive integer Pythagorean quintuples (X, X+1, X+2, Z-1, Z) ordered by increasing Z; sequence gives X values.

Original entry on oeis.org

0, 10, 108, 1078, 10680, 105730, 1046628, 10360558, 102558960, 1015229050, 10049731548, 99482086438, 984771132840, 9748229241970, 96497521286868, 955226983626718, 9455772314980320
Offset: 0

Views

Author

Charlie Marion, Mar 12 2009

Keywords

Comments

In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0, first(1) = k*(2k+1) and, for n > 1, first(n) = (4k+2)*first(n-1) - first(n-2) + 2*k^2; e.g., if k=3, then first(2) = 312 = 14*21 - 0 + 18.
In general, the first and last terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=3 and n=2, first(2) = 312 = 7*21 + 6*27 + 3 and last(2) = 363 = 8*21 + 7*27 + 6. a(n) = (2^(n+1)((1+sqrt(3/2))^(2n+1) + (1-sqrt(3/2))^(2n+1)) - 2*2)/4; e.g., 108 = (2^3((1+sqrt(3/2))^5 + (1-sqrt(3/2))^5) - 2*2)/4.
In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: first(n) = (k^(n+1)((1+sqrt((k+1)/k))^(2n+1) + (1-sqrt((k+1)/k))^(2n+1)) - 2*k)/4; e.g., if k=3 and n=2, then first(2) = 312 = (3^3((1+sqrt((4/3))^(5) + (1-sqrt(4/3)^5) - 2*3)/4.
In general, if u(n) is the numerator and e(n) is the denominator of the n-th continued fraction convergent to sqrt((k+1)/k), then the first terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: first(2n+1) = k*u(2n)*u(2n+1) and, for n > 0, first(2n) = (k+1)*e(2n-1)*e(2n); e.g., a(3) = 1078 = 2*11*49 and a(4) = 10680 = 3*40*89.
In general, if first(n) is the first term of the n-th Consecutive Integer Pythagorean 2k+1-tuple, then lim n->inf first(n+1)/first(n) = k*(1 + sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).

Examples

			a(2) = 108 since 108^2 + 109^2 + 110^2 = 133^2 + 134^2.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
  • W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.

Crossrefs

Programs

  • Magma
    [(1/2 + Sqrt(6)/4)*(5 + 2*Sqrt(6))^n - (Sqrt(6)/4 - 1/2)*(5 - 2*Sqrt(6))^n - 1: n in [0..50]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    CoefficientList[Series[2*x*(-5 + x)/((x - 1)*(x^2 - 10*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Nov 04 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(2*(x - 5)/((x-1)*(x^2 - 10*x + 1)))) \\ G. C. Greubel, Nov 04 2017
    

Formula

For n > 1, a(n) = 10*a(n-1) - a(n-2) + 8.
For n > 0, a(n) = 5*a(n-1) + 4*A157085(n-1) + 2.
Lim_{n->inf} a(n+1)/a(n) = 2(1 + sqrt(3/2))^2 = 5 + 2*sqrt(6).
From R. J. Mathar, Mar 19 2009: (Start)
G.f.: 2*x*(x - 5)/((x-1)*(x^2 - 10*x + 1)).
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3).
a(n) = 2*A087125(n) = A054320(n) - 1. (End)
From Sergei N. Gladkovskii, Jan 12 2012: (Start)
G.f.: 1/(x-1) + (x+1)/(x^2-10*x+1).
a(n) = (1/2 + sqrt(6)/4)*(5 + 2*sqrt(6))^n - (sqrt(6)/4 - 1/2)*(5 - 2*sqrt(6))^n - 1. (End)

A004291 Expansion of (1 + 2*x + x^2)/(1 - 10*x + x^2).

Original entry on oeis.org

1, 12, 120, 1188, 11760, 116412, 1152360, 11407188, 112919520, 1117788012, 11064960600, 109531817988, 1084253219280, 10733000374812, 106245750528840, 1051724504913588, 10410999298607040, 103058268481156812, 1020171685512961080, 10098658586648453988
Offset: 0

Views

Author

Keywords

References

  • J. M. Alonso, Growth functions of amalgams, in Alperin, ed., Arboreal Group Theory, Springer, pp. 1-34, esp. p. 32.
  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.

Crossrefs

Pairwise sums of A054320.

Programs

Formula

a(n) = 12*A004189(n), n> 0. - R. J. Mathar, Oct 29 2012
a(n) = sqrt(3/2)*(-(5 - 2*sqrt(6))^n + (5 + 2*sqrt(6))^n) for n > 0. - Colin Barker, Jan 25 2016
For n > 0: a(n) = 10*a(n-1) - a(n-2) with a(0) = 0, a(1) = 12. - A.H.M. Smeets, Jul 25 2017

A165293 Inverse of A038303, and generalization of A130595.

