cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A066170 Triangle read by rows: T(n,k) = (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k), 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, -1, 1, 1, -1, -1, -1, 2, 1, -1, 1, -2, -3, 1, 1, -1, 3, 3, -4, -1, 1, 1, -3, -6, 4, 5, -1, -1, -1, 4, 6, -10, -5, 6, 1, -1, 1, -4, -10, 10, 15, -6, -7, 1, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, 1, -5, -15, 20, 35, -21, -28, 8, 9, -1, -1, -1, 6, 15, -35, -35, 56, 28, -36, -9, 10, 1, -1, 1, -6, -21, 35, 70, -56, -84, 36, 45, -10, -11
Offset: 0

Views

Author

Floor van Lamoen, Dec 14 2001

Keywords

Comments

The original name of this sequence was: Triangle giving coefficients of characteristic function of n X n matrix in which the left upper half and the antidiagonal are filled with 1's and the right lower half is filled with 0's. As was pointed out by L. Edson Jeffery this is only correct if we multiply each triangle row by (-1)^n. For the straightforward version of the coefficients of the characteristic polynomials see A187660. - Johannes W. Meijer, Aug 08 2011

Examples

			The table begins {1}; {-1, 1}; {1, -1, -1}; {-1, 2, 1, -1}; ...
The characteristic function of
( 1 1 1 )
( 1 1 0 )
( 1 0 0 )
is f(x) = x^3 - 2x^2 - x + 1, so the 3rd row is (-1)^3 times the f(x) coefficients, i.e., {-1; 2; 1; -1}.
		

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001 (Chapter 14)

Crossrefs

Cf. A007700, A059455, A065941. For another version see A030111.

Programs

  • Maple
    A066170 := proc(n,k): (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k) end: seq(seq(A066170(n,k),k=0..n), n=0..11); // Johannes W. Meijer, Aug 08 2011
  • Mathematica
    Flatten[Table[(-1)^n*(-1)^Floor[3*k/2]*Binomial[Floor[(n+k)/2],k],{n,0,12}, {k,0,n}]] (* Indranil Ghosh, Feb 19 2017 *)

Formula

From L. Edson Jeffery, Mar 23 2011: (Start)
T(n,k) = (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k);
T(n,k) = (-1)^n*A187660(n,k). (End)
From Johannes W. Meijer, Aug 08 2011: (Start)
abs(T(n,k)) = A046854(n,k) = abs(A108299(n,n-k))
abs(T(n,n-k)) = A065941(n,k). (End)

Extensions

More terms from Vladeta Jovovic, Jan 02 2002
Corrected and edited by Johannes W. Meijer, Aug 08 2011

A002663 a(n) = 2^n - C(n,0) - C(n,1) - C(n,2) - C(n,3).

Original entry on oeis.org

0, 0, 0, 0, 1, 6, 22, 64, 163, 382, 848, 1816, 3797, 7814, 15914, 32192, 64839, 130238, 261156, 523128, 1047225, 2095590, 4192510, 8386560, 16774891, 33551806, 67105912, 134214424, 268431773, 536866822, 1073737298
Offset: 0

Views

Author

Keywords

Comments

Starting with "1" = eigensequence of a triangle with bin(n,4), A000332 as the left border: (1, 5, 15, 35, 70, ...) and the rest 1's. - Gary W. Adamson, Jul 24 2010
The Kn25 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the four leading zeros. - Johannes W. Meijer, Aug 14 2011
(1 + 6x + 22x^2 + 64x^3 + ...) = (1 + 3x + 6x^2 + 10x^3 + ...) * (1 + 3x + 7x^2 + 15x^3 + ...). - Gary W. Adamson, Mar 14 2012
The sequence starting (1, 6, 22, ...) is the binomial transform of A171418 and starting (0, 0, 0, 1, 6, 22, ...) is the binomial transform of (0, 0, 0, 1, 2, 2, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
Number of binary sequences with at least four 0's. - Enrique Navarrete, Jul 23 2025

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)= A055248(n, 4). Partial sums of A002662.

Programs

  • Haskell
    a002663 n = a002663_list !! n
    a002663_list = map (sum . drop 4) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
    
  • Magma
    [2^n - Binomial(n,0)- Binomial(n,1) - Binomial(n,2) - Binomial(n,3): n in [0..35]]; // Vincenzo Librandi, May 20 2011
    
  • Maple
    A002663 := proc(n): 2^n - add(binomial(n,k),k=0..3) end: seq(A002663(n), n=0..30); # Johannes W. Meijer, Aug 14 2011
  • Mathematica
    a=1;lst={};s1=s2=s3=s4=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;AppendTo[lst,s4];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
    Table[Sum[ Binomial[n + 4, k + 4], {k, 0, n}], {n, -4, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
  • PARI
    a(n)=(6*2^n-n^3-5*n-6)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 2^n - A000125(n).
G.f.: x^4/((1-2*x)*(1-x)^4). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=0..n} binomial(n,k+4) = Sum_{k=4..n} binomial(n,k). - Paul Barry, Aug 23 2004
a(n) = 2*a(n-1) + binomial(n-1,3). - Paul Barry, Aug 23 2004
a(n) = (6*2^n - n^3 - 5*n - 6)/6. - Mats Granvik, Gary W. Adamson, Feb 17 2010
From Enrique Navarrete, Jul 23 2025: (Start)
a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 9*a(n-4) + 2*a(n-5).
E.g.f.: exp(x)*(exp(x) - 1 - x - x^2/2 - x^3/6). (End)

A103609 Fibonacci numbers repeated (cf. A000045).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 13, 13, 21, 21, 34, 34, 55, 55, 89, 89, 144, 144, 233, 233, 377, 377, 610, 610, 987, 987, 1597, 1597, 2584, 2584, 4181, 4181, 6765, 6765, 10946, 10946, 17711, 17711, 28657, 28657, 46368, 46368, 75025, 75025, 121393
Offset: 0

Views

Author

Roger L. Bagula, Mar 24 2005

Keywords

Comments

The usual policy in the OEIS is not to include such "doubled" sequences. This is an exception. - N. J. A. Sloane
The Gi2 sums, see A180662, of triangle A065941 equal the terms of this sequence without the two leading zeros. - Johannes W. Meijer, Aug 16 2011

Crossrefs

Partial sums: A094707.

