cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A017629 a(n) = 12*n + 9.

Original entry on oeis.org

9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633
Offset: 0

Views

Author

Keywords

Comments

Numbers k such that k mod 2 = (k+1) mod 3 = 1 and (k+2) mod 4 != 1. - Klaus Brockhaus, Jun 15 2004
For n > 3, the number of squares on the infinite 3-column chessboard at <= n knight moves from any fixed point. - Ralf Stephan, Sep 15 2004
A016946 is the subsequence of squares (for n = 3*k*(k+1) = A028896(k), then a(n) = (6k+3)^2 = A016946(k)). - Bernard Schott, Apr 05 2021

Crossrefs

Programs

Formula

a(n) = 6*(4*n+1) - a(n-1) (with a(0)=9). - Vincenzo Librandi, Dec 17 2010
A089911(2*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
G.f.: (9 + 3*x)/(1 - x)^2. - Alejandro J. Becerra Jr., Jul 08 2020
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(12*sqrt(2)). - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(3 + 4*x). - Stefano Spezia, Feb 25 2023

A047621 Numbers that are congruent to {3, 5} mod 8.

Original entry on oeis.org

3, 5, 11, 13, 19, 21, 27, 29, 35, 37, 43, 45, 51, 53, 59, 61, 67, 69, 75, 77, 83, 85, 91, 93, 99, 101, 107, 109, 115, 117, 123, 125, 131, 133, 139, 141, 147, 149, 155, 157, 163, 165, 171, 173, 179, 181, 187, 189, 195, 197, 203, 205, 211, 213, 219, 221, 227, 229
Offset: 1

Views

Author

Keywords

Comments

Numbers k for which Jacobi symbol J(2,k) = -1, so 2 (as well as 2^k) is not a square mod k. - Antti Karttunen, Aug 27 2005, corrected by Jianing Song, Nov 05 2019, see also A329095.
Numbers n whose multiplicative order modulo 2^k is 2^(k - 2) for k >= 4. For k = 3, the numbers whose multiplicative order modulo 8 is 2 are in sequence A047484. - Jianing Song, Apr 29 2018

Crossrefs

Row 1 of A112070. Complement of A047522 relative to A005408. Primes in this sequence: A003629.
Subsequence of A329095.

Programs

  • GAP
    a:=[3];; for n in [2..60] do a[n]:=8*n-a[n-1]-8; od; a; # Muniru A Asiru, Dec 04 2018
  • Haskell
    a047621 n = a047621_list !! (n-1)
    a047621_list = 3 : 5 : map (+ 8) a047621_list
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {3, 5, 11}, 100] (* Jean-François Alcover, Jul 31 2018 *)

Formula

a(n) = 8*n - a(n-1) - 8 (with a(1) = 3). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(3 + 2*x + 3*x^2) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Oct 08 2011
A089911(3*a(n)) = 10. - Reinhard Zumkeller, Jul 05 2013
a(n) = 8*floor((n - 1)/2) + 4 + (-1)^n. - Gary Detlefs, Dec 03 2018
From Franck Maminirina Ramaharo, Dec 03 2018: (Start)
a(n) = 4*n - 2 - (-1)^n.
E.g.f.: 3 - (2 - 4*x)*exp(x) - exp(-x). (End)
a(n + 2) = a(n) + 8. - David A. Corneth, Dec 03 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/8. - Amiram Eldar, Dec 11 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/8) (1/A144981).
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/8) (A101464). (End)

A017569 a(n) = 12*n + 4.

Original entry on oeis.org

4, 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136, 148, 160, 172, 184, 196, 208, 220, 232, 244, 256, 268, 280, 292, 304, 316, 328, 340, 352, 364, 376, 388, 400, 412, 424, 436, 448, 460, 472, 484, 496, 508, 520, 532, 544, 556, 568, 580, 592, 604, 616, 628
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(46).
Number of 6 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1A008574; m=3: A016933; m=4: A022144; m=5: A017293. - Sergey Kitaev, Nov 13 2004
Except for 4, exponents e such that x^e - x^2 + 1 is reducible.
If Y and Z are 2-blocks of a (3n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
Terms are perfect squares iff n is a generalized octagonal number (A001082), then n = k*(3*k-2) and a(n) = (2*(3*k-1))^2. - Bernard Schott, Feb 26 2023

Crossrefs

Programs

Formula

A089911(a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(2)/12. - Amiram Eldar, Dec 12 2021
From Stefano Spezia, Feb 25 2023: (Start)
O.g.f.: 4*(1 + 2*x)/(1 - x)^2.
E.g.f.: 4*exp(x)*(1 + 3*x). (End)
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = 2*A016933(n) = 4*A016777(n) = A016777(4*n+1). (End)

A017617 a(n) = 12*n + 8.

