cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 51 results. Next

A130534 Triangle T(n,k), 0 <= k <= n, read by rows, giving coefficients of the polynomial (x+1)(x+2)...(x+n), expanded in increasing powers of x. T(n,k) is also the unsigned Stirling number |s(n+1, k+1)|, denoting the number of permutations on n+1 elements that contain exactly k+1 cycles.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 11, 6, 1, 24, 50, 35, 10, 1, 120, 274, 225, 85, 15, 1, 720, 1764, 1624, 735, 175, 21, 1, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 09 2007

Keywords

Comments

This triangle is an unsigned version of the triangle of Stirling numbers of the first kind, A008275, which is the main entry for these numbers. - N. J. A. Sloane, Jan 25 2011
Or, triangle T(n,k), 0 <= k <= n, read by rows given by [1,1,2,2,3,3,4,4,5,5,6,6,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.
Reversal of A094638.
Equals A132393*A007318, as infinite lower triangular matrices. - Philippe Deléham, Nov 13 2007
From Johannes W. Meijer, Oct 07 2009: (Start)
The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the exponential integrals E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + n*(n+1)/x^2 - n*(n+1)*(n+2)/x^3 + ...), see Abramowitz and Stegun. This formula follows from the general formula for the asymptotic expansion, see A163932. We rewrite E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) and observe that the T(n,m) are the polynomials coefficients in the denominators. Looking at the a(n,m) formula of A028421, A163932 and A163934, and shifting the offset given above to 1, we can write T(n-1,m-1) = a(n,m) = (-1)^(n+m)*Stirling1(n,m), see the Maple program.
The asymptotic expansion leads for values of n from one to eleven to known sequences, see the cross-references. With these sequences one can form the triangles A008279 (right-hand columns) and A094587 (left-hand columns).
See A163936 for information about the o.g.f.s. of the right-hand columns of this triangle.
(End)
The number of elements greater than i to the left of i in a permutation gives the i-th element of the inversion vector. (Skiena-Pemmaraju 2003, p. 69.) T(n,k) is the number of n-permutations that have exactly k 0's in their inversion vector. See evidence in Mathematica code below. - Geoffrey Critzer, May 07 2010
T(n,k) counts the rooted trees with k+1 trunks in forests of "naturally grown" rooted trees with n+2 nodes. This corresponds to sums of coefficients of iterated derivatives representing vectors, Lie derivatives, or infinitesimal generators for flow fields and formal group laws. Cf. links in A139605. - Tom Copeland, Mar 23 2014
A refinement is A036039. - Tom Copeland, Mar 30 2014
From Tom Copeland, Apr 05 2014: (Start)
With initial n=1 and row polynomials of T as p(n,x)=x(x+1)...(x+n-1), the powers of x correspond to the number of trunks of the rooted trees of the "naturally-grown" forest referred to above. With each trunk allowed m colors, p(n,m) gives the number of such non-plane colored trees for the forest with each tree having n+1 vertices.
p(2,m) = m + m^2 = A002378(m) = 2*A000217(m) = 2*(first subdiag of |A238363|).
p(3,m) = 2m + 3m^2 + m^3 = A007531(m+2) = 3*A007290(m+2) = 3*(second subdiag A238363).
p(4,m) = 6m + 11m^2 + 6m^3 + m^4 = A052762(m+3) = 4*A033487(m) = 4*(third subdiag).
From the Joni et al. link, p(n,m) also represents the disposition of n distinguishable flags on m distinguishable flagpoles.
The chromatic polynomial for the complete graph K_n is the falling factorial, which encodes the colorings of the n vertices of K_n and gives a shifted version of p(n,m).
E.g.f. for the row polynomials: (1-y)^(-x).
(End)
A relation to derivatives of the determinant |V(n)| of the n X n Vandermonde matrix V(n) in the indeterminates c(1) thru c(n):
|V(n)| = Product_{1<=jTom Copeland, Apr 10 2014
From Peter Bala, Jul 21 2014: (Start)
Let M denote the lower unit triangular array A094587 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well defined). See the Example section. (End)
For the relation of this rising factorial to the moments of Viennot's Laguerre stories, see the Hetyei link, p. 4. - Tom Copeland, Oct 01 2015
Can also be seen as the Bell transform of n! without column 0 (and shifted enumeration). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle  T(n,k) begins:
n\k         0        1        2       3       4      5      6     7    8  9 10
n=0:        1
n=1:        1        1
n=2:        2        3        1
n=3:        6       11        6       1
n=4:       24       50       35      10       1
n=5:      120      274      225      85      15      1
n=6:      720     1764     1624     735     175     21      1
n=7:     5040    13068    13132    6769    1960    322     28     1
n=8:    40320   109584   118124   67284   22449   4536    546    36    1
n=9:   362880  1026576  1172700  723680  269325  63273   9450   870   45  1
n=10: 3628800 10628640 12753576 8409500 3416930 902055 157773 18150 1320 55  1
[Reformatted and extended by _Wolfdieter Lang_, Feb 05 2013]
T(3,2) = 6 because there are 6 permutations of {1,2,3,4} that have exactly 2 0's in their inversion vector: {1, 2, 4, 3}, {1, 3, 2, 4}, {1, 3, 4, 2}, {2, 1, 3, 4},{2, 3, 1, 4}, {2, 3, 4, 1}. The respective inversion vectors are {0, 0, 1}, {0, 1, 0}, {0, 2, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}. - _Geoffrey Critzer_, May 07 2010
T(3,1)=11 since there are exactly 11 permutations of {1,2,3,4} with exactly 2 cycles, namely, (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(143), (12)(34), (13)(24), and (14)(23). - _Dennis P. Walsh_, Jan 25 2011
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
  / 1          \/1        \/1        \      / 1           \
  | 1  1       ||0 1      ||0 1      |      | 1  1        |
  | 2  2  1    ||0 1 1    ||0 0 1    |... = | 2  3  1     |
  | 6  6  3 1  ||0 2 2 1  ||0 0 1 1  |      | 6 11  6  1  |
  |24 24 12 4 1||0 6 6 3 1||0 0 2 2 1|      |24 50 35 10 1|
  |...         ||...      ||...      |      |...          |
(End)
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 93-94.
  • Sriram Pemmaraju and Steven Skiena, Computational Discrete Mathematics, Cambridge University Press, 2003, pp. 69-71. [Geoffrey Critzer, May 07 2010]

Crossrefs

See A008275, which is the main entry for these numbers; A094638 (reversed rows).
From Johannes W. Meijer, Oct 07 2009: (Start)
Row sums equal A000142.
The asymptotic expansions lead to A000142 (n=1), A000142(n=2; minus a(0)), A001710 (n=3), A001715 (n=4), A001720 (n=5), A001725 (n=6), A001730 (n=7), A049388 (n=8), A049389 (n=9), A049398 (n=10), A051431 (n=11), A008279 and A094587.
Cf. A163931 (E(x,m,n)), A028421 (m=2), A163932 (m=3), A163934 (m=4), A163936.
(End)
Cf. A136662.

