cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A072256 a(n) = 10*a(n-1) - a(n-2) for n > 1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 9, 89, 881, 8721, 86329, 854569, 8459361, 83739041, 828931049, 8205571449, 81226783441, 804062262961, 7959395846169, 78789896198729, 779939566141121, 7720605765212481, 76426118085983689, 756540575094624409, 7488979632860260401, 74133255753507979601, 733843577902219535609
Offset: 0

Views

Author

Lekraj Beedassy, Jul 08 2002

Keywords

Comments

Any k in the sequence is followed by 5*k + 2*sqrt(2*(3*k^2 - 1)).
Gives solutions for x in 3*x^2 - 2*y^2 = 1. Corresponding y is given by A054320(n-1). [corrected by Jon E. Schoenfield, Jun 08 2018]
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7,8,9} which do not end in 0. - Tanya Khovanova, Jan 10 2007
For n >= 2, a(n) equals the permanent of the (2n-2) X (2n-2) tridiagonal matrix with sqrt(8)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Except for the first term, positive values of x (or y) satisfying x^2 - 10xy + y^2 + 8 = 0. - Colin Barker, Feb 09 2014
The aerated sequence [b(n)]n>=1 = [1, 0, 9, 0, 89, 0, 881, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -12, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. - Peter Bala, May 12 2025

Crossrefs

Row 10 of array A094954.
First differences of A004189.
Essentially the same as A138288.

Programs

  • GAP
    a:=[1,1];; for n in [3..20] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    [n le 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 10 2014
    
  • Maple
    seq( simplify(ChebyshevU(n,5) -9*ChebyshevU(n-1,5)), n=0..20); # G. C. Greubel, Jan 14 2020
  • Mathematica
    a[n_]:= a[n]= 10a[n-1] -a[n-2]; a[0]=a[1]=1; Table[ a[n], {n, 0, 20}]
    CoefficientList[Series[(1-9x)/(1-10x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
    Table[ChebyshevU[n, 5] -9*ChebyshevU[n-1, 5], {n,0,20}] (* G. C. Greubel, Jan 14 2020 *)
    LinearRecurrence[{10,-1},{1,1},20] (* Harvey P. Dale, Jun 17 2022 *)
  • PARI
    a(n)=([0,1; -1,10]^n*[1;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • PARI
    vector(21, n, polchebyshev(n-1,2,5) -9*polchebyshev(n-2,2,5) ) \\ G. C. Greubel, Jan 14 2020
    