Programs

  • Magma
    [Fibonacci(Floor(n/2)): n in [0..60]]; // G. C. Greubel, Oct 22 2024
    
  • Maple
    A103609 := proc(n): combinat[fibonacci](floor(n/2)) ; end proc: seq(A103609(n), n=0..52); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    a[0] = 0; a[1] = 0; a[2] = 1; a[3] = 1; a[n_Integer?Positive] := a[n] = a[n - 2] + a[n - 4]; aa = Table[a[n], {n, 0, 200}]
    Join[{0, 0}, LinearRecurrence[{0, 1, 0, 1}, {1, 1, 1, 1}, 60]] (* Vincenzo Librandi, Jan 19 2016 *)
    With[{fibs=Fibonacci[Range[0,30]]},Riffle[fibs,fibs]] (* Harvey P. Dale, Jul 11 2025 *)
  • PARI
    a(n)=fibonacci(n\2) \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    my(x='x+O('x^50)); Vec(x^2*(1+x)/(1-x^2-x^4)) \\ G. C. Greubel, May 01 2017
    
  • SageMath
    [fibonacci(n//2) for n in range(61)] # G. C. Greubel, Oct 22 2024

Formula

a(n) = a(n-2) + a(n-4).
G.f.: x^2*(1+x)/(1-x^2-x^4). - R. J. Mathar, Sep 27 2008
a(n) = A000045(floor(n/2)). - Johannes W. Meijer, Aug 16 2011

Extensions

Edited by N. J. A. Sloane, Dec 01 2006
Incorrect formula deleted by Johannes W. Meijer, Aug 16 2011

A135303 a(n) = phi(2*n+1)/(2*A003558(n)), where phi = A000010.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 4, 3, 3, 1, 2, 2, 1, 1, 2, 1, 3, 1, 4, 1, 3, 2, 1, 2, 1, 9, 6, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 5, 2, 3, 3, 1, 2, 1, 2, 1, 1, 6, 1, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Dec 05 2007

Keywords

Comments

The Froemke-Grossman 1988 reference is the earliest I have seen. a(n) is the charm bracelet function b(2,2*n+1) in their notation. - N. J. A. Sloane, Feb 28 2023
This sequence is called the "coach numbers" ("c(2*n+1)"), and was studied by J. Pedersen, Byron Walden, Victor Quintanar-Zilinskas and Linda Velarde of Santa Clara University. Coach Theorem: Let b = 2*n+1 > 1 and let phi(b) be the Euler totient function. Let Sigma(b) be the complete symbol of b, let c be the number of coaches in Sigma(b), and let k = Sum_{i=1..r} k(i). Then phi(b) = 2 * c * k [Hilton & Pedersen, p. 262]. The complete symbols for b = 17 and 43 are shown in the examples. - Gary W. Adamson, Aug 15 2012
Conjecture relating to primes with more than one coach: The combined set of integers in the top rows of all coaches of these primes is composed of a permutation of the first q odd integers, where prime p = (4q-1) or (4q+1), (q > 0). Example: As shown for 17, this prime has two coaches with the top rows [1] and [3, 7, 5]. 43 has three coaches with q = 11. The top rows are [1, 21, 11], [3, 5, 19], [7, 9, 17, 13, 15]. The comment of Sep 08 2012 in A216371 applies to primes with one coach, in which case "all coaches" is reduced to one and the set of q odd integers is in the top row of the coach. - Gary W. Adamson, Sep 10 2012
Conjecture [Carl Schick]: If 2*n+1 is prime, then these are the number of distinct cycles of f(k) = |(2*n+1) - 2*k| beginning at an odd number 0 < k < 2*n. - Jonathan Skowera, Aug 03 2013 [See also the Brändli and Beyne link, eq. (2). - Wolfdieter Lang, Feb 08 2020]
From Gary W. Adamson, Oct 04 2019: (Start)
Conjecture of Aug 03 2013 proved by Jean Pedersen. By way of example, take A003558(5) = 11, such that
2^5 == -1 (mod 11). Then Pedersen on p. 98 has:
11 - 1 = 2^1 * 5 (pick "1", odd, the putative seed number)
11 - 5 = 2^1 * 3 (then subtract 3 in the next row)
11 - 3 = 2^3 * 1 (cycle ends). Then Pedersen constructs the "coach" (p. 98) for N= 11: [1, 5, 3]
.......... [1, 1, 3]. The top row represents the angles on the tape used to construct an 11-gon at the operative crease lines beginning with Pi/11. (extract the (1,5,3) column). Then extract the exponents of 2: (1,1,3); which are the bottom row terms. The final result is that at successive creases on the tape are at angles of j*Pi/11, j = (1,5,3); alternatively at the top of the tape, then the bottom. The code U(1), D(1), U(3) is understood to be those numbers of bisections at each vertex. The total numbers of bisections = 5 = (1 + 1 + 3), shown to be the entry for N = 11 in A003558. (End)