Programs

  • Haskell
    a130534 n k = a130534_tabl !! n !! k
    a130534_row n = a130534_tabl !! n
    a130534_tabl = map (map abs) a008275_tabl
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    with(combinat): A130534 := proc(n,m): (-1)^(n+m)*stirling1(n+1,m+1) end proc: seq(seq(A130534(n,m), m=0..n), n=0..10); # Johannes W. Meijer, Oct 07 2009, revised Sep 11 2012
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0 (and shifts the enumeration).
    BellMatrix(n -> n!, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[Table[ Length[Select[Map[ToInversionVector, Permutations[m]], Count[ #, 0] == n &]], {n, 0, m - 1}], {m, 0, 8}] // Grid (* Geoffrey Critzer, May 07 2010 *)
    rows = 10;
    t = Range[0, rows]!;
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)

Formula

T(0,0) = 1, T(n,k) = 0 if k > n or if n < 0, T(n,k) = T(n-1,k-1) + n*T(n-1,k). T(n,0) = n! = A000142(n). T(2*n,n) = A129505(n+1). Sum_{k=0..n} T(n,k) = (n+1)! = A000142(n+1). Sum_{k=0..n} T(n,k)^2 = A047796(n+1). T(n,k) = |Stirling1(n+1,k+1)|, see A008275. (x+1)(x+2)...(x+n) = Sum_{k=0..n} T(n,k)*x^k. [Corrected by Arie Bos, Jul 11 2008]
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000142(n), A000142(n+1), A001710(n+2), A001715(n+3), A001720(n+4), A001725(n+5), A001730(n+6), A049388(n), A049389(n), A049398(n), A051431(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. - Philippe Deléham, Nov 13 2007
For k=1..n, let A={a_1,a_2,...,a_k} denote a size-k subset of {1,2,...,n}. Then T(n,n-k) = Sum(Product_{i=1..k} a_i) where the sum is over all subsets A. For example, T(4,1)=50 since 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4 = 50. - Dennis P. Walsh, Jan 25 2011
The preceding formula means T(n,k) = sigma_{n-k}(1,2,3,..,n) with the (n-k)-th elementary symmetric function sigma with the indeterminates chosen as 1,2,...,n. See the Oct 24 2011 comment in A094638 with sigma called there a. - Wolfdieter Lang, Feb 06 2013
From Gary W. Adamson, Jul 08 2011: (Start)
n-th row of the triangle = top row of M^n, where M is the production matrix:
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 6, 4, 1;
... (End)
Exponential Riordan array [1/(1 - x), log(1/(1 - x))]. Recurrence: T(n+1,k+1) = Sum_{i=0..n-k} (n + 1)!/(n + 1 - i)!*T(n-i,k). - Peter Bala, Jul 21 2014

A001715 a(n) = n!/6.

Original entry on oeis.org

1, 4, 20, 120, 840, 6720, 60480, 604800, 6652800, 79833600, 1037836800, 14529715200, 217945728000, 3487131648000, 59281238016000, 1067062284288000, 20274183401472000, 405483668029440000, 8515157028618240000, 187333454629601280000, 4308669456480829440000
Offset: 3

Views

Author

Keywords

Comments

The numbers (4, 20, 120, 840, 6720, ...) arise from the divisor values in the general formula a(n) = n*(n+1)*(n+2)*(n+3)* ... *(n+k)*(n*(n+k) + (k-1)*k/6)/((k+3)!/6) (which covers the following sequences: A000578, A000537, A024166, A101094, A101097, A101102). - Alexander R. Povolotsky, May 17 2008
a(n) is also the number of decreasing 3-cycles in the decomposition of permutations as product of disjoint cycles, a(3)=1, a(4)=4, a(5)=20. - Wenjin Woan, Dec 21 2008
Equals eigensequence of triangle A130128 reflected. - Gary W. Adamson, Dec 23 2008
a(n) is the number of n-permutations having 1, 2, and 3 in three distinct cycles. - Geoffrey Critzer, Apr 26 2009
From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=4) ~ exp(-x)/x*(1 - 4/x + 20/x^2 - 120/x^3 + 840/x^4 - 6720/x^5 + 60480/x^6 - 604800/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information.
(End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = A049352(n-2, 1) (first column of triangle).
E.g.f. if offset 0: 1/(1-x)^4.
a(n) = A173333(n,3). - Reinhard Zumkeller, Feb 19 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: W(0), where W(k) = 1 - x*(k+4)/( x*(k+4) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) = A245334(n,n-3) / 4. - Reinhard Zumkeller, Aug 31 2014
From Peter Bala, May 22 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (4*x - 1)*A(x) + 1 = 0.
G.f. as an S-fraction: A(x) = 1/(1 - 4*x/(1 - x/(1 - 5*x/(1 - 2*x/(1 - 6*x/(1 - 3*x/(1 - ... - (n + 3)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1/(1 - 3*x - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - 6*x/(1 - ... - n*x/(1 - (n+3)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-3)) / 3 = x - 4 x^2/2! + 20 x^3/3! - ... is an e.g.f. of the signed sequence (n!/4!), which is the compositional inverse of G(x) = (1 - 3*x)^(-1/3) - 1, an e.g.f. for A007559. Cf. A094638, A001710 (for n!/2!), and A001720 (for n!/4!). Cf. columns of A094587, A173333, and A213936 and rows of A138533.- Tom Copeland, Dec 27 2019
E.g.f.: x^3 / (3! * (1 - x)). - Ilya Gutkovskiy, Jul 09 2021
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=3} 1/a(n) = 6*e - 15.
Sum_{n>=3} (-1)^(n+1)/a(n) = 3 - 6/e. (End)

Extensions

More terms from Harvey P. Dale, Aug 12 2012

A001720 a(n) = n!/24.