Formula

a(n) = (3-sqrt(6))/6 * (5+2*sqrt(6))^n + (3+sqrt(6))/6 * (5-2*sqrt(6))^n.
a(n) = (2*A031138(n) + 1)/3 = sqrt((2*A054320(n-1)^2 + 1)/3), n >= 1.
a(n) = U(n-1, 5)-U(n-2, 5) = T(2*n-1, sqrt(3))/sqrt(3) with Chebyshev's U- and T- polynomials and U(-1, x) := 0, U(-2, x) := -1, T(-1, x) := x.
G.f.: (1-9*x)/(1-10*x+x^2).
6*a(n)^2 - 2 is a square. Limit_{n->oo} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 10 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 8) = a(n+1). - Benoit Cloitre, Nov 10 2002
a(n)*a(n+3) = 80 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = L(n-1,10), where L is defined as in A108299; see also A054320 for L(n,-10). - Reinhard Zumkeller, Jun 01 2005
a(n) = A138288(n-1) for n > 0. - Reinhard Zumkeller, Mar 12 2008
a(n) = sqrt(A046172(n)). - Paul Weisenhorn, May 15 2009
a(n) = ceiling(((3-sqrt(6))*(5+2*sqrt(6))^n)/6). - Paul Weisenhorn, May 23 2020
E.g.f.: exp(5*x)*(3*cosh(2*sqrt(6)*x) - sqrt(6)*sinh(2*sqrt(6)*x))/3. - Stefano Spezia, Oct 25 2023
From Peter Bala, May 08 2025: (Start)
a(n) = (-1)^n * Dir(n-1, -5), where Dir(n, x) denotes the n-th row polynomial of A244419.
For arbitrary x, a(n+x)^2 - 10*a(n+x)*a(n+x+1) + a(n+x+1)^2 = -8 with a(n) := (3-sqrt(6))/6 * (5+2*sqrt(6))^n + (3+sqrt(6))/6 * (5-2*sqrt(6))^n as given above (the particular case x = 0 is noted in the Comments section).
a(n+1/2) = 1/sqrt(3) * A001079(n).
a(n+3/4) + a(n+1/4) = sqrt(2/3) * sqrt(1 + sqrt(3)) * A001079(n).
a(n+3/4) - a(n+1/4) = 4 * sqrt(sqrt(3) - 1) * A004189(n).
a(n) divides a(3*n-1); a(n) divides a(5*n-2); in general, for k >= 0, a(n) divides a((2*k+1)*n - k).
Sum_{n >= 2} 1/(a(n) - 1/a(n)) = 1/8 (telescoping series: for n >= 2, 1/(a(n) - 1/a(n)) = 1/A291181(n-2) - 1/A291181(n-1).)
Product_{n >= 2} ((a(n) + 1)/(a(n) - 1))^(-1)^n = sqrt(3/2) (telescoping product: Product_{n = 2..k} (((a(n) + 1)/(a(n) - 1))^(-1)^n)^2 = 3/2 * (1 - (-1)^(k+1)/(3*A098308(k))).) (End)

Extensions

Edited by Robert G. Wilson v, Jul 17 2002

A054320 Expansion of g.f.: (1 + x)/(1 - 10*x + x^2).

Original entry on oeis.org

1, 11, 109, 1079, 10681, 105731, 1046629, 10360559, 102558961, 1015229051, 10049731549, 99482086439, 984771132841, 9748229241971, 96497521286869, 955226983626719, 9455772314980321, 93602496166176491, 926569189346784589, 9172089397301669399, 90794324783669909401
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's even-indexed U-polynomials evaluated at sqrt(3).
a(n)^2 is a star number (A003154).
Any k in the sequence has the successor 5*k + 2*sqrt(3(2*k^2 + 1)). - Lekraj Beedassy, Jul 08 2002
{a(n)} give the values of x solving: 3*y^2 - 2*x^2 = 1. Corresponding values of y are given by A072256(n+1). x + y = A001078(n+1). - Richard R. Forberg, Nov 21 2013
The aerated sequence (b(n))n>=1 = [1, 0, 11, 0, 109, 0, 1079, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015

Examples

			a(1)^2 = 121 is the 5th star number (A003154).
		

Crossrefs

A member of the family A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, which are the expansions of (1+x) / (1-kx+x^2) with k = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - Philippe Deléham, May 04 2004
Cf. A138281. Cf. A100047.
Cf. A142238.

Programs

  • GAP
    a:=[1,11];; for n in [3..30] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jul 22 2019
  • Magma
    I:=[1,11]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
    
  • Mathematica
    CoefficientList[Series[(1+x)/(1-10x+x^2), {x,0,30}], x] (* Vincenzo Librandi, Mar 22 2015 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Numerator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A142238 *)
    a[3/2, 20] (* Gerry Martens, Jun 07 2015 *)
  • PARI
    a(n)=subst(poltchebi(n+1)-poltchebi(n),x,5)/4;
    