Examples

			Refer to A003558 for the J. Pedersen definition of a Coach. a(8) for b = 17 = 2 since 17 has two possible Coaches:
17: [1] and [3, 7, 5]
    [4]     [1, 1, 2];
where sum of the bottom row terms = k = 4 = A003558(8). For b = 43, a(21) = 3 since there are three possible coaches for 43:
43: [1, 21, 11]  [3, 5, 19]  [7, 9, 17, 13, 15]
    [1,  1,  5], [3, 1,  3], [2, 1,  1,  1,  2],
where k = sum of terms in bottom rows of all possible coaches = 7 = A003558(21). For the coach with a "1" in the top row, the numbers of terms in the rows ("j" in A003558), = A179480(22) = 3. Note that the parity of numbers of terms in the bottom coach rows is the same.
From _Gary W. Adamson_, Aug 24 2019: (Start)
An alternative to the coach method of Pedersen and Hilton involves the doubling sequence, mod n; (43 in this case). The top row begins (1, 2, 4, 8, 16, ...) but the next number is 11, not 32. 32 == -11 (mod 43). We pick the least (in absolute value) of the two candidates (11 and 32): 11. The top row ends when the rightmost term is (n-1)/2 = 21. In subsequent rows the leftmost term is the least odd number not previously used, in this case 3. Continue with the doubling sequence and stop when the next row produces a term already used.
"20" ends row 2 since (2 * 20) = 40 == -3 (mod 43). 3 has been used so that row ends and our next row begins with the next unused odd term, a 7. That row ends with 18 since 2 * 18 = 36 == -7 (mod 43).
The entire set is complete when every term (1 through (n-1)/2) is present without duplication. In this method, k is likewise 7 but is represented by the numbers of terms in the top row. Pedersen's [1, 21, 11] appears as the only odd terms of the top row. [3,  5, 19] appears as the odd terms of the middle row, and [7, 9, 17, 13, 15] are the only odd terms of the bottom row. The three completed rows are:
  [1,  2,  4,  8, 16, 11, 21;
   3,  6, 12, 19,  5, 10, 20;
   7, 14, 15, 13, 17,  9, 18]
  It appears that the numbers of rows is equal to Pedersen's
  number of coaches. Another example is the complete system of coaches shown on p. 261 of (Hilton and Pedersen):
  31: [1, 15], [3, 7], [5, 13, 9, 11]
      [1,  4], [2, 3], [1,  1, 1,  2]
  The alternative system, called an r-t table in A065941, is
     [1,  2,  4, 8, 15;
      3,  6, 12, 7, 14;
      5, 10, 11, 9, 13]
  The odd terms of the top row (1, 15) appear in the leftmost coach. The odd terms (3, 7) appear in the middle coach, and (5, 11, 9, 13) are shown in the rightmost coach. (End)
Pedersen's coaches can be derived from the alternative system, doubling (mod N) since her coaches are simply another version: (repeated bisections (mod N)). First write out the doubling terms (mod N). Say N = 23: 1, 2, 4, 8, 7, 9, 5, 10, 3, 6, 11, representing the trajectory of terms 2*cos(j*Pi/23), using (x^2-2); j = 1, 2, 4, .... Begin with ("1"), then jump to the next odd term (11), then to each odd term in succession going left, getting: 23: (1, 11, 3, 5, 9, 7); the top row in Pedersen's coach. ....(1, 2, 2, 1, 1, 4) is the bottom row for 23 as shown on p. 105. Those terms are the numbers of term jumps in the previous operation; for example (1 to 11) = 1, (11 to 3) = 2, (3 to 5) = 2; and so on.  Note that the number of terms in the doubling trajectory (11) matches the sum of terms in the bottom row of the coach, satisfying 2^11 == 1 (mod 23). - _Gary W. Adamson_, Oct 23 2019
		

References

  • Froemke, Jon, and Jerrold W. Grossman. "An algebraic approach to some number-theoretic problems arising from paper-folding regular polygons." The American mathematical monthly 95.4 (1988): 289-307. See Appendix.
  • Peter Hilton & Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics; Cambridge University Press, 2010, pages 260-264.
  • Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113, pp. 158-166.

Crossrefs

Cf. A216371 (odd primes with one coach).

Programs

  • Maple
    A135303 := proc(n)
        numtheory[phi](2*n+1)/2/A003558(n) ;
    end proc:
    seq(A135303(n),n=1..40) ; # R. J. Mathar, Dec 01 2014
  • Mathematica
    Array[EulerPhi[#2]/(2 If[#2 > 1 && GCD[#1, #2] == 1, Min[MultiplicativeOrder[#1, #2, {-1, 1}]], 0]) & @@ {2, 2 # + 1} &, 105] (* Michael De Vlieger, Oct 25 2019 *)
  • PARI
    isok8(m, n) = my(md = Mod(2, 2*n+1)^m); (md==1) || (md==-1);
    A003558(n) = my(m=1); while(!isok8(m, n) , m++); m;
    a(n) = eulerphi(2*n+1)/(2*A003558(n)); \\ Michel Marcus, Jun 11 2020

Formula

a(n) = "c", a Coach number; = A000010(n)/(2*A003558(n-1)/2)); or phi(2*n+1) = 2 * c * k, with c = Coach numbers, k = A003558.