Original entry on oeis.org

1, 5, 30, 210, 1680, 15120, 151200, 1663200, 19958400, 259459200, 3632428800, 54486432000, 871782912000, 14820309504000, 266765571072000, 5068545850368000, 101370917007360000, 2128789257154560000, 46833363657400320000, 1077167364120207360000
Offset: 4

Views

Author

Keywords

Comments

The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=5) ~ exp(-x)/x*(1 - 5/x + 30/x^2 - 210/x^3 + 1680/x^4 - 15120/x^5 + 151200/x^6 - 1663200/x^7 + ...) leads to this sequence. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n)= A049353(n-3, 1) (first column of triangle).
E.g.f. if offset 0: 1/(1-x)^5.
a(n) = A173333(n,4). - Reinhard Zumkeller, Feb 19 2010
a(n) = A245334(n,n-4) / 5. - Reinhard Zumkeller, Aug 31 2014
G(x) = (1 - (1 + x)^(-4)) / 4 = x - 5 x^2/2! + 30 x^3/3! - ..., an e.g.f. for this signed sequence (for n!/4!), is the compositional inverse of H(x) = (1 - 4*x)^(-1/4) - 1 = x + 5 x^2/2! + 45 x^3/3! + ..., an e.g.f. for A007696. Cf. A094638, A001710 (for n!/2!), and A001715 (for n!/3!). Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
E.g.f.: x^4 / (4! * (1 - x)). - Ilya Gutkovskiy, Jul 09 2021
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=4} 1/a(n) = 24*e - 64.
Sum_{n>=4} (-1)^n/a(n) = 24/e - 8. (End)

A001497 Triangle of coefficients of Bessel polynomials (exponents in decreasing order).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 15, 15, 6, 1, 105, 105, 45, 10, 1, 945, 945, 420, 105, 15, 1, 10395, 10395, 4725, 1260, 210, 21, 1, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 34459425, 34459425, 16216200, 4729725, 945945, 135135, 13860, 990, 45, 1
Offset: 0

Views

Author

Keywords

Comments

The (reverse) Bessel polynomials P(n,x):=Sum_{m=0..n} a(n,m)*x^m, the row polynomials, called Theta_n(x) in the Grosswald reference, solve x*(d^2/dx^2)P(n,x) - 2*(x+n)*(d/dx)P(n,x) + 2*n*P(n,x) = 0.
With the related Sheffer associated polynomials defined by Carlitz as
B(0,x) = 1
B(1,x) = x
B(2,x) = x + x^2
B(3,x) = 3 x + 3 x^2 + x^3
B(4,x) = 15 x + 15 x^2 + 6 x^3 + x^4
... (see Mathworld reference), then P(n,x) = 2^n * B(n,x/2) are the Sheffer polynomials described in A119274. - Tom Copeland, Feb 10 2008
Exponential Riordan array [1/sqrt(1-2x), 1-sqrt(1-2x)]. - Paul Barry, Jul 27 2010
From Vladimir Kruchinin, Mar 18 2011: (Start)
For B(n,k){...} the Bell polynomial of the second kind we have
B(n,k){f', f'', f''', ...} = T(n-1,k-1)*(1-2*x)^(k/2-n), where f(x) = 1-sqrt(1-2*x).
The expansions of the first few rows are:
1/sqrt(1-2*x);
1/(1-2*x)^(3/2), 1/(1-2*x);
3/(1-2*x)^(5/2), 3/(1-2*x)^2, 1/(1-2*x)^(3/2);
15/(1-2*x)^(7/2), 15/(1-2*x)^3, 6/(1-2*x)^(5/2), 1/(1-2*x)^2. (End)
Also the Bell transform of A001147 (whithout column 0 which is 1,0,0,...). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Antidiagonals of A099174 are rows of this entry. Dividing each diagonal by its first element generates A054142. - Tom Copeland, Oct 04 2016
The row polynomials p_n(x) of A107102 are (-1)^n B_n(1-x), where B_n(x) are the modified Carlitz-Bessel polynomials above, e.g., (-1)^2 B_2(1-x) = (1-x) + (1-x)^2 = 2 - 3 x + x^2 = p_2(x). - Tom Copeland, Oct 10 2016
a(n-1,m-1) counts rooted unordered binary forests with n labeled leaves and m roots. - David desJardins, Feb 23 2019
From Jianing Song, Nov 29 2021: (Start)
The polynomials P_n(x) = Sum_{k=0..n} T(n,k)*x^k satisfy: P_n(x) - (d/dx)P_n(x) = x*P_{n-1}(x) for n >= 1.
{P(n,x)} are related to the Fourier transform of 1/(1+x^2)^(n+1) and x/(1+x^2)^(n+2):
(i) For n >= 0, real number t, we have Integral_{x=-oo..oo} exp(-i*t*x)/(1+x^2)^(n+1) dx = Pi/(2^n*n!) * P_n(|t|) * exp(-|t|);
(ii) For n >= 0, real number t, we have Integral_{x=-oo..oo} x*exp(-i*t*x)/(1+x^2)^(n+2) dx = Pi/(2^(n+1)*(n+1)!) * ((-t)*P_n(-|t|)) * exp(-|t|). (End)
Suppose that f(x) is an n-times differentiable function defined on (a,b) for 0 <= a < b <= +oo, then for n >= 1, the n-th derivative of f(sqrt(x)) on (a^2,b^2) is Sum_{k=1..n} ((-1)^(n-k)*T(n-1,k-1)*f^(k)(sqrt(x))) / (2^n*x^(n-(k/2))), where f^(k) is the k-th derivative of f. - Jianing Song, Nov 30 2023

Examples

			Triangle begins
        1,
        1,       1,
        3,       3,      1,
       15,      15,      6,      1,
      105,     105,     45,     10,     1,
      945,     945,    420,    105,    15,    1,
    10395,   10395,   4725,   1260,   210,   21,   1,
   135135,  135135,  62370,  17325,  3150,  378,  28,  1,
  2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1
Production matrix begins
       1,      1,
       2,      2,      1,
       6,      6,      3,     1,
      24,     24,     12,     4,     1,
     120,    120,     60,    20,     5,    1,
     720,    720,    360,   120,    30,    6,   1,
    5040,   5040,   2520,   840,   210,   42,   7,  1,
   40320,  40320,  20160,  6720,  1680,  336,  56,  8, 1,
  362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
This is the exponential Riordan array A094587, or [1/(1-x),x], beheaded.
- _Paul Barry_, Mar 18 2011
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Reflected version of A001498 which is considered the main entry.
Other versions of this same triangle are given in A144299, A111924 and A100861.
Row sums give A001515. a(n, 0)= A001147(n) (double factorials).
Cf. A104556 (matrix inverse). A039683, A122850.
Cf. A245066 (central terms).

