A054319 Duplicate of A006061.
1, 121, 11881, 1164241, 114083761, 11179044361, 1095432263641
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(1)^2 = 121 is the 5th star number (A003154).
a:=[1,11];; for n in [3..30] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jul 22 2019
I:=[1,11]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
CoefficientList[Series[(1+x)/(1-10x+x^2), {x,0,30}], x] (* Vincenzo Librandi, Mar 22 2015 *) a[c_, n_] := Module[{}, p := Length[ContinuedFraction[ Sqrt[ c]][[2]]]; d := Numerator[Convergents[Sqrt[c], n p]]; t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}]; Return[t]; ] (* Complement of A142238 *) a[3/2, 20] (* Gerry Martens, Jun 07 2015 *)
a(n)=subst(poltchebi(n+1)-poltchebi(n),x,5)/4;
a(2) = 13 because 1^5+2^5+...13^5 = 1001^2; a(1) = 1 because 1^5 = 1^2.
[Round(-1/2 + ((3 - Sqrt(6))/4)*(5 + 2*Sqrt(6))^n + ((3 + Sqrt(6) )/4)*(5 - 2*Sqrt(6))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017
LinearRecurrence[{11,-11,1},{1,13,133},20 ] (* Harvey P. Dale, Oct 23 2012 *)
isok(n) = issquare(sum(i=1, n, i^5)); \\ Michel Marcus, Dec 28 2013
Vec(x*(1+x)^2/((1-x)*(x^2-10*x+1)) + O(x^40)) \\ Colin Barker, Sep 06 2015
a(2) = 365 = 13^2+14^2 = 10^2+11^2+12^2.
a:=[5, 365, 35645];; for n in [4..20] do a[n]:=99*a[n-1]-99*a[n-2] + a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)) )); // G. C. Greubel, Jul 23 2019
CoefficientList[Series[5*(1-26*x+x^2)/((1-x)*(1-98*x+x^2)),{x,0,20}],x] (* Vincenzo Librandi, Apr 16 2012 *) LinearRecurrence[{99,-99,1},{5,365,35645},20] (* Harvey P. Dale, Dec 10 2024 *)
my(x='x+O('x^20)); Vec(5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2))) \\ G. C. Greubel, Jul 23 2019
(5*x*(1-26*x+x^2)/((1-x)*(1-98*x+x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
a(2) = 5 because the 5th Star number (A003154) 121=11^2 is the 2nd that is a square.
a:=[1,5,45];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jul 23 2019
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) )); // G. C. Greubel, Jul 23 2019
CoefficientList[Series[x(1-6x+x^2)/((1-x)(1-10x+x^2)), {x,0,30}], x] (* Michael De Vlieger, Aug 11 2016 *) LinearRecurrence[{11,-11,1},{1,5,45},30] (* Harvey P. Dale, Nov 05 2016 *)
a(n)=if(n<1,a(1-n),1/2+subst(poltchebi(n)+poltchebi(n-1),x,5)/12)
Vec(x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2)) + O(x^30)) \\ Colin Barker, Jan 02 2015
(x*(1-6*x+x^2)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
A006060:=-(1+58*z+z**2)/(z-1)/(z**2-194*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation a:= n-> (Matrix([[253,1,1]]). Matrix([[195,1,0], [ -195,0,1], [1,0,0]])^n)[1,3]: seq(a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
a006060 = {}; Do[ If[Length[a006060] < 2, AppendTo[a006060, 1], AppendTo[a006060, 194*a006060[[-1]] + 60 - a006060[[-2]]]], {n, 20}]; TableForm[Transpose[List[Range[Length[a006060]], a006060]]] (* Michael De Vlieger *) LinearRecurrence[{195,-195,1},{1,253,49141},20] (* Harvey P. Dale, Jan 12 2017 *)
a(1) = 121 = 11^2 = A001358(40) = A003154(5) = A083749(1) = A006061(1) = A078972(11). a(2) = 253 = 11*23 = A001358(81) = A003154(7) = A083749(2) = A078972(18).
Select[Table[6n(n-1)+1,{n,100}],PrimeOmega[#]==2&] (* Harvey P. Dale, Sep 01 2014 *)
lista(nn) = {for (n = 1, nn, if (bigomega(v = 6*n*(n-1) + 1) == 2, print1(v, ", ")););} \\ Michel Marcus, Nov 09 2013
Comments