Extensions

Title changed by Wolfdieter Lang and M. F. Hasler, Feb 20 2020

A002664 a(n) = 2^n - C(n,0)- ... - C(n,4).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 7, 29, 93, 256, 638, 1486, 3302, 7099, 14913, 30827, 63019, 127858, 258096, 519252, 1042380, 2089605, 4185195, 8377705, 16764265, 33539156, 67090962, 134196874, 268411298, 536843071, 1073709893
Offset: 0

Views

Author

Keywords

Comments

From Gary W. Adamson, Jul 24 2010: (Start)
Starting with "1" = eigensequence of a triangle with binomial C(n,5):
(1, 6, 21, 56, ...) as the left border and the rest 1's. (End)
The Kn26 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the five leading zeros. - Johannes W. Meijer, Aug 15 2011
Starting (0, 0, 0, 0, 1, 7, 29, ...), this is the binomial transform of (0, 0, 0, 0, 1, 2, 2, 2, ...). Starting (1, 7, 29, ...), this is the binomial transform of (1, 6, 16, 26, 31, 32, 32, 32, ...). - Gary W. Adamson, Jul 28 2015

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, Chapter 3, pp. 76-79.
  • J. Eckhoff, Der Satz von Radon in konvexen Productstrukturen II, Monat. f. Math., 73 (1969), 7-30.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A055248(n, 5). Partial sums of A002663.
Cf. A007318.

Programs

  • Haskell
    a002664 n = a002664_list !! n
    a002664_list = map (sum . drop 5) a007318_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Magma
    [2^n-n^4/24+n^3/12-11*n^2/24-7*n/12-1: n in [0..35]]; // Vincenzo Librandi, May 20 2011
    
  • Maple
    a:=n->sum(binomial(n+1,2*j),j=3..n+1): seq(a(n), n=0..30); # Zerinvary Lajos, May 12 2007
    A002664:=1/(2*z-1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a=1;lst={};s1=s2=s3=s4=s5=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;s5+=s4;AppendTo[lst,s5];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
    Table[Sum[ Binomial[n, k + 5], {k, 0, n}], {n, 0, 30}] (* Zerinvary Lajos, Jul 08 2009 *)
    Table[2^n-Total[Binomial[n,Range[0,4]]],{n,0,30}] (* or *) LinearRecurrence[ {7,-20,30,-25,11,-2},{0,0,0,0,0,1},40] (* Harvey P. Dale, Sep 03 2016 *)

Formula

G.f.: x^5/((1-2*x)*(1-x)^5).
a(n) = Sum_{k=0..n} C(n, k+5) = Sum_{k=5..n} C(n, k); a(n) = 2a(n-1) + C(n-1, 4). - Paul Barry, Aug 23 2004
a(n) = 2^n - n^4/24 + n^3/12 - 11*n^2/24 - 7*n/12 - 1. - Bruno Berselli, May 19 2011 [Robinson (1985) gives an alternative version of this formula, for a different offset. - N. J. A. Sloane, Oct 20 2015]
E.g.f.: exp(x)*(24*(exp(x) - 1) - 24*x - 12*x^2 - 4*x^3 - x^4)/24. - Stefano Spezia, Mar 09 2025

A152198 Triangle read by rows, A007318 rows repeated.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 28 2008

Keywords

Comments

Eigensequence of the triangle = A051163: (1, 2, 5, 12, 30, 76,...)
Another version of A152815. - Philippe Deléham, Dec 13 2008
Row sums : A016116(n); Diagonal sums: A000931(n+5). - Philippe Deléham, Dec 13 2008
Triangle, with zeros omitted, given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 16 2012
Sums along rising diagonals are A134816. - John Molokach, Jul 09 2013

Examples

			The triangle starts
1;
1;
1, 1;
1, 1;
1, 2, 1;
1, 2, 1;
1, 3, 3, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
1, 4, 6, 4, 1;
1, 5, 10, 10, 5, 1;
1, 5, 10, 10, 5, 1;
...
Triangle (1,0,-1,0,0,...) DELTA (0,1,-1,0,0,...) begins:
1
1, 0
1, 1, 0
1, 1, 0, 0
1, 2, 1, 0, 0
1, 2, 1, 0, 0, 0
1, 3, 3, 1, 0, 0, 0
1, 3, 3, 1, 0, 0, 0, 0
1, 4, 6, 4, 1, 0, 0, 0, 0
1, 4, 6, 4, 1, 0, 0, 0, 0, 0
1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Binomial[ Floor[n/2], k]; Table[t[n, k], {n, 0, 17}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Sep 13 2012 *)

Formula

Triangle read by rows, Pascal's triangle rows repeated.
Equals inverse binomial transform of A133156 unsigned.
G.f. : (1+x)/(1-(1+y)*x^2). - Philippe Deléham, Jan 16 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A057077(n), A019590(n+1), A000012(n), A016116(n), A108411(n), A074872(n+1) for x = -2, -1, 0, 1, 2, 4 respectively. - Philippe Deléham, Jan 16 2012
T(n,k) = A065941(n-k, n-2*k) = abs(A108299(n-k, n-2*k)). - Johannes W. Meijer, Sep 05 2013

Extensions

More terms from Philippe Deléham, Dec 14 2008

A130777 Coefficients of first difference of Chebyshev S polynomials.