Programs

  • Haskell
    a001497 n k = a001497_tabl !! n !! k
    a001497_row n = a001497_tabl !! n
    a001497_tabl = [1] : f [1] 1 where
       f xs z = ys : f ys (z + 2) where
         ys = zipWith (+) ([0] ++ xs) (zipWith (*) [z, z-1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle */ [[Factorial(2*n-k)/(Factorial(k)*Factorial(n-k)*2^(n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 12 2015
    
  • Maple
    f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
    row := n -> seq(coeff(f(n), x, n - k), k = 0..n): seq(row(n), n = 0..9);
  • Mathematica
    m = 9; Flatten[ Table[(n + k)!/(2^k*k!*(n - k)!), {n, 0, m}, {k, n, 0, -1}]] (* Jean-François Alcover, Sep 20 2011 *)
    y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 01 2013 *)
  • PARI
    T(k, n) = if(n>k||k<0||n<0,0,(2*k-n)!/(n!*(k-n)!*2^(k-n))) /* Ralf Stephan */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)*(2*n-k)!/2^(n-k)/n!)}; /* Michael Somos, Oct 03 2006 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A001147(n), 9) # Peter Luschny, Jan 19 2016

Formula

a(n, m) = (2*n-m)!/(m!*(n-m)!*2^(n-m)) if n >= m >= 0 else 0 (from Grosswald, p. 7).
a(n, m)= 0, n= m >= 0 (from Grosswald p. 23, (19)).
E.g.f. for m-th column: ((1-sqrt(1-2*x))^m)/(m!*sqrt(1-2*x)).
G.f.: 1/(1-xy-x/(1-xy-2x/(1-xy-3x/(1-xy-4x/(1-.... (continued fraction). - Paul Barry, Jan 29 2009
T(n,k) = if(k<=n, C(2n-k,2(n-k))*(2(n-k)-1)!!,0) = if(k<=n, C(2n-k,2(n-k))*A001147(n-k),0). - Paul Barry, Mar 18 2011
Row polynomials for n>=1 are given by 1/t*D^n(exp(x*t)) evaluated at x = 0, where D is the operator 1/(1-x)*d/dx. - Peter Bala, Nov 25 2011
The matrix product A039683*A008277 gives a signed version of this triangle. Dobinski-type formula for the row polynomials: R(n,x) = (-1)^n*exp(x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-2*(n-1))*(-x)^k/k!. Cf. A122850. - Peter Bala, Jun 23 2014

A132440 Infinitesimal Pascal matrix: generator (lower triangular matrix representation) of the Pascal matrix, the classical operator xDx, iterated Laguerre transforms, associated matrices of the list partition transform and general Euler transformation for sequences.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0
Offset: 0

Views

Author

Tom Copeland, Nov 13 2007, Nov 15 2007, Nov 22 2007, Dec 02 2007

Keywords

Comments

Let M(t) = exp(t*T) = lim_{n->oo} (1 + t*T/n)^n.
Pascal matrix = [ binomial(n,k) ] = M(1) = exp(T), truncating the series gives the n X n submatrices.
Inverse Pascal matrix = M(-1) = exp(-T) = matrix for inverse binomial transform.
A(j) = T^j / j! equals the matrix [binomial(n,k) * delta(n-k-j)] where delta(n) = 1 if n=0 and vanishes otherwise (Kronecker delta); i.e., A(j) is a matrix with all the terms 0 except for the j-th lower (or main for j=0) diagonal, which equals that of the Pascal triangle. Hence the A(j)'s form a linearly independent basis for all matrices of the form [binomial(n,k) * d(n-k)] which include as a subset the invertible associated matrices of the list partition transform (LPT) of A133314.
For sequences with b(0) = 1, umbrally,
M[b(.)] = exp(b(.)*T) = [ binomial(n,k) * b(n-k) ] = matrices associated to b by LPT.
[M[b(.)]]^(-1) = exp(c(.)*T) = [ binomial(n,k) * c(n-k) ] = matrices associated to c, where c = LPT(b) . Or,
[M[b(.)]]^(-1) = exp[LPT(b(.))*T] = LPT[M(b(.))] = M[LPT(b(.))]= M[c(.)].
This is related to xDx, the iterated Laguerre transform and the general Euler transformation of a sequence through the comments in A132013 and A132014 and the relation [Sum_{k=0..n} binomial(n,k) * b(n-k) * d(k)] = M(b)*d, (n-th term). See also A132382.
If b(n,x) is a binomial type Sheffer sequence, then M[b(.,x)]*s(y) = s(x+y) when s(y) = (s(0,y),s(1,y),s(2,y),...) is an array for a Sheffer sequence with the same delta operator as b(n,x) and [M[b(.,x)]]^(-1) is given by the formulas above with b(n) replaced by b(n,x) as b(0,x)=1 for a binomial-type Sheffer sequence.
T = I - A132013 and conversely A132013 = I - T, which is the matrix representation for the iterated mixed order Laguerre transform characterized in A132013 (and A132014).
(I-T)^m generates the group [A132013]^m for m = 0,1,2,... discussed in A132014.
The inverse is 1/(I-T) = I + T + T^2 + T^3 + ... = [A132013]^(-1) = A094587 with the associated sequence (0!,1!,2!,3!,...) under the LPT.
And 1/(I-T)^2 = I + 2*T + 3*T^2 + 4*T^3 + ... = [A132013]^(-2) = A132159 with the associated sequence (1!,2!,3!,4!,...) under the LPT.
The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.'s A(x) and B(x), or e.g.f.'s EA(x) and EB(x).
1) b(0) = 0, b(n) = n * a(n-1),
2) B(x) = xDx A(x)
3) B(x) = x * Lag(1,-:xD:) A(x)
4) EB(x) = x * EA(x) where D is the derivative w.r.t. x, (:xD:)^j = x^j*D^j and Lag(n,x) is the Laguerre polynomial.
So the exponentiated operator can be characterized as
5) exp(t*T) A(x) = exp(t*xDx) A(x) = [Sum_{n=0,1,...} (t*x)^n * Lag(n,-:xD:)] A(x) = [exp{[t*u/(1-t*u)]*:xD:} / (1-t*u) ] A(x) (eval. at u=x) = A[x/(1-t*x)]/(1-t*x), a generalized Euler transformation for an o.g.f.,
6) exp(t*T) EA(x) = exp(t*x)*EA(x) = exp[(t+a(.))*x], gen. Euler trf. for an e.g.f.
7) exp(t*T) * a = M(t) * a = [Sum_{k=0..n} binomial(n,k) * t^(n-k) * a(k)].
The umbral extension of formulas 5, 6 and 7 gives formally
8) exp[c(.)*T] A(x) = exp(c(.)*xDx) A(x) = [Sum_{n>=0} (c(.)*x)^n * Lag(n,-:xD:)] A(x) = [exp{[c(.)*u/(1-c(.)*u)]*:xD:} / (1-c(.)*u) ] A(x) (eval. at u=x) = A[x/(1-c(.)*x)]/(1-c(.)*x), where the umbral evaluation should be applied only after a power series in c is obtained,
9) exp[c(.)*T] EA(x) = exp(c(.)*x)*EA(x) = exp[(c(.)+a(.))*x]
10) exp[c(.)*T] * a = M[c(.)] * a = [Sum_{k=0..n} binomial(n,k) * c(n-k) * a(k)] .
The n X n principal submatrix of T is nilpotent, in particular, [Tsub_n]^(n+1) = 0, n=0,1,2,3,....
Note (xDx)^n = x^n D^n x^n = x^n n! (:Dx:)^n/n! = x^n n! Lag(n,-:xD:).
The operator xDx is an important, classical operator explored by among others Dattoli, Al-Salam, Carlitz and Stokes and even earlier investigators.
For a recent treatment of xDx, DxD and more general operators see the paper "Laguerre-type derivatives: Dobinski relations and combinatorial identities". - Karol A. Penson, Sep 15 2009
See Copeland's link for generalized Laguerre functions and connection to fractional differ-integrals in exercises through (:Dx:)^a/a!=(D^a x^a)/a!. - Tom Copeland, Nov 17 2011
From Tom Copeland, Apr 25 2014: (Start)
Conjugation or "similarity" transformations of [dP]=A132440 have an operator interpretation (cf. A074909 and A238363):
In general, select two operators A and B such that A^n = F1(n,B) and B^n = F2(n,A); then A^n = F1(n,F2(.,A)) and B^n = F2(n,F1(.,B)), evaluated umbrally, i.e., F1(n,F2(.,x))=F2(n,F1(.,x))=x^n, implying the polynomials F1 and F2 are an umbral compositional inverse pair.
One such pair are the Bell polynomials Bell(n,x) and falling factorials (x)_n with Bell(n,:xD:)=(xD)^n and (xD)_n=:xD:^n (cf. A074909). Another are the Laguerre polynomials LN(n,x)= n!*Lag(n,x) (A021009), which are umbrally self-inverse, with LN(n,-:xD:)=:Dx:^n and LN(n,:Dx:)= (-:xD:)^n with :Dx:^n=D^n*x^n.
Evaluating, for n>=0, the operator derivative d(B^n)/dA = d(F2(n,A))/dA in the basis B^n, i.e., with A^n finally replaced by F1(n,B), or A^n=F1(.,B)^n=F1(n,B), is equivalent to the matrix conjugation
A) [F2]*[dP]*[F1]
B) = [F2]*[dP]*[F2]^(-1)
C) = [F1]^(-1)*[dP]*[F1],
where [F1] is the lower triangular matrix with the n-th row the coefficients of F1(n,x) and analogously for [F2].
So, given the row vector Rv=(c0 c1 c2 c3 ...) and the column vector Cv(x)=(1 x x^2 x^3 ...)^Transpose, form the power series V(x)=Rv*Cv(x).
D) dV(B)/dA = Rv * [F2]*[dP]*[F1] * Cv(B).
E) With A=D and B=D, F1(n,x)=F2(n,x)=x^n and [F1]=[F2]=I. Then d(B^n)/dA = d(D^n)/dD = n * D^(n-1); therefore, consistently [F2]*[dP]*[F1] = [dP] and dV(D)/dD = Rv * [dP] * Cv(D). (End)

