A056126
a(n) = n*(n + 17)/2.
Original entry on oeis.org
0, 9, 19, 30, 42, 55, 69, 84, 100, 117, 135, 154, 174, 195, 217, 240, 264, 289, 315, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449, 1504, 1560, 1617, 1675
Offset: 0
-
List([0..50], n-> n*(n+17)/2 ); # G. C. Greubel, Jan 19 2020
-
[n*(n+17)/2: n in [0..50]]; // G. C. Greubel, Jan 19 2020
-
seq( n*(n+17)/2, n=0..50); # G. C. Greubel, Jan 19 2020
-
Table[n(n+17)/2,{n,0,50}] (* Harvey P. Dale, Apr 25 2011 *)
-
a(n)=n*(n+17)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+17)/2 for n in (0..50)] # G. C. Greubel, Jan 19 2020
A126890
Triangle read by rows: T(n,k) = n*(n+2*k+1)/2, 0 <= k <= n.
Original entry on oeis.org
0, 1, 2, 3, 5, 7, 6, 9, 12, 15, 10, 14, 18, 22, 26, 15, 20, 25, 30, 35, 40, 21, 27, 33, 39, 45, 51, 57, 28, 35, 42, 49, 56, 63, 70, 77, 36, 44, 52, 60, 68, 76, 84, 92, 100, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 66, 77, 88
Offset: 0
From _Philippe Deléham_, Oct 03 2011: (Start)
Triangle begins:
0;
1, 2;
3, 5, 7;
6, 9, 12, 15;
10, 14, 18, 22, 26;
15, 20, 25, 30, 35, 40;
21, 27, 33, 39, 45, 51, 57;
28, 35, 42, 49, 56, 63, 70, 77; (End)
- Léonard Euler, Introduction à l'analyse infinitésimale, tome premier, ACL-Editions, Paris, 1987, p. 353-354.
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Émile Fourrey, Les nombres abstraits, Récreations arithmétiques, 1899 and later, Vuibert, Paris, page 86-87. Triangle without right diagonal.
- Adrien-Marie Legendre, Théorie des nombres, tome 2, quatrième partie, p.131, troisième édition, Paris, 1830.
-
a126890 n k = a126890_tabl !! n !! k
a126890_row n = a126890_tabl !! n
a126890_tabl = map fst $ iterate
(\(xs@(x:_), i) -> (zipWith (+) ((x-i):xs) [2*i+1 ..], i+1)) ([0], 0)
-- Reinhard Zumkeller, Nov 10 2013
-
Flatten[Table[(n(n+2k+1))/2,{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 21 2013 *)
A022267
a(n) = n*(9*n + 1)/2.
Original entry on oeis.org
0, 5, 19, 42, 74, 115, 165, 224, 292, 369, 455, 550, 654, 767, 889, 1020, 1160, 1309, 1467, 1634, 1810, 1995, 2189, 2392, 2604, 2825, 3055, 3294, 3542, 3799, 4065, 4340, 4624, 4917, 5219, 5530, 5850, 6179
Offset: 0
Cf. numbers of the form n*(d*n+10-d)/2:
A008587,
A056000,
A028347,
A140090,
A014106,
A028895,
A045944,
A186029,
A007742,
A033429,
A022268,
A049452,
A186030,
A135703,
A152734,
A139273.
Cf. similar sequences listed in
A254963.
Cf. similar sequences listed in
A022289.
-
seq(binomial(9*n+1,2)/9, n=0..37); # Zerinvary Lajos, Jan 21 2007
-
Table[ n (9 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 19}, 40] (* Harvey P. Dale, Jul 01 2013 *)
-
vector(100,n,(n-1)*(9*n-8)/2) \\ Derek Orr, Feb 06 2015
A111774
Numbers that can be written as a sum of at least three consecutive positive integers.
Original entry on oeis.org
6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102
Offset: 1
a(1)=6 because 6 is the first number that can be written as a sum of three consecutive positive integers: 6 = 1+2+3.
