cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A054320 Expansion of g.f.: (1 + x)/(1 - 10*x + x^2).

Original entry on oeis.org

1, 11, 109, 1079, 10681, 105731, 1046629, 10360559, 102558961, 1015229051, 10049731549, 99482086439, 984771132841, 9748229241971, 96497521286869, 955226983626719, 9455772314980321, 93602496166176491, 926569189346784589, 9172089397301669399, 90794324783669909401
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's even-indexed U-polynomials evaluated at sqrt(3).
a(n)^2 is a star number (A003154).
Any k in the sequence has the successor 5*k + 2*sqrt(3(2*k^2 + 1)). - Lekraj Beedassy, Jul 08 2002
{a(n)} give the values of x solving: 3*y^2 - 2*x^2 = 1. Corresponding values of y are given by A072256(n+1). x + y = A001078(n+1). - Richard R. Forberg, Nov 21 2013
The aerated sequence (b(n))n>=1 = [1, 0, 11, 0, 109, 0, 1079, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015

Examples

			a(1)^2 = 121 is the 5th star number (A003154).
		

Crossrefs

A member of the family A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, which are the expansions of (1+x) / (1-kx+x^2) with k = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - Philippe Deléham, May 04 2004
Cf. A138281. Cf. A100047.
Cf. A142238.

Programs

  • GAP
    a:=[1,11];; for n in [3..30] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jul 22 2019
  • Magma
    I:=[1,11]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
    
  • Mathematica
    CoefficientList[Series[(1+x)/(1-10x+x^2), {x,0,30}], x] (* Vincenzo Librandi, Mar 22 2015 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Numerator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A142238 *)
    a[3/2, 20] (* Gerry Martens, Jun 07 2015 *)
  • PARI
    a(n)=subst(poltchebi(n+1)-poltchebi(n),x,5)/4;
    

Formula

(a(n)-1)^2 + a(n)^2 + (a(n)+1)^2 = b(n)^2 + (b(n)+1)^2 = c(n), where b(n) is A031138 and c(n) is A007667.
a(n) = 10*a(n-1) - a(n-2).
a(n) = (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1).
a(n) = U(2*(n-1), sqrt(3)) = S(n-1, 10) + S(n-2, 10) with Chebyshev's U(n, x) and S(n, x) := U(n, x/2) polynomials and S(-1, x) := 0. S(n, 10) = A004189(n+1), n >= 0.
6*a(n)^2 + 3 is a square. Limit_{n->oo} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i), then (-1)^n*q(n, -12) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-10)*(-1)^n, where L is defined as in A108299; see also A072256 for L(n,+10). - Reinhard Zumkeller, Jun 01 2005
From Reinhard Zumkeller, Mar 12 2008: (Start)
(sqrt(2) + sqrt(3))^(2*n+1) = a(n)*sqrt(2) + A138288(n)*sqrt(3);
a(n) = A138288(n) + A001078(n).
a(n) = A001079(n) + 3*A001078(n). (End)
a(n) = A142238(2n) = A041006(2n)/2 = A041038(2n)/4. - M. F. Hasler, Feb 14 2009
a(n) = sqrt(A006061(n)). - Zak Seidov, Oct 22 2012
a(n) = sqrt((3*A072256(n)^2 - 1)/2). - T. D. Noe, Oct 23 2012
(sqrt(3) + sqrt(2))^(2*n+1) - (sqrt(3) - sqrt(2))^(2*n+1) = a(n)*sqrt(8). - Bruno Berselli, Oct 29 2019
a(n) = A004189(n)+A004189(n+1). - R. J. Mathar, Oct 01 2021
E.g.f.: exp(5*x)*(2*cosh(2*sqrt(6)*x) + sqrt(6)*sinh(2*sqrt(6)*x))/2. - Stefano Spezia, May 16 2023
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 5), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n)^2 - 10*a(n)*a(n+1) + a(n+1)^2 = 12.
More generally, for arbitrary x, a(n+x)^2 - 10*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 12 with a(n) := (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1) as given above.
a(n+1/2) = sqrt(3) * A001078(n+1).
a(n+3/4) + a(n+1/4) = sqrt(6)*sqrt(sqrt(3) + 1) * A001078(n+1).
a(n+3/4) - a(n+1/4) = sqrt(sqrt(3) - 1) * A001079(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/12 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A004291(n) + 1/A004291(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(3/2) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 3/2 * (1 - 1/A171640(k+2))). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A031138 Numbers k such that 1^5 + 2^5 + ... + k^5 is a square.