Examples

			Matrix T begins
  0;
  1,0;
  0,2,0;
  0,0,3,0;
  0,0,0,4,0;
  ...
		

References

  • T. Mansour and M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, Chapman and Hall/CRC, 2015, (x^n D^n x^n on p. 187).

Programs

Formula

T = log(P) with the Pascal matrix P:=A007318. This should be read as T_N = log(P_N) with P_N the N X N matrix P, N>=2. Because P_N is lower triangular with all diagonal elements 1, the series log(1_N-(1_N-P_N)) stops after N-1 terms because (1_N-P_N)^N is the 0_N-matrix. - Wolfdieter Lang, Oct 14 2010
Given a polynomial sequence p_n(x) with p_0(x)=1 and the lowering and raising operators L and R defined by L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x), the matrix T represents the action of R*L*R in the p_n(x) basis. For p_n(x) = x^n, L = D = d/dx and R = x. For p_n(x) = x^n/n!, L = DxD and R = D^(-1). - Tom Copeland, Oct 25 2012
From Tom Copeland, Apr 26 2014: (Start)
A) T = exp(A238385-I) - I
B) = [St1]*P*[St2] - I
C) = [St1]*P*[St1]^(-1) - I
D) = [St2]^(-1)*P*[St2] - I
E) = [St2]^(-1)*P*[St1]^(-1) - I
where P=A007318, [St1]=padded A008275 just as [St2]=A048993=padded A008277, and I=identity matrix. (End)
From Robert Israel, Oct 02 2015: (Start)
G.f. Sum_{k >= 1} k x^((k+3/2)^2/2 - 17/8) is related to Jacobi theta functions.
If 8*n+17 = y^2 is a square, then a(n) = (y-3)/2, otherwise a(n) = 0. (End)

Extensions

Missing zero added in table by Tom Copeland, Feb 25 2014

A024167 a(n) = n!*(1 - 1/2 + 1/3 - ... + c/n), where c = (-1)^(n+1).

Original entry on oeis.org

1, 1, 5, 14, 94, 444, 3828, 25584, 270576, 2342880, 29400480, 312888960, 4546558080, 57424792320, 948550176000, 13869128448000, 256697973504000, 4264876094976000, 87435019510272000, 1627055289796608000, 36601063093905408000, 754132445894209536000
Offset: 1

Views

Author

Keywords

Comments

Stirling transform of (-1)^n*a(n-1) = [0, 1, -1, 5, -14, 94, ...] is A000629(n-2) = [0, 1, 2, 6, 26, ...]. - Michael Somos, Mar 04 2004
Stirling transform of a(n) = [1, 1, 5, 14, 94, ...] is A052882(n) = [1, 2, 9, 52, 375, ...]. - Michael Somos, Mar 04 2004
a(n) is the number of n-permutations that have a cycle with length greater than n/2. - Geoffrey Critzer, May 28 2009
From Jens Voß, May 07 2010: (Start)
a(4n) is divisible by 6*n + 1 for all n >= 1; the quotient of a(4*n) and 6*n+1 is A177188(n).
a(4*n+3) is divisible by 6*n + 5 for all n >= 0; the quotient of a(4*n+3) and 6*n + 5 is A177174(n). (End)

