cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A054319 Duplicate of A006061.

Original entry on oeis.org

1, 121, 11881, 1164241, 114083761, 11179044361, 1095432263641
Offset: 1

Views

Author

Keywords

A054320 Expansion of g.f.: (1 + x)/(1 - 10*x + x^2).

Original entry on oeis.org

1, 11, 109, 1079, 10681, 105731, 1046629, 10360559, 102558961, 1015229051, 10049731549, 99482086439, 984771132841, 9748229241971, 96497521286869, 955226983626719, 9455772314980321, 93602496166176491, 926569189346784589, 9172089397301669399, 90794324783669909401
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's even-indexed U-polynomials evaluated at sqrt(3).
a(n)^2 is a star number (A003154).
Any k in the sequence has the successor 5*k + 2*sqrt(3(2*k^2 + 1)). - Lekraj Beedassy, Jul 08 2002
{a(n)} give the values of x solving: 3*y^2 - 2*x^2 = 1. Corresponding values of y are given by A072256(n+1). x + y = A001078(n+1). - Richard R. Forberg, Nov 21 2013
The aerated sequence (b(n))n>=1 = [1, 0, 11, 0, 109, 0, 1079, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015

Examples

			a(1)^2 = 121 is the 5th star number (A003154).
		

Crossrefs

A member of the family A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, which are the expansions of (1+x) / (1-kx+x^2) with k = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - Philippe Deléham, May 04 2004
Cf. A138281. Cf. A100047.
Cf. A142238.

Programs

  • GAP
    a:=[1,11];; for n in [3..30] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jul 22 2019
  • Magma
    I:=[1,11]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
    
  • Mathematica
    CoefficientList[Series[(1+x)/(1-10x+x^2), {x,0,30}], x] (* Vincenzo Librandi, Mar 22 2015 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Numerator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A142238 *)
    a[3/2, 20] (* Gerry Martens, Jun 07 2015 *)
  • PARI
    a(n)=subst(poltchebi(n+1)-poltchebi(n),x,5)/4;
    

Formula

(a(n)-1)^2 + a(n)^2 + (a(n)+1)^2 = b(n)^2 + (b(n)+1)^2 = c(n), where b(n) is A031138 and c(n) is A007667.
a(n) = 10*a(n-1) - a(n-2).
a(n) = (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1).
a(n) = U(2*(n-1), sqrt(3)) = S(n-1, 10) + S(n-2, 10) with Chebyshev's U(n, x) and S(n, x) := U(n, x/2) polynomials and S(-1, x) := 0. S(n, 10) = A004189(n+1), n >= 0.
6*a(n)^2 + 3 is a square. Limit_{n->oo} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i), then (-1)^n*q(n, -12) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-10)*(-1)^n, where L is defined as in A108299; see also A072256 for L(n,+10). - Reinhard Zumkeller, Jun 01 2005
From Reinhard Zumkeller, Mar 12 2008: (Start)
(sqrt(2) + sqrt(3))^(2*n+1) = a(n)*sqrt(2) + A138288(n)*sqrt(3);
a(n) = A138288(n) + A001078(n).
a(n) = A001079(n) + 3*A001078(n). (End)
a(n) = A142238(2n) = A041006(2n)/2 = A041038(2n)/4. - M. F. Hasler, Feb 14 2009
a(n) = sqrt(A006061(n)). - Zak Seidov, Oct 22 2012
a(n) = sqrt((3*A072256(n)^2 - 1)/2). - T. D. Noe, Oct 23 2012
(sqrt(3) + sqrt(2))^(2*n+1) - (sqrt(3) - sqrt(2))^(2*n+1) = a(n)*sqrt(8). - Bruno Berselli, Oct 29 2019
a(n) = A004189(n)+A004189(n+1). - R. J. Mathar, Oct 01 2021
E.g.f.: exp(5*x)*(2*cosh(2*sqrt(6)*x) + sqrt(6)*sinh(2*sqrt(6)*x))/2. - Stefano Spezia, May 16 2023
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 5), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n)^2 - 10*a(n)*a(n+1) + a(n+1)^2 = 12.
More generally, for arbitrary x, a(n+x)^2 - 10*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 12 with a(n) := (sqrt(6) - 2)/4*(5 + 2*sqrt(6))^(n+1) - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^(n+1) as given above.
a(n+1/2) = sqrt(3) * A001078(n+1).
a(n+3/4) + a(n+1/4) = sqrt(6)*sqrt(sqrt(3) + 1) * A001078(n+1).
a(n+3/4) - a(n+1/4) = sqrt(sqrt(3) - 1) * A001079(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/12 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A004291(n) + 1/A004291(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(3/2) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 3/2 * (1 - 1/A171640(k+2))). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A031138 Numbers k such that 1^5 + 2^5 + ... + k^5 is a square.