Formula

(a(n)-1)^2 + a(n)^2 + (a(n)+1)^2 = b(n)^2 + (b(n)+1)^2 = c(n), where b(n) is A031138 and c(n) is A007667.
a(n) = 10*a(n-1) - a(n-2).
a(n) = (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1).
a(n) = U(2*(n-1), sqrt(3)) = S(n-1, 10) + S(n-2, 10) with Chebyshev's U(n, x) and S(n, x) := U(n, x/2) polynomials and S(-1, x) := 0. S(n, 10) = A004189(n+1), n >= 0.
6*a(n)^2 + 3 is a square. Limit_{n->oo} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i), then (-1)^n*q(n, -12) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-10)*(-1)^n, where L is defined as in A108299; see also A072256 for L(n,+10). - Reinhard Zumkeller, Jun 01 2005
From Reinhard Zumkeller, Mar 12 2008: (Start)
(sqrt(2) + sqrt(3))^(2*n+1) = a(n)*sqrt(2) + A138288(n)*sqrt(3);
a(n) = A138288(n) + A001078(n).
a(n) = A001079(n) + 3*A001078(n). (End)
a(n) = A142238(2n) = A041006(2n)/2 = A041038(2n)/4. - M. F. Hasler, Feb 14 2009
a(n) = sqrt(A006061(n)). - Zak Seidov, Oct 22 2012
a(n) = sqrt((3*A072256(n)^2 - 1)/2). - T. D. Noe, Oct 23 2012
(sqrt(3) + sqrt(2))^(2*n+1) - (sqrt(3) - sqrt(2))^(2*n+1) = a(n)*sqrt(8). - Bruno Berselli, Oct 29 2019
a(n) = A004189(n)+A004189(n+1). - R. J. Mathar, Oct 01 2021
E.g.f.: exp(5*x)*(2*cosh(2*sqrt(6)*x) + sqrt(6)*sinh(2*sqrt(6)*x))/2. - Stefano Spezia, May 16 2023
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 5), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n)^2 - 10*a(n)*a(n+1) + a(n+1)^2 = 12.
More generally, for arbitrary x, a(n+x)^2 - 10*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 12 with a(n) := (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1) as given above.
a(n+1/2) = sqrt(3) * A001078(n+1).
a(n+3/4) + a(n+1/4) = sqrt(6)*sqrt(sqrt(3) + 1) * A001078(n+1).
a(n+3/4) - a(n+1/4) = sqrt(sqrt(3) - 1) * A001079(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/12 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A004291(n) + 1/A004291(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(3/2) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 3/2 * (1 - 1/A171640(k+2))). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A350923 a(0) = 2, a(1) = 2, and a(n) = 10*a(n-1) - a(n-2) - 4 for n >= 2.

Original entry on oeis.org

2, 2, 14, 134, 1322, 13082, 129494, 1281854, 12689042, 125608562, 1243396574, 12308357174, 121840175162, 1206093394442, 11939093769254, 118184844298094, 1169909349211682, 11580908647818722, 114639177128975534, 1134810862641936614, 11233469449290390602, 111199883630261969402
Offset: 0

Views

Author

Max Alekseyev, Jan 22 2022

Keywords

Comments

One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
Essentially the same as A157085. - R. J. Mathar, Feb 07 2022

Crossrefs

Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350924, A350925, A350926.

Programs

  • Mathematica
    LinearRecurrence[{11, -11, 1}, {2, 2, 14}, 25] (* Paolo Xausa, May 30 2025 *)

Formula

G.f.: 2*(1 - 10*x + 7*x^2)/((1 - x)*(1 - 10*x + x^2)). - Stefano Spezia, Jan 22 2022
From Hugo Pfoertner, Jan 22 2022: (Start)
a(n) = A031138(n) + 1.
a(n) = 3*A054318(n) - 1.
a(n) = 12*A097784(n-2) + 2 for n >= 2. (End)
a(n) = 2 * A253175(n) for n>=1. - Alois P. Heinz, Jan 22 2022

A007667 The sum of both two and three consecutive squares.