Examples

			G.f. = x + x^2 + 5*x^3 + 14*x^4 + 94*x^5 + 444*x^6 + 3828*x^7 + 25584*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a := n -> n!*(log(2) - (-1)^n*LerchPhi(-1, 1, n+1));
    seq(simplify(a(n)), n=1..20); # Peter Luschny, Dec 27 2018
  • Mathematica
    f[k_] := k (-1)^(k + 1)
    t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 18}]    (* A024167 signed *)
    (* Clark Kimberling, Dec 30 2011 *)
    a[ n_] := If[ n < 0, 0, n! Sum[ -(-1)^k / k, {k, n}]]; (* Michael Somos, Nov 28 2013 *)
    a[ n_] := If[ n < 0, 0, n! (PolyGamma[n + 1] - PolyGamma[(n + Mod[n, 2, 1]) / 2])]; (* Michael Somos, Nov 28 2013 *)
    a[ n_] := If[ n < 1, 0, (-1)^Quotient[n, 2] SymmetricPolynomial[ n - 1, Table[ -(-1)^k k, {k, n}]]]; (* Michael Somos, Nov 28 2013 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( log(1 + x + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 02 2004 */
    
  • PARI
    x='x+O('x^33); Vec(serlaplace(log(1+x)/(1-x))) \\ Joerg Arndt, Dec 27 2018
    
  • Python
    def A():
        a, b, n = 1, 1, 2
        yield(a)
        while True:
            yield(a)
            b, a = a, a + b * n * n
            n += 1
    a = A(); print([next(a) for  in range(20)]) # _Peter Luschny, May 19 2020

Formula

E.g.f.: log(1 + x)/(1 - x). - Vladeta Jovovic, Aug 25 2002
a(n) = a(n-1) + a(n-2) * (n-1)^2, n > 1. - Michael Somos, Oct 29 2002
b(n) = n! satisfies the above recurrence with b(1) = 1, b(2) = 2. This gives the finite continued fraction expansion a(n)/n! = 1/(1 + 1^2/(1 + 2^2/(1 + 3^2/(1 + ... + (n-1)^2/1)))). Cf. A142979. - Peter Bala, Jul 17 2008
a(n) = A081358(n) - A092691(n). - Gary Detlefs, Jul 09 2010
E.g.f.: (x/(x-1))/G(0) where G(k) = -1 + (x-1)*k + x*(k+1)^2/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 18 2012
a(n) ~ log(2)*n!. - Daniel Suteu, Dec 03 2016
a(n) = (1/2)*n!*((-1)^n*(digamma((n+1)/2) - digamma((n+2)/2)) + log(4)). - Daniel Suteu, Dec 03 2016
a(n) = n!*(log(2) - (-1)^n*LerchPhi(-1, 1, n+1)). - Peter Luschny, Dec 27 2018
a(n) = A054651(n,n-1). - Pontus von Brömssen, Oct 25 2020
a(n) = Sum_{k=0..n} (-1)^k*k!*A094587(n, k+1). - Mélika Tebni, Jun 20 2022
a(n) = n * a(n-1) - (-1)^n * (n-1)! for n > 1. - Werner Schulte, Oct 20 2024

Extensions

More terms from Benoit Cloitre, Jan 27 2002
a(21)-a(22) from Pontus von Brömssen, Oct 25 2020

A173333 Triangle read by rows: T(n, k) = n! / k!, 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 24, 12, 4, 1, 120, 60, 20, 5, 1, 720, 360, 120, 30, 6, 1, 5040, 2520, 840, 210, 42, 7, 1, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 1814400, 604800, 151200, 30240, 5040, 720, 90, 10, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 19 2010

Keywords

Comments

From Wolfdieter Lang, Jun 27 2012: (Start)
T(n-1,k), k=1,...,n-1, gives the number of representative necklaces with n beads (C_N symmetry) of n+1-k distinct colors, say c[1],c[2],...,c[n-k+1], corresponding to the color signature determined by the partition k,1^(n-k) of n. The representative necklaces have k beads of color c[1]. E.g., n=4, k=2: partition 2,1,1, color signature (parts as exponents) c[1]c[1]c[2]c[3], 3=T(3,2) necklaces (write j for color c[j]): cyclic(1123), cyclic(1132) and cyclic(1213). See A212359 for the numbers for general partitions or color signatures. (End)

Examples

			Triangle starts:
n\k      1       2      3      4     5    6   7  8  9 10 ...
1        1
2        2       1
3        6       3      1
4       24      12      4      1
5      120      60     20      5     1
6      720     360    120     30     6    1
7     5040    2520    840    210    42    7   1
8    40320   20160   6720   1680   336   56   8  1
9   362880  181440  60480  15120  3024  504  72  9  1
10 3628800 1814400 604800 151200 30240 5040 720 90 10  1
... - _Wolfdieter Lang_, Jun 27 2012
		

Crossrefs

Row sums give A002627.
Central terms give A006963:
T(2*n-1,n) = A006963(n+1).
T(2*n,n) = A001813(n).
T(2*n,n+1) = A001761(n).
1 < k <= n: T(n,k) = T(n,k-1) / k.
1 <= k <= n: T(n+1,k) = A119741(n,n-k+1).
1 <= k <= n: T(n+1,k+1) = A162995(n,k).
T(n,1) = A000142(n).
T(n,2) = A001710(n) for n>1.
T(n,3) = A001715(n) for n>2.
T(n,4) = A001720(n) for n>3.
T(n,5) = A001725(n) for n>4.
T(n,6) = A001730(n) for n>5.
T(n,7) = A049388(n-7) for n>6.
T(n,8) = A049389(n-8) for n>7.
T(n,9) = A049398(n-9) for n>8.
T(n,10) = A051431(n) for n>9.
T(n,n-7) = A159083(n+1) for n>7.
T(n,n-6) = A053625(n+1) for n>6.
T(n,n-5) = A052787(n) for n>5.
T(n,n-4) = A052762(n) for n>4.
T(n,n-3) = A007531(n) for n>3.
T(n,n-2) = A002378(n-1) for n>2.
T(n,n-1) = A000027(n) for n>1.
T(n,n) = A000012(n).