Original entry on oeis.org

8, 20, 32, 44, 56, 68, 80, 92, 104, 116, 128, 140, 152, 164, 176, 188, 200, 212, 224, 236, 248, 260, 272, 284, 296, 308, 320, 332, 344, 356, 368, 380, 392, 404, 416, 428, 440, 452, 464, 476, 488, 500, 512, 524, 536, 548, 560, 572, 584, 596, 608, 620, 632, 644, 656
Offset: 0

Views

Author

Keywords

Comments

Also the number of cube units that frame a cube of edge length n+1. - Peter M. Chema, Mar 27 2016

Examples

			For n=3; a(3)= 12*3 + 8 = 44.
Thus, there are 44 cube units that frame a cube of edge length 4. - _Peter M. Chema_, Mar 26 2016
		

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 08 2011
A089911(a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
G.f.: 12*x/(1-x)^2 + 8/(1-x) = 4*(2+x)/(1-x)^2. (see the PARI program). - Wolfdieter Lang, Oct 11 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/36 - log(2)/12. - Amiram Eldar, Dec 12 2021
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 4*exp(x)*(2 + 3*x).
a(n) = 4*A016789(n) = 2*A016957(n) = A016933(2*n+1). (End)

A017557 a(n) = 12*n + 3.

Original entry on oeis.org

3, 15, 27, 39, 51, 63, 75, 87, 99, 111, 123, 135, 147, 159, 171, 183, 195, 207, 219, 231, 243, 255, 267, 279, 291, 303, 315, 327, 339, 351, 363, 375, 387, 399, 411, 423, 435, 447, 459, 471, 483, 495, 507, 519, 531, 543, 555, 567, 579, 591, 603, 615, 627, 639
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 44 ).

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 07 2011
A089911(2*a(n)) = 8. - Reinhard Zumkeller, Jul 05 2013
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: 3*(1+3*x)/(1-x)^2.
E.g.f.: 3*(1+4*x)*exp(x). (End)
Sum_{n>=0} (-1)^n/a(n) = (Pi + 2*log(sqrt(2)+1))/(12*sqrt(2)). - Amiram Eldar, Dec 12 2021

A017653 a(n) = 12*n + 11.

Original entry on oeis.org

11, 23, 35, 47, 59, 71, 83, 95, 107, 119, 131, 143, 155, 167, 179, 191, 203, 215, 227, 239, 251, 263, 275, 287, 299, 311, 323, 335, 347, 359, 371, 383, 395, 407, 419, 431, 443, 455, 467, 479, 491, 503, 515, 527, 539, 551, 563, 575, 587, 599, 611, 623, 635
Offset: 0

Views

Author

Keywords

Comments

Or, with a different offset, 12*n - 1. In any case, numbers congruent to -1 (mod 12). - Alonso del Arte, May 29 2011
Numbers congruent to 2 (mod 3) and 3 (mod 4). - Bruno Berselli, Jul 06 2017

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 08 2011
G.f.: (11+x)/(1-x)^2. - Colin Barker, Feb 19 2012
A089911(2*a(n)) = 11. - Reinhard Zumkeller, Jul 05 2013
a(n) = 2*A003215(n+1) - 1 - 2*A003215(n). See Twin Hexagonal Frames illustration. - Leo Tavares, Aug 19 2021
From Elmo R. Oliveira, Apr 12 2025: (Start)
E.g.f.: exp(x)*(11 + 12*x).
a(n) = A016969(2*n+1). (End)

A017581 a(n) = 12*n + 5.