Original entry on oeis.org

1, -1, 1, -1, -1, 1, 1, -2, -1, 1, 1, 2, -3, -1, 1, -1, 3, 3, -4, -1, 1, -1, -3, 6, 4, -5, -1, 1, 1, -4, -6, 10, 5, -6, -1, 1, 1, 4, -10, -10, 15, 6, -7, -1, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, -1, -5, 15, 20, -35, -21, 28, 8, -9, -1, 1, 1, -6, -15, 35, 35, -56, -28, 36, 9, -10, -1, 1
Offset: 0

Views

Author

Philippe Deléham, Jul 14 2007

Keywords

Comments

Inverse of triangle in A061554.
Signed version of A046854.
From Paul Barry, May 21 2009: (Start)
Riordan array ((1-x)/(1+x^2),x/(1+x^2)).
This triangle is the coefficient triangle for the Hankel transforms of the family of generalized Catalan numbers that satisfy a(n;r)=r*a(n-1;r)+sum{k=1..n-2, a(k)*a(n-1-k;r)}, a(0;r)=a(1;r)=1. The Hankel transform of a(n;r) is h(n)=sum{k=0..n, T(n,k)*r^k} with g.f. (1-x)/(1-r*x+x^2). These sequences include A086246, A000108, A002212. (End)
From Wolfdieter Lang, Jun 11 2011: (Start)
The Riordan array ((1+x)/(1+x^2),x/(1+x^2)) with entries Phat(n,k)= ((-1)^(n-k))*T(n,k) and o.g.f. Phat(x,z)=(1+z)/(1-x*z+z^2) for the row polynomials Phat(n,x) is related to Chebyshev C and S polynomials as follows.
Phat(n,x) = (R(n+1,x)-R(n,x))/(x+2) = S(2*n,sqrt(2+x))
with R(n,x)=C_n(x) in the Abramowitz and Stegun notation, p. 778, 22.5.11. See A049310 for the S polynomials. Proof from the o.g.f.s.
Recurrence for the row polynomials Phat(n,x):
Phat(n,x) = x*Phat(n-1,x) - Phat(n-2,x) for n>=1; Phat(-1,x)=-1, Phat(0,x)=1.
The A-sequence for this Riordan array Phat (see the W. Lang link under A006232 for A- and Z-sequences for Riordan matrices) is given by 1, 0, -1, 0, -1, 0, -2, 0, -5,.., starting with 1 and interlacing the negated A000108 with zeros (o.g.f. 1/c(x^2) = 1-c(x^2)*x^2, with the o.g.f. c(x) of A000108).
The Z-sequence has o.g.f. sqrt((1-2*x)/(1+2*x)), and it is given by A063886(n)*(-1)^n.
The A-sequence of the Riordan array T(n,k) is identical with the one for the Riordan array Phat, and the Z-sequence is -A063886(n).
(End)
The row polynomials P(n,x) are the characteristic polynomials of the adjacency matrices of the graphs which look like P_n (n vertices (nodes), n-1 lines (edges)), but vertex no. 1 has a loop. - Wolfdieter Lang, Nov 17 2011
From Wolfdieter Lang, Dec 14 2013: (Start)
The zeros of P(n,x) are x(n,j) = -2*cos(2*Pi*j/(2*n+1)), j=1..n. From P(n,x) = (-1)^n*S(2*n,sqrt(2-x)) (see, e.g., the Lemma 6 of the W. Lang link).
The discriminants of the P-polynomials are given in A052750. (End)

Examples

			The triangle T(n,k) begins:
n\k  0   1   1   3    4    5    6    7    8    9  10  11  12  13 14 15 ...
0:   1
1:  -1   1
2:  -1  -1   1
3:   1  -2  -1   1
4:   1   2  -3  -1    1
5:  -1   3   3  -4   -1    1
6:  -1  -3   6   4   -5   -1    1
7:   1  -4  -6  10    5   -6   -1    1
8:   1   4 -10 -10   15    6   -7   -1    1
9:  -1   5  10 -20  -15   21    7   -8   -1    1
10: -1  -5  15  20  -35  -21   28    8   -9   -1   1
11:  1  -6 -15  35   35  -56  -28   36    9  -10  -1   1
12:  1   6 -21 -35   70   56  -84  -36   45   10 -11  -1   1
13: -1   7  21 -56  -70  126   84 -120  -45   55  11 -12  -1   1
14: -1  -7  28  56 -126 -126  210  120 -165  -55  66  12 -13  -1  1
15:  1  -8 -28  84  126 -252 -210  330  165 -220 -66  78  13 -14 -1  1
...  reformatted and extended - _Wolfdieter Lang_, Jul 31 2014.
---------------------------------------------------------------------------
From _Paul Barry_, May 21 2009: (Start)
Production matrix is
-1, 1,
-2, 0, 1,
-2, -1, 0, 1,
-4, 0, -1, 0, 1,
-6, -1, 0, -1, 0, 1,
-12, 0, -1, 0, -1, 0, 1,
-20, -2, 0, -1, 0, -1, 0, 1,
-40, 0, -2, 0, -1, 0, -1, 0, 1,
-70, -5, 0, -2, 0, -1, 0, -1, 0, 1 (End)
Row polynomials as first difference of S polynomials:
P(3,x) = S(3,x) - S(2,x) = (x^3 - 2*x) - (x^2 -1) = 1 - 2*x - x^2 +x^3.
Alternative triangle recurrence (see a comment above): T(6,2) = T(5,2) + T(5,1) = 3 + 3 = 6. T(6,3) = -T(5,3) + 0*T(5,1) = -(-4) = 4. - _Wolfdieter Lang_, Jul 31 2014
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available).

Crossrefs

Cf. A066170, A046854, A057077 (first column).
Row sums: A010892(n+1); repeat(1,0,-1,-1,0,1). Alternating row sums: A061347(n+2); repeat(1,-2,1).