Programs

  • Haskell
    a173333 n k = a173333_tabl !! (n-1) !! (k-1)
    a173333_row n = a173333_tabl !! (n-1)
    a173333_tabl = map fst $ iterate f ([1], 2)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
  • Mathematica
    Table[n!/k!, {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

Formula

E.g.f.: (exp(x*y) - 1)/(x*(1 - y)). - Olivier Gérard, Jul 07 2011
T(n,k) = A094587(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012

A263916 Coefficients of the Faber partition polynomials.

Original entry on oeis.org

-1, -2, 1, -3, 3, -1, -4, 4, 2, -4, 1, -5, 5, 5, -5, -5, 5, -1, -6, 6, 6, -6, 3, -12, 6, -2, 9, -6, 1, -7, 7, 7, -7, 7, -14, 7, -7, -7, 21, -7, 7, -14, 7, -1, -8, 8, 8, -8, 8, -16, 8, 4, -16, -8, 24, -8, -8, 12, 24, -32, 8, 2, -16, 20, -8, 1
Offset: 1

Views

Author

Tom Copeland, Oct 29 2015

Keywords

Comments

The coefficients of the Faber polynomials F(n,b(1),b(2),...,b(n)) (Bouali, p. 52) in the order of the partitions of Abramowitz and Stegun. Compare with A115131 and A210258.
These polynomials occur in discussions of the Virasoro algebra, univalent function spaces and the Schwarzian derivative, symmetric functions, and free probability theory. They are intimately related to symmetric functions, free probability, and Appell sequences through the raising operator R = x - d log(H(D))/dD for the Appell sequence inverse pair associated to the e.g.f.s H(t)e^(xt) (cf. A094587) and (1/H(t))e^(xt) with H(0)=1.
Instances of the Faber polynomials occur in discussions of modular invariants and modular functions in the papers by Asai, Kaneko, and Ninomiya, by Ono and Rolen, and by Zagier. - Tom Copeland, Aug 13 2019
The Faber polynomials, denoted by s_n(a(t)) where a(t) is a formal power series defined by a product formula, are implicitly defined by equation 13.4 on p. 62 of Hazewinkel so as to extract the power sums of the reciprocals of the zeros of a(t). This is the Newton identity expressing the power sum symmetric polynomials in terms of the elementary symmetric polynomials/functions. - Tom Copeland, Jun 06 2020
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)

Examples

			F(1,b1) = - b1
F(2,b1,b2) = -2 b2 + b1^2
F(3,b1,b2,b3) = -3 b3 + 3 b1 b2 - b1^3
F(4,b1,...) = -4 b4 + 4 b1 b3 + 2 b2^2  - 4 b1^2 b2 + b1^4
F(5,...) = -5 b5 + 5 b1 b4 + 5 b2 b3 - 5 b1^2 b3 - 5 b1 b2^2 + 5 b1^3 b2 - b1^5
------------------------------
IF(1,b1) = -b1
IF(2,b1,,b2) = -b2 + b1^2
IF(3,b1,b2,b3) = -2 b3 + 3 b1 b2 - b1^3
IF(4,b1,...) = -6 b4 + 8 b1 b3 + 3 b2^2  - 6 b1^2 b2 + b1^4
IF(5,...) = -24 b5 + 30 b1 b4 + 20 b2 b3 - 20 b1^2 b3 - 15 b1 b2^2 + 10 b1^3 b2 - b1^5
------------------------------
For 1/(1+x)^2 = 1- 2x + 3x^2 - 4x^3 + 5x^4 - ..., F(n,-2,3,-4,...) = (-1)^(n+1) 2.
------------------------------
F(n,x,2x,...,nx), F(n,-x,2x,-3x,...,(-1)^n n*x), and F(n,(2-x),1,0,0,...) are related to the Chebyshev polynomials through A127677 and A111125. See also A110162, A156308, A208513, A217476, and A220668.
------------------------------
For b1 = p, b2 = q, and all other indeterminates 0, see A113279 and A034807.
For b1 = -y, b2 = 1 and all other indeterminates 0, see A127672.
		

References

  • H. Airault, "Symmetric sums associated to the factorization of Grunsky coefficients," in Groups and Symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes: Vol. 47, edited by J. Harnad and P. Winternitz, American Mathematical Society, 2009.
  • D. Bleeker and B. Booss, Index Theory with Applications to Mathematics and Physics, International Press, 2013, (see section 16.7 Characteristic Classes and Curvature).
  • M. Hazewinkel, Formal Groups and Applications, Academic Press, New York San Francisco London, 1978, p. 120.
  • F. Hirzebruch, Topological methods in algebraic geometry. Second, corrected printing of the third edition. Die Grundlehren der Mathematischen Wissenschaften, Band 131 Springer-Verlag, Berlin Heidelberg New York, 1978, p. 11 and 92.
  • D. Knutson, λ-Rings and the Representation Theory of the Symmetric Group, Lect. Notes in Math. 308, Springer-Verlag, 1973, p. 35.
  • D. Yau, Lambda-Rings, World Scientific Publishing Co., Singapore, 2010, p. 45.

Crossrefs

Programs

  • Mathematica
    F[0] = 1; F[1] = -b[1]; F[2] = b[1]^2 - 2 b[2]; F[n_] := F[n] = -b[1] F[n - 1] - Sum[b[n - k] F[k], {k, 1, n - 2}] - n b[n] // Expand;
    row[n_] := (List @@ F[n]) /. b[_] -> 1 // Reverse;
    Table[row[n], {n, 1, 8}] // Flatten // Rest (* Jean-François Alcover, Jun 12 2017 *)