Original entry on oeis.org

1, 13, 133, 1321, 13081, 129493, 1281853, 12689041, 125608561, 1243396573, 12308357173, 121840175161, 1206093394441, 11939093769253, 118184844298093, 1169909349211681, 11580908647818721, 114639177128975533, 1134810862641936613, 11233469449290390601
Offset: 1

Views

Author

Ignacio Larrosa Cañestro, entry revised Feb 27 2000

Keywords

Comments

Partial sums of A004291 or convolution of A040000 with A054320. - R. J. Mathar, Oct 26 2009
This is a 6th-degree Diophantine equation 12*m^2 = n^2*(n+1)^2*(2*n^2 + 2*n - 1) which reduces to the generalized Pell equation 6*q^2 = (2*n + 1)^2 - 3 where q = 3*m/(n*(n+1)), so there is no surprise that the solutions satisfy a linear recurrent equation. - Charles R Greathouse IV, Max Alekseyev, Oct 22 2012
Also k such that k^2 + (k+1)^2 is equal to the sum of three consecutive squares, for example 13^2 + 14^2 = 10^2 + 11^2 + 12^2. - Colin Barker, Sep 06 2015

Examples

			a(2) = 13 because 1^5+2^5+...13^5 = 1001^2; a(1) = 1 because 1^5 = 1^2.
		

Crossrefs

Programs

  • Magma
    [Round(-1/2 + ((3 - Sqrt(6))/4)*(5 + 2*Sqrt(6))^n + ((3 + Sqrt(6) )/4)*(5 - 2*Sqrt(6))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    LinearRecurrence[{11,-11,1},{1,13,133},20 ] (* Harvey P. Dale, Oct 23 2012 *)
  • PARI
    isok(n) = issquare(sum(i=1, n, i^5)); \\ Michel Marcus, Dec 28 2013
    
  • PARI
    Vec(x*(1+x)^2/((1-x)*(x^2-10*x+1)) + O(x^40)) \\ Colin Barker, Sep 06 2015
    

Formula

a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = -1/2 + ((3 - sqrt(6))/4)*(5 + 2*sqrt(6))^n + ((3 + sqrt(6))/4)*(5 - 2*sqrt(6))^n.
a(n)^2 + (a(n) + 1)^2 = (b(n) - 1)^2 + b(n)^2 + (b(n) + 1)^2 = c(n) = 3*d(n) + 2; where b(n) is A054320, c(n) is A007667 and d(n) is A006061.
a(n) = 10*a(n-1) - a(n-2) + 4; a(0) = a(1) = 1. Also sum of first a(n) fifth powers is a square m^2, where m has factors A000217{a(n)} and A054320(n). - Lekraj Beedassy, Jul 08 2002
contfrac(sqrt(6)/A054320(n))[4]/2 - Thomas Baruchel, Dec 02 2003
G.f.: x*(1+x)^2/((1-x)*(x^2-10*x+1)). - R. J. Mathar, Oct 26 2009

A006061 Star numbers (A003154) that are squares.

Original entry on oeis.org

1, 121, 11881, 1164241, 114083761, 11179044361, 1095432263641, 107341182792481, 10518340481399521, 1030690025994360601, 100997104206965939401, 9896685522256667700721, 969774184076946468731281
Offset: 1

Views

Author

Keywords

Examples

			a(2)=121 because this is the 2nd star number (A003154) that is a square.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 121, p. 42, Ellipses, Paris 2008.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 22.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A007667 is 3*a(n)+2, sqrt(a(n)) is A054320.
Cf. A003154.