Programs

  • Maple
    A130777 := proc(n,k): (-1)^binomial(n-k+1,2)*binomial(floor((n+k)/2),k) end: seq(seq(A130777(n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    T[n_, k_] := (-1)^Binomial[n - k + 1, 2]*Binomial[Floor[(n + k)/2], k];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017, from Maple *)
  • Sage
    @CachedFunction
    def A130777(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = A130777(n-1,k) if n==1 else 0
        return A130777(n-1,k-1) - A130777(n-2,k) - h
    for n in (0..9): [A130777(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

Number triangle T(n,k) = (-1)^C(n-k+1,2)*C(floor((n+k)/2),k). - Paul Barry, May 21 2009
From Wolfdieter Lang, Jun 11 2011: (Start)
Row polynomials: P(n,x) = sum(k=0..n, T(n,k)*x^k) = R(2*n+1,sqrt(2+x)) / sqrt(2+x), with Chebyshev polynomials R with coefficients given in A127672 (scaled T-polynomials).
R(n,x) is called C_n(x) in Abramowitz and Stegun's handbook, p. 778, 22.5.11.
P(n,x) = S(n,x)-S(n-1,x), n>=0, S(-1,x)=0, with the Chebyshev S-polynomials (see the coefficient triangle A049310).
O.g.f. for row polynomials: P(x,z):= sum(n>=0, P(n,x)*z^n ) = (1-z)/(1-x*z+z^2).
(from the o.g.f. for R(2*n+1,x), n>=0, computed from the o.g.f. for the R-polynomials (2-x*z)/(1-x*z+z^2) (see A127672))
Proof of the Chebyshev connection from the o.g.f. for Riordan array property of this triangle (see the P. Barry comment above).
For the A- and Z-sequences of this Riordan array see a comment above. (End)
abs(T(n,k)) = A046854(n,k) = abs(A066170(n,k)) T(n,n-k) = A108299(n,k); abs(T(n,n-k)) = A065941(n,k). - Johannes W. Meijer, Aug 08 2011
From Wolfdieter Lang, Jul 31 2014: (Start)
Similar to the triangles A157751, A244419 and A180070 one can give for the row polynomials P(n,x) besides the usual three term recurrence another one needing only one recurrence step. This uses also a negative argument, namely P(n,x) = (-1)^(n-1)*(-1 + x/2)*P(n-1,-x) + (x/2)*P(n-1,x), n >= 1, P(0,x) = 1. Proof by computing the o.g.f. and comparing with the known one. This entails the alternative triangle recurrence T(n,k) = (-1)^(n-k)*T(n-1,k) + (1/2)*(1 + (-1)^(n-k))*T(n-1,k-1), n >= m >= 1, T(n,k) = 0 if n < k and T(n,0) = (-1)^floor((n+1)/2) = A057077(n+1). [P(n,x) recurrence corrected Aug 03 2014]
(End)

Extensions

New name and Chebyshev comments by Wolfdieter Lang, Jun 11 2010

A103631 Triangle read by rows: T(n,k) = abs(qStirling2(n,k,q)) for q = -1, with 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 2, 1, 0, 1, 1, 4, 3, 3, 1, 0, 1, 1, 5, 4, 6, 3, 1, 0, 1, 1, 6, 5, 10, 6, 4, 1, 0, 1, 1, 7, 6, 15, 10, 10, 4, 1, 0, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, 0, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 0, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1
Offset: 0

Views

Author

Paul Barry, Feb 11 2005

Keywords

Comments

Previous name: An invertible triangle whose row sums are F(n+1).
Triangle inverse has general term (-1)^(n-k)*binomial(floor(n/2),n-k). Diagonal sums are A103632.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 08 2005
Row sums are Fibonacci numbers (A000045).
Another version of triangle in A065941. - Philippe Deléham, Jan 01 2009
From Johannes W. Meijer, Aug 11 2011: (Start)
The T(n,k) coefficients appear in appendix 2 of Parks's remarkable article "A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov" if we assume that the b(r) coefficients are all equal to 1; see the second Maple program.
The T(n,k) triangle is related to a linear (n+1)-th order differential equation with coefficients a(n,k), see triangle A194005.
Parks's triangle appears to be an appropriate name for the triangle given above. (End)

Examples

			From _Paul Barry_, Oct 02 2009: (Start)
Triangle begins:
  1,
  0, 1,
  0, 1, 1,
  0, 1, 1, 1,
  0, 1, 1, 2, 1,
  0, 1, 1, 3, 2,  1,
  0, 1, 1, 4, 3,  3,  1,
  0, 1, 1, 5, 4,  6,  3,  1,
  0, 1, 1, 6, 5, 10,  6,  4, 1,
  0, 1, 1, 7, 6, 15, 10, 10, 4, 1
Production matrix is:
  0, 1,
  0, 1, 1,
  0, 0, 0, 1,
  0, 0, 0, 1, 1,
  0, 0, 0, 0, 0, 1,
  0, 0, 0, 0, 0, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (End)
		

Crossrefs

Cf. A103633 (signed version).

Programs

  • Haskell
    a103631 n k = a103631_tabl !! n !! k
    a103631_row n = a103631_tabl !! n
    a103631_tabl = [1] : [0,1] : f [1] [0,1] where
       f xs ys = zs : f ys zs where
         zs = zipWith (+)  ([0,0] ++ xs)  (ys ++ [0])
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    /* As triangle: */ [[Binomial(Floor((2*n-k-1)/2), n-k): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Aug 28 2016
    