Original entry on oeis.org

5, 365, 35645, 3492725, 342251285, 33537133085, 3286296790925, 322023548377445, 31555021444198565, 3092070077983081805, 302991312620897818205, 29690056566770003102165
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 365 = 13^2+14^2 = 10^2+11^2+12^2.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 22.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[5, 365, 35645];; for n in [4..20] do a[n]:=99*a[n-1]-99*a[n-2] + a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)) )); // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    CoefficientList[Series[5*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)),{x,0,20}],x] (* Vincenzo Librandi, Apr 16 2012 *)
    LinearRecurrence[{99,-99,1},{5,365,35645},20] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    my(x='x+O('x^20)); Vec(5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2))) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    (5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

From Ignacio Larrosa Cañestro, Feb 27 2000: (Start)
a(n) = (b(n)-1)^2 + b(n)^2 + (b(n)+1)^2 = c(n)^2 + (c(n)+1)^2, where b(n) = A054320(n) and c(n) = A031138(n).
a(n) = 3*A006061(n) + 2.
a(n) = 99*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 3*(5 - 2*sqrt(6))/8*(sqrt(3) + sqrt(2))^(4*n) + 3*(5 + 2*sqrt(6))/8*(sqrt(3) - sqrt(2))^(4*n) + 5/4. (End)
G.f.: 5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)). - Colin Barker, Apr 14 2012

Extensions

Corrected by T. D. Noe, Nov 07 2006

A054318 a(n)-th star number (A003154) is a square.

Original entry on oeis.org

1, 5, 45, 441, 4361, 43165, 427285, 4229681, 41869521, 414465525, 4102785725, 40613391721, 402031131481, 3979697923085, 39394948099365, 389969783070561, 3860302882606241, 38213059042991845, 378270287547312205
Offset: 1

Views

Author

Keywords

Comments

A two-way infinite sequence which is palindromic.
Also indices of centered hexagonal numbers (A003215) which are also centered square numbers (A001844). - Colin Barker, Jan 02 2015
Also positive integers y in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0. - Colin Barker, Jan 02 2015

Examples

			a(2) = 5 because the 5th Star number (A003154) 121=11^2 is the 2nd that is a square.
		

Crossrefs

A031138 is 3*a(n)-2. Cf. A003154, A006061, A182432, A211955.
Quintisection of column k=2 of A233427.

Programs

  • GAP
    a:=[1,5,45];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) )); // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    CoefficientList[Series[x(1-6x+x^2)/((1-x)(1-10x+x^2)), {x,0,30}], x] (* Michael De Vlieger, Aug 11 2016 *)
    LinearRecurrence[{11,-11,1},{1,5,45},30] (* Harvey P. Dale, Nov 05 2016 *)
  • PARI
    a(n)=if(n<1,a(1-n),1/2+subst(poltchebi(n)+poltchebi(n-1),x,5)/12)
    
  • PARI
    Vec(x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) + O(x^30)) \\ Colin Barker, Jan 02 2015
    
  • Sage
    (x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 1/2 + (3 - sqrt(6))/12*(5 + 2*sqrt(6))^n + (3 + sqrt(6))/12*(5 - 2*sqrt(6))^n.
From Michael Somos, Mar 18 2003: (Start)
G.f.: x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)).
12*a(n)*a(n-1) + 4 = (a(n) + a(n-1) + 2)^2.
a(n) = a(1-n) = 10*a(n-1) - a(n-2) - 4.
a(n) = 12*a(n-1)^2/(a(n-1) + a(n-2)) - a(n-1).
a(n) = (a(n-1) + 4)*a(n-1)/a(n-2). (End)
From Peter Bala, May 01 2012: (Start)
a(n+1) = 1 + (1/2)*Sum_{k = 1..n} 8^k*binomial(n+k,2*k).
a(n+1) = R(n,4), where R(n,x) is the n-th row polynomial of A211955.
a(n+1) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(3) and T(n,x) the Chebyshev polynomial of the first kind.
Sum {k>=0} 1/a(k) = sqrt(3/2). (End)
A003154(a(n)) = A006061(n). - Zak Seidov, Oct 22 2012
a(n) = (4*a(n-1) + a(n-1)^2) / a(n-2), n >= 3. - Seiichi Manyama, Aug 11 2016
2*a(n) = 1+A072256(n). - R. J. Mathar, Feb 07 2022

Extensions

More terms from James Sellers, Mar 01 2000

A261932 The first of two consecutive positive integers the sum of the squares of which is equal to the sum of the squares of ten consecutive positive integers.