Programs

  • GAP
    a:=[1,121,11881];; for n in [4..20] do a[n]:=99*a[n-1]-99*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+22*x+x^2)/((1-x)*(1-98*x+x^2)) )); // G. C. Greubel, Jul 23 2019
    
  • Maple
    Digits := 1000:q := seq(floor(evalf(( (5+2*sqrt(6))^n*(sqrt(6)-2)-(5-2*sqrt(6))^n*(sqrt(6)+2))^2/16)),n=1..100);
    A006061:=-(1+22*z+z**2)/(z-1)/(z**2-98*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(1+22*x+x^2)/((1-x)*(1-98*x+x^2)), {x,0,20}], x] (* or *) LinearRecurrence[{99,-99,1}, {1,121,11881}, 20] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+22*x+x^2)/((1-x)*(1-98*x+x^2))) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    ((1+22*x+x^2)/((1-x)*(1-98*x+x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

A007667 = 3*square star numbers (A006061) + 2.
a(n) = denominator of kappa(sqrt(6)/A054320(n)) where kappa(x) is the sum of successive remainders by computing the Euclidean algorithm for (1, x). - Thomas Baruchel, Nov 29 2003
From Ignacio Larrosa Cañestro, Feb 27 2000: (Start)
a(n) = 99*(a(n-1) - a(n-2)) + a(n-3).
a(n) = (5 - 2*sqrt(6))/8*(sqrt(3) + sqrt(2))^(4*n) + (5 + 2*sqrt(6))/8*(sqrt(3) - sqrt(2))^(4*n) - 1/4. (End)
a(n) = 98*a(n-1) - a(n-2) + 24. - Lekraj Beedassy, Jul 14 2008

Extensions

More terms from Eric W. Weisstein and Sascha Kurz, Mar 24 2002

A129863 Sums of three consecutive pentagonal numbers.

Original entry on oeis.org

6, 18, 39, 69, 108, 156, 213, 279, 354, 438, 531, 633, 744, 864, 993, 1131, 1278, 1434, 1599, 1773, 1956, 2148, 2349, 2559, 2778, 3006, 3243, 3489, 3744, 4008, 4281, 4563, 4854, 5154, 5463, 5781, 6108, 6444, 6789, 7143, 7506, 7878, 8259, 8649, 9048, 9456, 9873
Offset: 0

Views

Author

Jonathan Vos Post, May 23 2007, May 24 2007

Keywords

Comments

Arises in pentagonal number analog to A129803, Triangular numbers that are the sum of three consecutive triangular numbers. What are the pentagonal numbers which are the sum of three consecutive pentagonal numbers?

Examples

			a(0) = 6 = A000326(0) + A000326(1) + A000326(2) = 0 + 1 + 5.
a(1) = 18 = A000326(1) + A000326(2) + A000326(3) = 1 + 5 + 12.
		

Crossrefs

Programs

  • Magma
    [(9/2)*(n^2)+(15/2)*n+6: n in [0..50]]; // Vincenzo Librandi, Aug 16 2017
  • Mathematica
    Table[(3/2)*(4 + 5*n + 3*n^2), {n, 0, 100}] (* Stefan Steinerberger, May 27 2007 *)
    CoefficientList[Series[3 (2 + x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 16 2017 *)
    Total/@Partition[PolygonalNumber[5,Range[0,50]],3,1] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{6,18,39},50] (* Harvey P. Dale, Nov 22 2018 *)
  • PARI
    a(n)=n*(9*n+15)/2+6 \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = P(n) + P(n+1) + P(n+2) where P(n) = A000326(n) = n*(3*n-1)/2.
a(n) = (9/2)*(n^2) + (15/2)*n + 6.
a(n) = (3*n^2 + 5*n + 4)*(3/2). - Stefan Steinerberger, May 27 2007
G.f.: 3*(2+x^2)/(1-x)^3. - Colin Barker, Feb 13 2012
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: 3*exp(x)*(3*x^2 + 8*x + 4)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Offset corrected by Eric Rowland, Aug 15 2017

A006244 Hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 91, 8911, 873181, 85562821, 8384283271, 821574197731, 80505887094361, 7888755361049641, 773017519495770451, 75747828155224454551, 7422514141692500775541, 727330638057709851548461, 71270980015513872950973631, 6983828710882301839343867371, 684343942686450066382748028721
Offset: 1

Views

Author

Keywords

Comments

Equivalently, triangular hex numbers.