Original entry on oeis.org

1, 10, -1, 100, -20, 1, 1000, -300, 30, -1, 10000, -4000, 600, -40, 1, 100000, -50000, 10000, -1000, 50, -1, 1000000, -600000, 150000, -20000, 1500, -60, 1, 10000000, -7000000, 2100000, -350000, 35000, -2100, 70
Offset: 1

Views

Author

Mark Dols, Sep 13 2009

Keywords

Comments

Rows sum up to A001019 (powers of 9), diagonals to A004189, a generalization of A010892 (the inverse Fibonacci). Ratio of diagonal sums converges to a decimal sequence: A000108 (Catalan numbers), which is the squared difference of sqrt(2) and sqrt(3), or 5-sqrt(24). Ratio between first binomial transform (A054320 and A138288)of A004189, converges to sqrt(2/3). 1/(2*sqrt(24)) gives A000984 (central binomial coefficients) as a decimal sequence.
Triangle T(n,k), read by rows, given by [10,0,0,0,0,0,0,0,...] DELTA [ -1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 15 2009

Examples

			Triangle begins:
      1;
     10,    -1;
    100,   -20,   1;
   1000,  -300,  30,  -1;
  10000, -4000, 600, -40, 1;
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = (10-x)^n. - Philippe Deléham, Dec 15 2009
G.f.: x*y/(1-10*x+x*y). - R. J. Mathar, Aug 11 2015

A165516 Perfect squares (A000290) that can be expressed as the sum of three consecutive triangular numbers (A000217).

Original entry on oeis.org

4, 64, 361, 6241, 35344, 611524, 3463321, 59923081, 339370084, 5871850384, 33254804881, 575381414521, 3258631508224, 56381506772644, 319312633001041, 5524812282304561, 31289379402593764, 541375222159074304, 3066039868821187801, 53049246959306977201, 300440617765073810704, 5198284826789924691364
Offset: 1

Views

Author

Ant King, Sep 25 2009, Oct 01 2009

Keywords

Comments

Those perfect squares that can be expressed as the sum of three consecutive triangular numbers correspond to integer solutions of the equation T(k)+T(k+1)+T(k+2)=s^2, or equivalently to 3k^2+9k+8=2s^2. Hence solutions occur whenever 1/2 (3k^2+9k+8) is a perfect square, or equivalently when s>=2 and sqrt(24s^2-15) is congruent to 3 mod 6. Furthermore, with the exception of the first term, the members of this sequence are precisely those perfect squares that are also centered triangular numbers (A005448). For s>=2, the values of s are in A129445, and the corresponding indices of the smallest of the 3 triangular numbers are given in A165517.

Examples

			The fourth perfect square that can be expressed as the sum of three consecutive triangular numbers is 6241 (=T63+T64+T65), and hence a(4)=6241.
		

Crossrefs

Programs

  • Magma
    I:=[4, 64, 361, 6241, 35344]; [n le 5 select I[n] else Self(n-1) + 98*Self(n-2) - 98*Self(n-3) - Self(n-4) + Self(n-5): n in [1..50]]; // G. C. Greubel, Oct 21 2018
  • Mathematica
    Select[Range[2,1.8 10^7],Mod[Sqrt[24#^2-15],6]==3 &]^2
    CoefficientList[Series[(4 + 60 x - 95 x^2 + x^4)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 14 2014 *)
    LinearRecurrence[ {1,98,-98,-1,1}, {4, 64, 361, 6241, 35344}, 50] (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    Vec(O(x^66)+x*(4+60*x-95*x^2+x^4)/((1-x)*(1-10*x+x^2)*(1+10*x+x^2))) \\ Joerg Arndt, Mar 13 2014
    

Formula

a(n) = a(n-1) + 98*a(n-2) - 98*a(n-3) - a(n-4) + a(n-5).
a(n) = 98*a(n-2) - a(n-4) - 30. - Ant King, Dec 09 2010
a(n) = (1/32)*(10 -3*(sqrt(6)-3) * (5-2*sqrt(6))^n + (2+ sqrt(6)) * (-5-2*sqrt(6))^n -(sqrt(6)-2) *(2*sqrt(6)-5)^n + 3*(3+sqrt(6)) *(5+2*sqrt(6))^n).
G.f.: x*(4+60*x-95*x^2+x^4)/((1-x)*(1-10*x+x^2)*(1+10*x+x^2)).
16*a(n) = 5 +9*A072256(n+1) +2*(-1)^n*A054320(n). - R. J. Mathar, Apr 28 2020

Extensions

a(1) = 4 added by N. J. A. Sloane, Sep 28 2009, at the suggestion of Alexander R. Povolotsky
a(16)-a(21) added by Alex Ratushnyak, Mar 12 2014

A253475 Indices of centered square numbers (A001844) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 6, 55, 540, 5341, 52866, 523315, 5180280, 51279481, 507614526, 5024865775, 49741043220, 492385566421, 4874114620986, 48248760643435, 477613491813360, 4727886157490161, 46801248083088246, 463284594673392295, 4586044698650834700, 45397162391834954701
Offset: 1

Views

Author

Colin Barker, Jan 02 2015

Keywords

Comments

Also positive integers x in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0, the corresponding values of y being A054318.
Also indices of centered hexagonal numbers (A003215) which are also hexagonal numbers (A000384).
Also indices of terms in sequence A193218 which are the square root of a sum of 5th powers (A000539). - Daniel Poveda Parrilla, Jun 10 2017

Examples

			6 is in the sequence because the 6th centered square number is 61, which is also the 5th centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {1, 6, 55}, 25] (* Paolo Xausa, May 30 2025 *)
  • PARI
    Vec(x*(5*x-1)/((x-1)*(x^2-10*x+1)) + O(x^100))

Formula

a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
G.f.: x*(5*x-1) / ((x-1)*(x^2-10*x+1)).
a(n) = sqrt((-2-(5-2*sqrt(6))^n-(5+2*sqrt(6))^n)*(2-(5-2*sqrt(6))^(1+n)-(5+2*sqrt(6))^(1+n)))/(4*sqrt(2)). - Gerry Martens, Jun 04 2015
2*a(n) = 1+A054320(n-1). - R. J. Mathar, Feb 07 2022
Previous Showing 21-30 of 32 results. Next