Original entry on oeis.org

1, 13, 133, 1321, 13081, 129493, 1281853, 12689041, 125608561, 1243396573, 12308357173, 121840175161, 1206093394441, 11939093769253, 118184844298093, 1169909349211681, 11580908647818721, 114639177128975533, 1134810862641936613, 11233469449290390601
Offset: 1

Views

Author

Ignacio Larrosa Cañestro, entry revised Feb 27 2000

Keywords

Comments

Partial sums of A004291 or convolution of A040000 with A054320. - R. J. Mathar, Oct 26 2009
This is a 6th-degree Diophantine equation 12*m^2 = n^2*(n+1)^2*(2*n^2 + 2*n - 1) which reduces to the generalized Pell equation 6*q^2 = (2*n + 1)^2 - 3 where q = 3*m/(n*(n+1)), so there is no surprise that the solutions satisfy a linear recurrent equation. - Charles R Greathouse IV, Max Alekseyev, Oct 22 2012
Also k such that k^2 + (k+1)^2 is equal to the sum of three consecutive squares, for example 13^2 + 14^2 = 10^2 + 11^2 + 12^2. - Colin Barker, Sep 06 2015

Examples

			a(2) = 13 because 1^5+2^5+...13^5 = 1001^2; a(1) = 1 because 1^5 = 1^2.
		

Crossrefs

Programs

  • Magma
    [Round(-1/2 + ((3 - Sqrt(6))/4)*(5 + 2*Sqrt(6))^n + ((3 + Sqrt(6) )/4)*(5 - 2*Sqrt(6))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    LinearRecurrence[{11,-11,1},{1,13,133},20 ] (* Harvey P. Dale, Oct 23 2012 *)
  • PARI
    isok(n) = issquare(sum(i=1, n, i^5)); \\ Michel Marcus, Dec 28 2013
    
  • PARI
    Vec(x*(1+x)^2/((1-x)*(x^2-10*x+1)) + O(x^40)) \\ Colin Barker, Sep 06 2015
    

Formula

a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = -1/2 + ((3 - sqrt(6))/4)*(5 + 2*sqrt(6))^n + ((3 + sqrt(6))/4)*(5 - 2*sqrt(6))^n.
a(n)^2 + (a(n) + 1)^2 = (b(n) - 1)^2 + b(n)^2 + (b(n) + 1)^2 = c(n) = 3*d(n) + 2; where b(n) is A054320, c(n) is A007667 and d(n) is A006061.
a(n) = 10*a(n-1) - a(n-2) + 4; a(0) = a(1) = 1. Also sum of first a(n) fifth powers is a square m^2, where m has factors A000217{a(n)} and A054320(n). - Lekraj Beedassy, Jul 08 2002
contfrac(sqrt(6)/A054320(n))[4]/2 - Thomas Baruchel, Dec 02 2003
G.f.: x*(1+x)^2/((1-x)*(x^2-10*x+1)). - R. J. Mathar, Oct 26 2009

A007667 The sum of both two and three consecutive squares.

Original entry on oeis.org

5, 365, 35645, 3492725, 342251285, 33537133085, 3286296790925, 322023548377445, 31555021444198565, 3092070077983081805, 302991312620897818205, 29690056566770003102165
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 365 = 13^2+14^2 = 10^2+11^2+12^2.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 22.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[5, 365, 35645];; for n in [4..20] do a[n]:=99*a[n-1]-99*a[n-2] + a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)) )); // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    CoefficientList[Series[5*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)),{x,0,20}],x] (* Vincenzo Librandi, Apr 16 2012 *)
    LinearRecurrence[{99,-99,1},{5,365,35645},20] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    my(x='x+O('x^20)); Vec(5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2))) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    (5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

From Ignacio Larrosa Cañestro, Feb 27 2000: (Start)
a(n) = (b(n)-1)^2 + b(n)^2 + (b(n)+1)^2 = c(n)^2 + (c(n)+1)^2, where b(n) = A054320(n) and c(n) = A031138(n).
a(n) = 3*A006061(n) + 2.
a(n) = 99*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 3*(5 - 2*sqrt(6))/8*(sqrt(3) + sqrt(2))^(4*n) + 3*(5 + 2*sqrt(6))/8*(sqrt(3) - sqrt(2))^(4*n) + 5/4. (End)
G.f.: 5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)). - Colin Barker, Apr 14 2012

Extensions

Corrected by T. D. Noe, Nov 07 2006

A054318 a(n)-th star number (A003154) is a square.

Original entry on oeis.org

1, 5, 45, 441, 4361, 43165, 427285, 4229681, 41869521, 414465525, 4102785725, 40613391721, 402031131481, 3979697923085, 39394948099365, 389969783070561, 3860302882606241, 38213059042991845, 378270287547312205
Offset: 1

Views

Author

Keywords

Comments

A two-way infinite sequence which is palindromic.
Also indices of centered hexagonal numbers (A003215) which are also centered square numbers (A001844). - Colin Barker, Jan 02 2015
Also positive integers y in the solutions to 4*x^2 - 6*y^2 - 4*x + 6*y = 0. - Colin Barker, Jan 02 2015

Examples

			a(2) = 5 because the 5th Star number (A003154) 121=11^2 is the 2nd that is a square.
		

Crossrefs

A031138 is 3*a(n)-2. Cf. A003154, A006061, A182432, A211955.
Quintisection of column k=2 of A233427.