  • Maple
    From Johannes W. Meijer, Aug 11 2011: (Start)
    A103631 := proc(n,k): binomial(floor((2*n-k-1)/2),n-k) end: seq(seq(A103631(n,k), k=0..n), n=0..12);
    nmax:=12: for n from 0 to nmax+1 do b(n):=1 od: A103631 := proc(n,k) option remember: local j: if k=0 and n=0 then b(1) elif k=0 and n>=1 then 0 elif k=1 then b(n+1) elif k=2 then b(1)*b(n+1) elif k>=3 then expand(b(n+1)*add(procname(j,k-2), j=k-2..n-2)) fi: end: for n from 0 to nmax do seq(A103631(n,k), k=0..n) od: seq(seq(A103631(n,k),k=0..n), n=0..nmax); # (End)
  • Mathematica
    p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = x; p[x, 2] = x + x^2; p[x_, n_] := p[x, n] = p[x, n - 1] + x^2*p[x, n - 2]; (* with *) Table[ExpandAll[p[x, n]], {n, 0, 10}]; (* or *) a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 27 2008 *)
    Table[Binomial[Floor[(2*n - k - 1)/2], n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 27 2016 *)
    qStirling2[n_, k_, q_] /; 1 <= k <= n := q^(k - 1) qStirling2[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}] qStirling2[n - 1, k, q];
    qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
    qStirling2[0, k_, _] := KroneckerDelta[0, k];
    qStirling2[, , _] = 0;
    Table[Abs[qStirling2[n, k, -1]], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2020 *)
  • Sage
    from sage.combinat.q_analogues import q_stirling_number2
    for n in (0..9):
        print([abs(q_stirling_number2(n,k).substitute(q=-1)) for k in [0..n]])
    # Peter Luschny, Mar 09 2020

Formula

T(n,k) = binomial(floor((2*n-k-1)/2), n-k).
A polynomial recursion which produces this triangle: p(x, n) = p(x, n - 1) + x^2*p(x, n - 2). - Roger L. Bagula, Apr 27 2008
Sum_{k=0..n} T(n,k)*x^k = A152163(n), A000007(n), A000045(n+1), A026597(n), A122994(n+1), A158608(n), A122995(n+1), A158797(n), A122996(n+1), A158798(n), A158609(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Jun 12 2009
G.f.: (1+(y-1)*x)/(1-x-y^2*x^2). - Philippe Deléham, Mar 09 2012
T(n,k) = T(n-1,k) + T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 09 2012

Extensions

New name from Peter Luschny, Mar 09 2020

A194005 Triangle of the coefficients of an (n+1)-th order differential equation associated with A103631.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 3, 1, 1, 6, 5, 10, 6, 4, 1, 1, 7, 6, 15, 10, 10, 4, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1, 1, 11, 10, 45, 36, 84, 56, 70, 35, 21, 6, 1
Offset: 0

Views

Author

Johannes W. Meijer and A. Hirschberg (a.hirschberg(AT)tue.nl), Aug 11 2011

Keywords

Comments

This triangle is a companion to Parks' triangle A103631.
The coefficients of triangle A103631(n,k) appear in appendix 2 of Park’s remarkable article “A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov” if we assume that the b(n) coefficients are all equal to 1, see the second Maple program.
The a(n,k) coefficients of the triangle given above are related to the coefficients of a linear (n+1)-th order differential equation for the case b(n)=1, see the examples.
a(n,k) is also the number of symmetric binary strings of odd length n with Hamming weight k>0 and no consecutive 1's. - Christian Barrientos and Sarah Minion, Feb 27 2018

Examples

			For the 5th-order linear differential equation the coefficients a(k) are: a(0) = 1, a(1) = a(4,0) = 1, a(2) = a(4,1) = 4, a(3) = a(4,2) = 3, a(4) = a(4,3) = 3 and a(5) = a(4,4) = 1.
The corresponding Hurwitz matrices A(k) are, see Parks: A(5) = Matrix([[a(1),a(0),0,0,0], [a(3),a(2),a(1),a(0),0], [a(5),a(4),a(3),a(2),a(1)], [0,0,a(5),a(4),a(3)], [0,0,0,0,a(5)]]), A(4) = Matrix([[a(1),a(0),0,0], [a(3),a(2),a(1),a(0)], [a(5),a(4),a(3),a(2)], [0,0,a(5),a(4)]]), A(3) = Matrix([[a(1),a(0),0], [a(3),a(2),a(1)], [a(5),a(4),a(3)]]), A(2) = Matrix([[a(1),a(0)], [a(3),a(2)]]) and A(1) = Matrix([[a(1)]]).
The values of b(k) are, see Parks: b(1) = d(1), b(2) = d(2)/d(1), b(3) = d(3)/(d(1)*d(2)), b(4) = d(1)*d(4)/(d(2)*d(3)) and b(5) = d(2)*d(5)/(d(3)*d(4)).
These a(k) values lead to d(k) = 1 and subsequently to b(k) = 1 and this confirms our initial assumption, see the comments.
'
Triangle starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 2, 1;
  [3] 1, 3, 2,  1;
  [4] 1, 4, 3,  3,  1;
  [5] 1, 5, 4,  6,  3,  1;
  [6] 1, 6, 5, 10,  6,  4,  1;
  [7] 1, 7, 6, 15, 10, 10,  4,  1;
  [8] 1, 8, 7, 21, 15, 20, 10,  5, 1;
  [9] 1, 9, 8, 28, 21, 35, 20, 15, 5, 1;
		

Crossrefs

Cf. A065941 and A103631.
Triangle sums (see A180662): A000071 (row sums; alt row sums), A075427 (Kn22), A000079 (Kn3), A109222(n+1)-1 (Kn4), A000045 (Fi1), A034943 (Ca3), A001519 (Gi3), A000930 (Ze3)
Interesting diagonals: T(n,n-4) = A189976(n+5) and T(n,n-5) = A189980(n+6)
Cf. A052509.