Original entry on oeis.org

26, 48, 68, 126, 468, 866, 1226, 2268, 8406, 15548, 22008, 40706, 150848, 279006, 394926, 730448, 2706866, 5006568, 7086668, 13107366, 48572748, 89839226, 127165106, 235202148, 871602606, 1612099508, 2281885248, 4220531306, 15640274168, 28927951926
Offset: 1

Views

Author

Colin Barker, Sep 06 2015

Keywords

Comments

For the first of the corresponding ten consecutive positive integers, see A261934.

Examples

			26 is in the sequence because 26^2 + 27^2 = 7^2 + 8^2 + ... + 16^2.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 (4 x^8 - x^7 + x^5 - 63 x^4 + 29 x^3 + 10 x^2 + 11 x + 13)/((1 - x) (x^4 - 4 x^2 - 1) (x^4 + 4 x^2 - 1)), {x, 0, 45}], x] (* Vincenzo Librandi, Sep 07 2015 *)
  • PARI
    Vec(-2*x*(4*x^8-x^7+x^5-63*x^4+29*x^3+10*x^2+11*x+13)/((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)) + O(x^40))

Formula

G.f.: -2*x*(4*x^8-x^7+x^5-63*x^4+29*x^3+10*x^2+11*x+13) / ((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)).
a(n) = a(n-1) + 18*a(n-4) - 18*a(n-5) - a(n-8) + a(n-9) for n>8. - Vincenzo Librandi, Sep 07 2015

A261933 The first of two consecutive positive integers the sum of the squares of which is equal to the sum of the squares of seventeen consecutive positive integers.

Original entry on oeis.org

40, 91, 2743, 6364, 192004, 445423, 13437571, 31173280, 940438000, 2181684211, 65817222463, 152686721524, 4606265134444, 10685888822503, 322372742188651, 747859530853720, 22561485688071160, 52339481270937931, 1578981625422792583, 3663015829434801484
Offset: 1

Views

Author

Colin Barker, Sep 06 2015

Keywords

Comments

For the first of the corresponding seventeen consecutive positive integers, see A261935.

Examples

			40 is in the sequence because 40^2 + 41^2 = 5^2 + 6^2 + ... + 21^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,70,-70,-1,1},{40,91,2743,6364,192004},20] (* Harvey P. Dale, Oct 17 2015 *)
  • PARI
    Vec(-x*(40*x^4+51*x^3-148*x^2+51*x+40)/((x-1)*(x^4-70*x^2+1)) + O(x^40))

Formula

G.f.: -x*(40*x^4+51*x^3-148*x^2+51*x+40) / ((x-1)*(x^4-70*x^2+1)).

A261934 The first of ten consecutive positive integers the sum of the squares of which is equal to the sum of the squares of two consecutive positive integers.

Original entry on oeis.org

7, 17, 26, 52, 205, 383, 544, 1010, 3755, 6949, 9838, 18200, 67457, 124771, 176612, 326662, 1210543, 2239001, 3169250, 5861788, 21722389, 40177319, 56869960, 105185594, 389792531, 720952813, 1020490102, 1887478976, 6994543241, 12936973387, 18311951948
Offset: 1

Views

Author

Colin Barker, Sep 06 2015

Keywords

Comments

For the first of the corresponding two consecutive positive integers, see A261932.

Examples

			7 is in the sequence because 7^2 + 8^2 + ... + 16^2 = 26^2 + 27^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,18,-18,0,0,-1,1},{7,17,26,52,205,383,544,1010,3755},40] (* Harvey P. Dale, Mar 29 2018 *)
  • PARI
    Vec(x*(2*x^8+2*x^7+x^6+2*x^5-27*x^4-26*x^3-9*x^2-10*x-7)/((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)) + O(x^40))

Formula

G.f.: x*(2*x^8+2*x^7+x^6+2*x^5-27*x^4-26*x^3-9*x^2-10*x-7) / ((x-1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)).