Programs

  • GAP
    a:=[1,5,45];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) )); // G. C. Greubel, Jul 23 2019
    
  • Mathematica
    CoefficientList[Series[x(1-6x+x^2)/((1-x)(1-10x+x^2)), {x,0,30}], x] (* Michael De Vlieger, Aug 11 2016 *)
    LinearRecurrence[{11,-11,1},{1,5,45},30] (* Harvey P. Dale, Nov 05 2016 *)
  • PARI
    a(n)=if(n<1,a(1-n),1/2+subst(poltchebi(n)+poltchebi(n-1),x,5)/12)
    
  • PARI
    Vec(x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) + O(x^30)) \\ Colin Barker, Jan 02 2015
    
  • Sage
    (x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = 1/2 + (3 - sqrt(6))/12*(5 + 2*sqrt(6))^n + (3 + sqrt(6))/12*(5 - 2*sqrt(6))^n.
From Michael Somos, Mar 18 2003: (Start)
G.f.: x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)).
12*a(n)*a(n-1) + 4 = (a(n) + a(n-1) + 2)^2.
a(n) = a(1-n) = 10*a(n-1) - a(n-2) - 4.
a(n) = 12*a(n-1)^2/(a(n-1) + a(n-2)) - a(n-1).
a(n) = (a(n-1) + 4)*a(n-1)/a(n-2). (End)
From Peter Bala, May 01 2012: (Start)
a(n+1) = 1 + (1/2)*Sum_{k = 1..n} 8^k*binomial(n+k,2*k).
a(n+1) = R(n,4), where R(n,x) is the n-th row polynomial of A211955.
a(n+1) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(3) and T(n,x) the Chebyshev polynomial of the first kind.
Sum {k>=0} 1/a(k) = sqrt(3/2). (End)
A003154(a(n)) = A006061(n). - Zak Seidov, Oct 22 2012
a(n) = (4*a(n-1) + a(n-1)^2) / a(n-2), n >= 3. - Seiichi Manyama, Aug 11 2016
2*a(n) = 1+A072256(n). - R. J. Mathar, Feb 07 2022

Extensions

More terms from James Sellers, Mar 01 2000

A006060 Triangular star numbers.

Original entry on oeis.org

1, 253, 49141, 9533161, 1849384153, 358770992581, 69599723176621, 13501987525271953, 2619315980179582321, 508133798167313698381, 98575337528478677903653, 19123107346726696199610361
Offset: 1

Views

Author

Keywords

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 20.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006060:=-(1+58*z+z**2)/(z-1)/(z**2-194*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[253,1,1]]). Matrix([[195,1,0], [ -195,0,1], [1,0,0]])^n)[1,3]: seq(a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    a006060 = {}; Do[
    If[Length[a006060] < 2, AppendTo[a006060, 1],
      AppendTo[a006060, 194*a006060[[-1]] + 60 - a006060[[-2]]]],  {n,
      20}]; TableForm[Transpose[List[Range[Length[a006060]], a006060]]] (* Michael De Vlieger *)
    LinearRecurrence[{195,-195,1},{1,253,49141},20] (* Harvey P. Dale, Jan 12 2017 *)

Formula

G.f.: (1 + 58x + x^2)/((x-1)(1 - 194x + x^2)). - Ralf Stephan, Apr 23 2004
From Bruno Berselli, Jul 07 2010: (Start)
a(n) = 194*a(n-1) - a(n-2) + 60 (n>2).
a(n) = (3*((7 + 4*sqrt(3))^(2*n-1) + (7 - 4*sqrt(3))^(2*n-1)) - 10)/32 (n>0).
(End)

Extensions

Extended by Eric W. Weisstein, Mar 01 2002

A218172 Centered 12-gonal numbers which are semiprimes, intersection of A003154 and A001358.

Original entry on oeis.org

121, 253, 793, 1261, 1441, 1633, 1837, 2773, 3601, 3901, 4213, 4537, 4873, 5221, 7141, 9841, 11881, 14113, 14701, 16537, 17173, 17821, 19153, 19837, 21241, 22693, 23437, 24193, 24961, 28153, 28981, 29821, 30673, 34201, 37921, 38881, 39853, 40837, 41833, 43861, 45937, 48061, 49141, 50233, 53581, 55873
Offset: 1

Views

Author

Zak Seidov, Oct 22 2012

Keywords

Comments

Might also be called 'semiprime star numbers'.
A083749 and A006061 are subsequences.

Examples

			a(1) = 121 = 11^2 = A001358(40) = A003154(5) = A083749(1) = A006061(1) = A078972(11).
a(2) = 253 = 11*23 = A001358(81) = A003154(7) = A083749(2) = A078972(18).
		

Crossrefs

Programs

  • Mathematica
    Select[Table[6n(n-1)+1,{n,100}],PrimeOmega[#]==2&] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    lista(nn) = {for (n = 1, nn, if (bigomega(v = 6*n*(n-1) + 1) == 2, print1(v, ", ")););} \\ Michel Marcus, Nov 09 2013
Showing 1-7 of 7 results.