From _Bob Selcoe_, Feb 23 2014: (Start)
Let the top row of an array be A000217(n). Let the diagonals (reading down and left) be A000217(n)-A000217(1), A000217(n)-A000217(2), A000217(n)-A000217(3)..., A000217(n)-A000217(n-3). This is A049777 read as a square array, starting with the third column. The array begins as follows:
6 10 15 21 28 36 45 55 66
9 14 20 27 35 44 54 65
12 18 25 33 42 52 63
15 22 30 39 49 60
18 26 35 45 56
21 30 40 51
24 34 45
27 38
30
This is (x*(x+1)-y*(y+1))/2 for nonnegative integers x,y with x-y >= 3, because it is equivalent to 1+2+3/+4/+5/...+x/-0/-1/-2/-3/-4/-5/...-(x+3)/ for all possible strings of consecutive integers, which represents every possible way to sum three or more consecutive positive integers. So for example, 4+5+6+7 = 1+2+3+4+5+6+7-1-2-3 = 22, which is (x*(x+1)-y*(y+1))/2 when x=7, y=3. Notice that values can appear more than once in the array because some numbers can be represented as sums of more than one string of three or more consecutive positive integers. For example, 30 = (x*(x+1)-y*(y+1))/2 when (a) x=11, y=8: 9+10+11; (b) x=9, y=5: 6+7+8+9; and (c) x=8, y=3: 4+5+6+7+8. By definition, x-y is the number of integers in the string. (End)
- Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, Solution to problem 3G p. 179.
-
ispoweroftwo := proc(n) local a, t; t := 1; while (n > t) do t := 2*t end do; if (n = t) then a := true else a := false end if; return a; end proc; f:= proc(n) if (not isprime(n)) and (not ispoweroftwo(n)) then return n end if; end proc; seq(f(i),i = 1..150);
-
max=6!;lst={};Do[z=n+(n+1);Do[z+=(n+x);If[z>max,Break[]];AppendTo[lst,z],{x,2,max}],{n,max}];Union[lst] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2010 *)
-
isok(n) = !(n == 1) && !isprime(n) && !(isprimepower(n, &p) && (p == 2)); \\ Michel Marcus, Jul 02 2019
-
from sympy import primepi
def A111774(n):
def f(x): return int(n+(0 if x<=1 else primepi(x)-1)+x.bit_length())
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Sep 19 2024
A056115
a(n) = n*(n+11)/2.
Original entry on oeis.org
0, 6, 13, 21, 30, 40, 51, 63, 76, 90, 105, 121, 138, 156, 175, 195, 216, 238, 261, 285, 310, 336, 363, 391, 420, 450, 481, 513, 546, 580, 615, 651, 688, 726, 765, 805, 846, 888, 931, 975, 1020, 1066, 1113, 1161, 1210, 1260, 1311, 1363, 1416, 1470, 1525
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Third column of Pascal (1, 6) triangle
A096956.
A139273
a(n) = n*(8*n - 3).
Original entry on oeis.org
0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0
Cf.
A000217,
A014634,
A014635,
A033585,
A033586,
A033587,
A035008,
A051870,
A069129,
A085250,
A072279,
A139272,
A139274,
A139275,
A139276,
A139278,
A139279,
A139280,
A139281,
A139282.
Cf. numbers of the form n*(d*n+10-d)/2:
A008587,
A056000,
A028347,
A140090,
A014106,
A028895,
A045944,
A186029,
A007742,
A022267,
A033429,
A022268,
A049452,
A186030,
A135703,
A152734.
-
[ n*(8*n-3) : n in [0..40] ]; // Bruno Berselli, Feb 11 2011
-
Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
-
a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015
A056121
a(n) = n*(n + 15)/2.
Original entry on oeis.org
0, 8, 17, 27, 38, 50, 63, 77, 92, 108, 125, 143, 162, 182, 203, 225, 248, 272, 297, 323, 350, 378, 407, 437, 468, 500, 533, 567, 602, 638, 675, 713, 752, 792, 833, 875, 918, 962, 1007, 1053, 1100, 1148, 1197, 1247, 1298, 1350, 1403, 1457, 1512, 1568, 1625
Offset: 0
-
List([0..60], n-> n*(n+15)/2 ); # G. C. Greubel, Jan 18 2020
-
[n*(n+15)/2: n in [0..60]]; // G. C. Greubel, Jan 18 2020
-
a:=n->n*(n+15)/2: seq(a(n),n=0..60);
-
Table[n*(n + 15)/2, {n, 0, 100}] (* Paolo Xausa, Aug 02 2024 *)
-
a(n)=n*(n+15)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+15)/2 for n in (0..60)] # G. C. Greubel, Jan 18 2020
A096940
Pascal (1,5) triangle.