Programs

  • Haskell
    a194005 n k = a194005_tabl !! n !! k
    a194005_row n = a194005_tabl !! n
    a194005_tabl = [1] : [1,1] : f [1] [1,1] where
       f row' row = rs : f row rs where
         rs = zipWith (+) ([0,1] ++ row') (row ++ [0])
    -- Reinhard Zumkeller, Nov 22 2012
  • Maple
    A194005 := proc(n, k): binomial(floor((2*n+1-k)/2), n-k) end:
    for n from 0 to 11 do seq(A194005(n, k), k=0..n) od;
    seq(seq(A194005(n,k), k=0..n), n=0..11);
    nmax:=11: for n from 0 to nmax+1 do b(n):=1 od:
    A103631 := proc(n,k) option remember: local j: if k=0 and n=0 then b(1)
    elif k=0 and n>=1 then 0 elif k=1 then b(n+1) elif k=2 then b(1)*b(n+1)
    elif k>=3 then expand(b(n+1)*add(procname(j,k-2), j=k-2..n-2)) fi: end:
    for n from 0 to nmax do for k from 0 to n do
    A194005(n,k):= add(A103631(n1,k), n1=k..n) od: od:
    seq(seq(A194005(n,k),k=0..n), n=0..nmax);
  • Mathematica
    Flatten[Table[Binomial[Floor[(2n+1-k)/2],n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Apr 15 2012 *)

Formula

T(n,k) = binomial(floor((2*n+1-k)/2), n-k).
T(n,k) = sum(A103631(n1,k), n1=k..n), 0<=k<=n and n>=0.
T(n,k) = sum(binomial(floor((2*n1-k-1)/2), n1-k), n1=k..n).
T(n,0) = T(n,n) = 1, T(n,k) = T(n-2,k-2) + T(n-1,k), 0 < k < n. - Reinhard Zumkeller, Nov 23 2012

A052544 Expansion of (1-x)^2/(1 - 4*x + 3*x^2 - x^3).

Original entry on oeis.org

1, 2, 6, 19, 60, 189, 595, 1873, 5896, 18560, 58425, 183916, 578949, 1822473, 5736961, 18059374, 56849086, 178955183, 563332848, 1773314929, 5582216355, 17572253481, 55315679788, 174128175064, 548137914373, 1725482812088
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals INVERT transform of (1, 1, 3, 8, 21, 55, 144, ...). - Gary W. Adamson, May 01 2009
The Ze2 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence. - Johannes W. Meijer, Aug 16 2011
Equals the partial sums of A052529 starting (1, 1, 4, 13, 41, 129, ...). - Gary W. Adamson, Feb 15 2012
First trisection of Narayana's cows sequence A000930. - Oboifeng Dira, Aug 03 2016
From Peter Bala, Nov 03 2017: (Start)
Let f(x) = x/(1 - x^3), the characteristic function of numbers of the form 3*n + 1. Then f(f(x)) = Sum_{n >= 0} a(n)*x^(3*n+1).
a(n) = the number of compositions of 3*n + 1 into parts of the form 3*m + 1. For example, a(2) = 6 and the six compositions of 7 into parts of the form 3*m + 1 are 7, 4 + 1 + 1 + 1, 1 + 4 + 1 + 1, 1 + 1 + 4 + 1, 1 + 1 + 1 + 4 and 1 + 1 + 1 + 1 + 1 + 1 + 1. Cf. A001519, which gives the number of compositions of an odd number into odd parts. (End)
a(n-1) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second and third elements, and the fourth element is larger than the second element. - Sergey Kitaev, Dec 09 2020

Examples

			G.f. = 1 + 2*x + 6*x^2 + 19*x^3 + 60*x^4 + 189*x^5 + 595*x^6 + 1873*x^7 + ...
		

Crossrefs

Cf. A124820 (partial sums).

Programs

  • GAP
    a:=[1,2,6];; for n in [4..30] do a[n]:=4*a[n-1]-3*a[n-2]+a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    I:=[1, 2, 6]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 12 2012
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Z),Sequence(Z))))}, unlabeled]: seq(combstruct[count](spec,size=n), n=0..25);
    A052544 := proc(n): add(binomial(n+2*k, 3*k), k=0...n)  end: seq(A052544(n), n=0..25); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    LinearRecurrence[{4,-3,1},{1,2,6},30] (* Harvey P. Dale, Jul 13 2011 *)
    Table[Sum[Binomial[n + 2 k, 3 k], {k, 0, n}], {n, 0, 30}] (* or *)
    CoefficientList[Series[(1-x)^2/(1-4x+3x^2-x^3), {x, 0, 30}], x] (* Michael De Vlieger, Aug 03 2016 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n + 2*k, 3*k))}; /* Michael Somos, Jan 12 2012 */
    
  • PARI
    Vec((1-x)^2/(1-4*x+3*x^2-x^3)+O(x^30)) \\ Charles R Greathouse IV, Jan 12 2012
    
  • Sage
    ((1-x)^2/(1-4*x+3*x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1-x)^2/(1 -4*x +3*x^2 -x^3).
a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = Sum(-1/31*(-4-7*_alpha+2*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(-1+4*_Z-3*_Z^2+_Z^3)).
a(n) = Sum_{k=0..n} binomial(n+2*k, 3*k). - Richard L. Ollerton, May 12 2004
G.f.: 1 / (1 - x - x / (1 - x)^2). - Michael Somos, Jan 12 2012
a(n) = hypergeom([(n+1)/2, n/2+1, -n], [1/3, 2/3], -4/27). - Peter Luschny, Nov 03 2017

Extensions

More terms from James Sellers, Jun 06 2000
Previous Showing 31-40 of 73 results. Next