Examples

			a(1)=91 because 91 is the sixth centered hexagonal number and the seventh hexagonal number.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    CP := n -> 1+1/2*6*(n^2-n): N:=10: u:=5: v:=1: x:=6: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+24*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
    A006244:=-(1-8*z+z**2)/(z-1)/(z**2-98*z+1); # Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.
    a := n -> (Matrix([[91,1,1]]). Matrix([[99,1,0],[ -99,0,1],[1,0,0]])^n)[1,3]; seq (a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    CoefficientList[Series[(1 - 8*x + x^2)/(1 - 99*x + 99*x^2 - x^3), {x, 0, 20}], x] (* Jean-François Alcover, Feb 26 2015 *)
  • PARI
    Vec(-x*(x^2-8*x+1)/((x-1)*(x^2-98*x+1)) + O(x^100)) \\ Colin Barker, Jan 08 2015

Formula

From Richard Choulet, Sep 19 2007: (Start)
We must solve 2*r^2-r=3*p^2-3*p+1, which gives X^2=6*Y^2+3 with X=4*r-1 and Y=2*p-1. We obtain at the same time the following sequences:
X is given by 3, 27, 267, ... sequence for which a(n+2)=10*a(n+1)-a(n) and a(n+1)=5*a(n)+2*(6a(n)^2-18)^0.5
Y is given by 1, 11, 109, ... sequence for which a(n+2)=10*a(n+1)-a(n) and a(n+1)=5*a(n)+2*(6a(n)^2+3)^0.5
p is given by 1, 6, 55, 540, ... sequence for which a(n+2)=10*a(n+1)-a(n)-4 and a(n+1)=5*a(n)-2+(24*a(n)^2-24*a(n)+9)^0.5
r is given by 1, 7, 67, 661, ... sequence for which a(n+2)=10*a(n+1)-a(n)-2 and a(n+1)=5*a(n)-1+(24*a(n)^2-12*a(n)-3)^0.5
a(n+2) = 98*a(n+1)-a(n)-6, a(n+1)=49*a(n)-3+5*(96*a(n)^2-12*a(n)-3)^0.5.
G.f.: z*(1-8*z+z^2)/((1-z)*(1-98*z+z^2)). (End)
Define x(n) + y(n)*sqrt(24) = (6+sqrt(24))*(5+sqrt(24))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+6*(s(n)^2-s(n))). - Steven Schlicker, Apr 24 2007
a(n) = (A007667(n+1)-1)/4. - Ralf Stephan, Mar 03 2004
a(n) = 99*a(n-1)-99*a(n-2)+a(n-3). - Colin Barker, Jan 08 2015

Extensions

Edited by N. J. A. Sloane, Sep 25 2007
More terms from Alois P. Heinz, Aug 14 2008
More terms from Jon E. Schoenfield, Dec 26 2008

A129109 Sums of three consecutive hexagonal numbers.

Original entry on oeis.org

7, 22, 49, 88, 139, 202, 277, 364, 463, 574, 697, 832, 979, 1138, 1309, 1492, 1687, 1894, 2113, 2344, 2587, 2842, 3109, 3388, 3679, 3982, 4297, 4624, 4963, 5314, 5677, 6052, 6439, 6838, 7249, 7672, 8107, 8554, 9013, 9484, 9967, 10462, 10969, 11488, 12019, 12562
Offset: 0

Views

Author

Jonathan Vos Post, May 24 2007

Keywords

Comments

Arises in hexagonal number analog to A129803 Triangular numbers which are the sum of three consecutive triangular numbers. What are the hexagonal numbers which are the sum of three consecutive hexagonal numbers? Prime for a(0) = 7, a(4) = 139, a(6) = 277, a(8) = 463, a(18) = 2113, a(22) = 3109, a(26) = 4297, a(38) = 9013, a(40) = 9967.