Original entry on oeis.org
5, 1, 5, 1, 6, 5, 1, 7, 11, 5, 1, 8, 18, 16, 5, 1, 9, 26, 34, 21, 5, 1, 10, 35, 60, 55, 26, 5, 1, 11, 45, 95, 115, 81, 31, 5, 1, 12, 56, 140, 210, 196, 112, 36, 5, 1, 13, 68, 196, 350, 406, 308, 148, 41, 5, 1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5, 1, 15, 95, 345, 810, 1302
Offset: 0
Triangle begins:
5;
1, 5;
1, 6, 5;
1, 7, 11, 5;
1, 8, 18, 16, 5;
1, 9, 26, 34, 21, 5;
1, 10, 35, 60, 55, 26, 5;
1, 11, 45, 95, 115, 81, 31, 5;
1, 12, 56, 140, 210, 196, 112, 36, 5;
1, 13, 68, 196, 350, 406, 308, 148, 41, 5;
1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5; etc.
Row sums:
A007283(n-1), n>=1, 5 if n=0; g.f.: (5-4*x)/(1-2*x). Alternating row sums are [5, -4, followed by 0's].
Column sequences (without leading zeros) give for m=1..9, with n>=0:
A000027(n+5),
A056000(n-1),
A096941-7.
-
a(n,k):=piecewise(n=0,5,0Mircea Merca, Apr 08 2012
-
a(n) = {if(n <= 1, return(5 - 4*(n==1))); my(m = (sqrtint(8*n + 1) - 1)\2, t = n - binomial(m + 1, 2)); (1+4*t/m)*binomial(m,t)} \\ David A. Corneth, Aug 28 2019
A056119
a(n) = n*(n+13)/2.
Original entry on oeis.org
0, 7, 15, 24, 34, 45, 57, 70, 84, 99, 115, 132, 150, 169, 189, 210, 232, 255, 279, 304, 330, 357, 385, 414, 444, 475, 507, 540, 574, 609, 645, 682, 720, 759, 799, 840, 882, 925, 969, 1014, 1060, 1107, 1155, 1204, 1254, 1305, 1357, 1410, 1464, 1519, 1575
Offset: 0
Original entry on oeis.org
0, 1, 1, 9, 4, 25, 9, 49, 16, 81, 25, 121, 36, 169, 49, 225, 64, 289, 81, 361, 100, 441, 121, 529, 144, 625, 169, 729, 196, 841, 225, 961, 256, 1089, 289, 1225, 324, 1369, 361, 1521, 400, 1681, 441, 1849, 484, 2025, 529, 2209, 576, 2401, 625, 2601
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
-
I:=[0,1,1,9,4,25]; [n le 6 select I[n] else 3*Self(n-2)-3*Self(n-4)+Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 10 2016
-
a := proc(n): n^2*(5-3*(-1)^n)/8 end: seq(a(n), n=0..46); # Johannes W. Meijer, Jul 03 2016
-
LinearRecurrence[{0,3,0,-3,0,1},{0,1,1,9,4,25},60] (* Harvey P. Dale, May 14 2011 *)
f[n_] := Numerator[(n/2)^2]; Array[f, 60, 0] (* Robert G. Wilson v, Dec 18 2012 *)
CoefficientList[Series[x(1+x+6x^2+x^3+x^4)/((1-x)^3(1+x)^3), {x,0,60}], x] (* Vincenzo Librandi, Jul 10 2016 *)
-
concat(0, Vec(x*(1+x+6*x^2+x^3+x^4)/((1-x)^3*(1+x)^3) + O(x^60))) \\ Altug Alkan, Jul 04 2016
-
a(n) = lcm(4, n^2)/4; \\ Andrew Howroyd, Jul 26 2018
-
(x*(1+x+6*x^2+x^3+x^4)/(1-x^2)^3).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Feb 20 2019
Comments