A261935 The first of seventeen consecutive positive integers the sum of the squares of which is equal to the sum of the squares of two consecutive positive integers.

Original entry on oeis.org

5, 23, 933, 2175, 65849, 152771, 4609041, 10692339, 322567565, 748311503, 22575121053, 52371113415, 1579935906689, 3665229628091, 110572938347721, 256513702853499, 7738525748434325, 17952293970117383, 541586229452055573, 1256404064205363855
Offset: 1

Views

Author

Colin Barker, Sep 06 2015

Keywords

Comments

For the first of the corresponding two consecutive positive integers, see A261933.

Examples

			5 is in the sequence because 5^2 + 6^2 + ... + 21^2 = 40^2 + 41^2.
		

Crossrefs

Programs

  • PARI
    Vec(x*(21*x^4+18*x^3-560*x^2-18*x-5)/((x-1)*(x^4-70*x^2+1)) + O(x^40))

Formula

G.f.: x*(21*x^4+18*x^3-560*x^2-18*x-5) / ((x-1)*(x^4-70*x^2+1)).

A087125 Indices k of hex numbers H(k) that are also triangular.

Original entry on oeis.org

0, 5, 54, 539, 5340, 52865, 523314, 5180279, 51279480, 507614525, 5024865774, 49741043219, 492385566420, 4874114620985, 48248760643434, 477613491813359, 4727886157490160, 46801248083088245, 463284594673392294, 4586044698650834699, 45397162391834954700
Offset: 0

Views

Author

Eric W. Weisstein, Aug 14 2003

Keywords

Comments

From the law of cosines, the non-Pythagorean triple {a(n), a(n)+1=A253475(n+1), A072256(n+1)} forms a near-isosceles triangle with the angle bounded by the consecutive sides equal to the regular tetrahedron's central angle (see A156546 and A247412). This implies also that a(n) are those numbers k such that (16/3)*A000217(k)+1 is a perfect square. - Federico Provvedi, Apr 04 2023

Crossrefs

Programs

  • Magma
    [Round((-4-(5-2*Sqrt(6))^n*(-2+Sqrt(6)) + (2+Sqrt(6))*(5 + 2*Sqrt(6))^n)/8): n in [0..25]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    CoefficientList[Series[(-x^2+5*x)/((1-x)*(1-10*x+x^2)), {x, 0, 25}], x] (* G. C. Greubel, Nov 04 2017 *)
    LinearRecurrence[{11,-11,1},{0,5,54},30] (* Harvey P. Dale, Jun 14 2022 *)
    Table[(x Sqrt[z^(2 n + 1) + z^-(2 n + 1) - 2] - 4) / 8 //. {x -> Sqrt[2], y -> Sqrt[3], z -> (5 + 2 x y)}, {n, 0, 100}] // Round (* Federico Provvedi, Apr 16 2023 *)
  • PARI
    concat(0, Vec(x*(x-5)/((x-1)*(x^2-10*x+1)) + O(x^50))) \\ Colin Barker, Jun 23 2015
    

Formula

G.f.: (-x^2+5*x)/((1-x)*(1-10*x+x^2)).
a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3) for n > 2. - Colin Barker, Jun 23 2015
a(n) = (-4 - (5-2*sqrt(6))^n*(-2 + sqrt(6)) + (2+sqrt(6))*(5+2*sqrt(6))^n)/8. - Colin Barker, Mar 05 2016
a(n) = 10*a(n-1) - a(n-2) + 4 for n > 1. - Charlie Marion, Feb 14 2023
a(n) = ((x^(n+1)+1)*(x^n-1))/(2*x^n*(x-1)), with x=5+2*sqrt(6). - Federico Provvedi, Apr 04 2023
a(n) = sqrt(3*A161680(A054318(n+1)) + 1/4) - 1/2 = floor(sqrt(3*A000217(A054318(n+1)-1) + 1/4)). - Federico Provvedi, Apr 16 2023
Showing 1-10 of 10 results.