Examples

			a(0) = H(0) + H(1) + H(2) = 0 + 1 + 6 = 7 = 6*0^2 + 9*0 + 7.
a(1) = H(1) + H(2) + H(3) = 1 + 6 + 15 = 22 = 6*1^2 + 9*1 + 7.
a(2) = H(2) + H(3) + H(4) = 6 + 15 + 28 = 49 = 6*2^2 + 9*2 + 7.
		

Crossrefs

Programs

  • Magma
    I:=[7,22,49]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{7,22,49},50] (* Vincenzo Librandi, Feb 20 2012 *)
    Total/@Partition[PolygonalNumber[6,Range[0,50]],3,1] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 14 2020 *)
  • PARI
    a(n)=6*n^2+9*n+7 \\ Charles R Greathouse IV, Feb 20 2012

Formula

a(n) = H(n) + H(n+1) + H(n+2) where H(n) = A000384(n) = n*(2*n-1).
a(n) = 6*n^2 + 9*n + 7.
From Colin Barker, Feb 20 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (7 + x + 4*x^2)/(1-x)^3. (End)
E.g.f.: (7 + 15*x + 6*x^2)*exp(x). - Elmo R. Oliveira, Nov 16 2024

A129111 Sums of three consecutive heptagonal numbers.

Original entry on oeis.org

8, 26, 59, 107, 170, 248, 341, 449, 572, 710, 863, 1031, 1214, 1412, 1625, 1853, 2096, 2354, 2627, 2915, 3218, 3536, 3869, 4217, 4580, 4958, 5351, 5759, 6182, 6620, 7073, 7541, 8024, 8522, 9035, 9563, 10106, 10664, 11237, 11825, 12428, 13046, 13679, 14327, 14990
Offset: 0

Views

Author

Jonathan Vos Post, May 24 2007

Keywords

Comments

Arises in heptagonal number analog to A129803 (Triangular numbers which are the sum of three consecutive triangular numbers).
What are the heptagonal numbers which are the sum of three consecutive heptagonal numbers?
Prime for a(2) = 59, a(3) = 107, a(7) = 449, a(10) = 863, a(11) = 1031, a(23) = 4217, a(26) = 5351, a(31) = 7541, a(42) = 13679, a(43) = 14327, a(46) = 16361, a(51) = 20051.

Examples

			a(0) = Hep(0) + Hep(1) + Hep(2) = 0 + 1 + 7 = 8 = (15/2)*0^2 + (21/2)*0 + 8.
a(1) = Hep(1) + Hep(2) + Hep(3) = 1 + 7 + 18 = 26 = (15/2)*1^2 + (21/2)*1 + 8.
a(2) = Hep(2) + Hep(3) + Hep(4) = 7 + 18 + 34 = 59 = (15/2)*2^2 + (21/2)*2 + 8.
		

Crossrefs

Programs

  • Magma
    I:=[8,26,59]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{8,26,59},50] (* Vincenzo Librandi, Feb 12 2012 *)
  • PARI
    a(n)=3*n*(5*n+7)/2+8 \\ Charles R Greathouse IV, Jun 17 2017
    
  • Python
    def a(n): return 3*n*(5*n+7)//2 + 8
    print([a(n) for n in range(44)]) # Michael S. Branicky, Aug 26 2021

Formula

a(n) = Hep(n) + Hep(n+1) + Hep(n+2) where Hep(n) = A000566(n) = n*(5*n-3)/2.
a(n) = (15/2)*n^2 + (21/2)*n + 8.
From Colin Barker, Feb 20 2012: (Start)
G.f.: (8 + 2*x + 5*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(16 + 36*x + 15*x^2)/2. - Elmo R. Oliveira, Nov 16 2024
Showing 1-7 of 7 results.