Original entry on oeis.org

5, 17, 29, 41, 53, 65, 77, 89, 101, 113, 125, 137, 149, 161, 173, 185, 197, 209, 221, 233, 245, 257, 269, 281, 293, 305, 317, 329, 341, 353, 365, 377, 389, 401, 413, 425, 437, 449, 461, 473, 485, 497, 509, 521, 533, 545, 557, 569, 581, 593, 605, 617, 629
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(71).
A089911(2*a(n)) = 7. - Reinhard Zumkeller, Jul 05 2013
Equivalently, intersection of A016813 and A016789. - Bruno Berselli, Jan 24 2018

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) for n>1, a(0)=5, a(1)=17. - Vincenzo Librandi, Jun 08 2011
G.f.: x*(5 + 7*x)/(1 - x)^2. - Wolfdieter Lang, Jul 04 2023
E.g.f.: exp(x)*(5 + 12*x). - Stefano Spezia, Feb 21 2024
a(n) = A016969(2*n) = A016789(4*n+1). - Elmo R. Oliveira, Apr 10 2025

A227144 Numbers that are congruent to {1, 2, 7, 17, 23} modulo 24.

Original entry on oeis.org

1, 2, 7, 17, 23, 25, 26, 31, 41, 47, 49, 50, 55, 65, 71, 73, 74, 79, 89, 95, 97, 98, 103, 113, 119, 121, 122, 127, 137, 143, 145, 146, 151, 161, 167, 169, 170, 175, 185, 191, 193, 194, 199, 209, 215, 217, 218, 223, 233, 239, 241, 242, 247, 257, 263, 265, 266
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2013

Keywords

Comments

A089911(a(n)) = 1.

Crossrefs

Programs

  • Haskell
    a227144 n = a227144_list !! (n-1)
    a227144_list = [1,2,7,17,23] ++ map (+ 24) a227144_list
    
  • Magma
    [n : n in [0..300] | n mod 24 in [1, 2, 7, 17, 23]]; // Wesley Ivan Hurt, Dec 26 2016
    
  • Maple
    A227144:=n->24*floor(n/5)+[1, 2, 7, 17, 23][(n mod 5)+1]: seq(A227144(n), n=0..100); # Wesley Ivan Hurt, Dec 26 2016
  • Mathematica
    Select[Range[500], MemberQ[{1, 2, 7, 17, 23}, Mod[#, 24]] &] (* Wesley Ivan Hurt, Dec 26 2016 *)
    LinearRecurrence[{1,0,0,0,1,-1},{1,2,7,17,23,25},60] (* Harvey P. Dale, Dec 18 2019 *)
  • PARI
    Vec(x*(1+x)*(x^4 +5*x^3 +5*x^2 +1)/((x^4 +x^3 +x^2 +x +1)*(x-1)^2) + O(x^50)) \\ G. C. Greubel, Dec 26 2016

Formula

G.f.: x*(1+x)*(x^4+5*x^3+5*x^2+1) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Jul 17 2013
From Wesley Ivan Hurt, Dec 26 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = (120*n - 110 - 6*(n mod 5) - 26*((n+1) mod 5) - ((n+2) mod 5) + 19*((n+3) mod 5) + 14*((n+4) mod 5))/25.
a(5k) = 24k-1, a(5k-1) = 24k-7, a(5k-2) = 24k-17, a(5k-3) = 24k-22, a(5k-4) = 24k-23. (End)

A227146 Numbers that are congruent to {5, 11, 13, 14, 19} modulo 24.

Original entry on oeis.org

5, 11, 13, 14, 19, 29, 35, 37, 38, 43, 53, 59, 61, 62, 67, 77, 83, 85, 86, 91, 101, 107, 109, 110, 115, 125, 131, 133, 134, 139, 149, 155, 157, 158, 163, 173, 179, 181, 182, 187, 197, 203, 205, 206, 211, 221, 227, 229, 230, 235, 245, 251, 253, 254, 259, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2013

Keywords

Comments

A089911(a(n)) = 5.

Crossrefs

Programs

  • Haskell
    a227146 n = a227146_list !! (n-1)
    a227146_list = [5,11,13,14,19] ++ map (+ 24) a227146_list
  • Mathematica
    Select[Range[300],MemberQ[{5,11,13,14,19},Mod[#,24]]&] (* or *) LinearRecurrence[{1,0,0,0,1,-1},{5,11,13,14,19,29},60] (* Harvey P. Dale, Apr 30 2018 *)

Formula

G.f.: x*(1+x)*(5*x^4+x^2+x+5) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Jul 17 2013
From Wesley Ivan Hurt, Dec 28 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
a(n) = (120*n - 50 - (n mod 5) + 19*((n+1) mod 5) + 14*((n+2) mod 5) - 6*((n+3) mod 5) - 26*((n+4) mod 5))/25. (End)
Previous Showing 11-19 of 19 results.