Formula

-log(1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n.
-d(1 + b(1) x + b(2) x^2 + ...)/dx / (1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) x^(n-1).
F(n,b(1),...,b(n)) = -n*b(n) - Sum_{k=1..n-1} b(n-k)*F(k,b(1),...,b(k)).
Umbrally, with B(x) = 1 + b(1) x + b(2) x^2 + ..., B(x) = exp[log(1-F.x)] and 1/B(x) = exp[-log(1-F.x)], establishing a connection to the e.g.f. of A036039 and the symmetric polynomials.
The Stirling partition polynomials of the first kind St1(n,b1,b2,...,bn;-1) = IF(n,b1,b2,...,bn) (cf. the Copeland link Lagrange a la Lah, signed A036039, and p. 184 of Airault and Bouali), i.e., the cyclic partition polynomials for the symmetric groups, and the Faber polynomials form an inverse pair for isolating the indeterminates in their definition, for example, F(3,IF(1,b1),IF(2,b1,b2)/2!,IF(3,b1,b2,b3)/3!)= b3, with bk = b(k), and IF(3,F(1,b1),F(2,b1,b2),F(3,b1,b2,b3))/3!= b3.
The polynomials specialize to F(n,t,t,...) = (1-t)^n - 1.
See Newton Identities on Wikipedia on relation between the power sum symmetric polynomials and the complete homogeneous and elementary symmetric polynomials for an expression in multinomials for the coefficients of the Faber polynomials.
(n-1)! F(n,x[1],x[2]/2!,...,x[n]/n!) = - p_n(x[1],...,x[n]), where p_n are the cumulants of A127671 expressed in terms of the moments x[n]. - Tom Copeland, Nov 17 2015
-(n-1)! F(n,B(1,x[1]),B(2,x[1],x[2])/2!,...,B(n,x[1],...,x[n])/n!) = x[n] provides an extraction of the indeterminates of the complete Bell partition polynomials B(n,x[1],...,x[n]) of A036040. Conversely, IF(n,-x[1],-x[2],-x[3]/2!,...,-x[n]/(n-1)!) = B(n,x[1],...,x[n]). - Tom Copeland, Nov 29 2015
For a square matrix M, determinant(I - x M) = exp[-Sum_{k>0} (trace(M^k) x^k / k)] = Sum_{n>0} [ P_n(-trace(M),-trace(M^2),...,-trace(M^n)) x^n/n! ] = 1 + Sum_{n>0} (d[n] x^n), where P_n(x[1],...,x[n]) are the cycle index partition polynomials of A036039 and d[n] = P_n(-trace(M),-trace(M^2),...,-trace(M^n)) / n!. Umbrally, det(I - x M)= exp[log(1 - b. x)] = exp[P.(-b_1,..,-b_n)x] = 1 / (1-d.x), where b_k = tr(M^k). Then F(n,d[1],...,d[n]) = tr[M^n]. - Tom Copeland, Dec 04 2015
Given f(x) = -log(g(x)) = -log(1 + b(1) x + b(2) x^2 + ...) = Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n, action on u_n = F(n,b(1),...,b(n)) with A133932 gives the compositional inverse finv(x) of f(x), with F(1,b(1)) not equal to zero, and f(g(finv(x))) = f(e^(-x)). Note also that exp(f(x)) = 1 / g(x) = exp[Sum_{n>=1} F(n,b(1),...,b(n)) * x^n/n] implies relations among A036040, A133314, A036039, and the Faber polynomials. - Tom Copeland, Dec 16 2015
The Dress and Siebeneicher paper gives combinatorial interpretations and various relations that the Faber polynomials must satisfy for integral values of its arguments. E.g., Eqn. (1.2) p. 2 implies [2 * F(1,-1) + F(2,-1,b2) + F(4,-1,b2,b3,b4)] mod(4) = 0. This equation implies that [F(n,b1,b2,...,bn)-(-b1)^n] mod(n) = 0 for n prime. - Tom Copeland, Feb 01 2016
With the elementary Schur polynomials S(n,a_1,a_2,...,a_n) = Lah(n,a_1,a_2,...,a_n) / n!, where Lah(n,...) are the refined Lah polynomials of A130561, F(n,S(1,a_1),S(2,a_1,a_2),...,S(n,a_1,...,a_n)) = -n * a_n since sum_{n > 0} a_n x^n = log[sum{n >= 0} S(n,a_1,...,a_n) x^n]. Conversely, S(n,-F(1,a_1),-F(2,a_1,a_2)/2,...,-F(n,a_1,...,a_n)/n) = a_n. - Tom Copeland, Sep 07 2016
See Corollary 3.1.3 on p. 38 of Ardila and Copeland's two MathOverflow links to relate the Faber polynomials, with arguments being the signed elementary symmetric polynomials, to the logarithm of determinants, traces of powers of an adjacency matrix, and number of walks on graphs. - Tom Copeland, Jan 02 2017
The umbral inverse polynomials IF appear on p. 19 of Konopelchenko as partial differential operators. - Tom Copeland, Nov 19 2018

Extensions

More terms from Jean-François Alcover, Jun 12 2017

A068424 Triangle of falling factorials, read by rows: T(n, k) = n*(n-1)*...*(n-k+1), n > 0, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 6, 6, 4, 12, 24, 24, 5, 20, 60, 120, 120, 6, 30, 120, 360, 720, 720, 7, 42, 210, 840, 2520, 5040, 5040, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800
Offset: 1

Views

Author

David Wasserman, Mar 13 2003

Keywords

Comments

Triangle in which the n-th row begins with n and the k-th term is obtained by multiplying the (k-1)-th term by (n-k+1) until n-k+1 = 1. - Amarnath Murthy, Nov 11 2002
Has many diagonals in common with A105725. - Zerinvary Lajos, Apr 14 2006
Also: the square array of rising factorials A(n,k) = n*(n+1)*(n+2)*...*(n+k-1) read by antidiagonals downwards. There are no perfect squares in T(n,k) for k >= 2 [see Rigge]. T(n,k) is divisible by a prime exceeding k, if n >= 2*k [see Saradha and Shorey]. - R. J. Mathar, May 02 2007
T(n,k) is the number of injective functions f from {1,...,k} into {1,...,n}, since there are n choices for f(1), then (n-1) choices for f(2), ... and (n-k+1) choices for f(k). E.g., T(3,2)=6 because there are exactly 6 injective functions f:{1,2}->{1,2,3}, namely, f1={(1,1),(2,2)}, f2={(1,1),(2,3)}, f3={(1,2),(2,1)}, f4={(1,2),(2,3)}, f5={(1,3),(2,1)} and f6={(1,3),(2,2)}. - Dennis P. Walsh, Oct 18 2007
Permuted words defined by the connectivity of regular simplices are related to T by T = A135278 * (1!, 2!, 3!, 4!, ...). E.g., for T(4,k) with k-1 = simplex number, label the vertices of a tetrahedron with a, b, c, d, then the 0-simplex, the points, a,b,c,d gives 4 * 1 = 4 words; the 1-simplex, the edges: (ab or ba), (ac or ca), (ad or da), (bc or cb), (bd or db), (cd or dc) gives 6 * 2 = 12 words; the 2-simplex, the faces: (abc or ...), (acd or ...), (adb or ...), (bcd or ...) gives 4 * 6 = 24 words; the 3-simplex, (abcd or ....) gives 1 * 24 = 24 words. - Tom Copeland, Dec 08 2007
Reversal of the triangle by rows = (n+1) * n-th row of triangle A094587. - Gary W. Adamson, May 03 2009
From Geoffrey Critzer, May 06 2009: (Start)
The rectangular array R(n,k), read by diagonals is the number of ways n people can queue up in k (possibly empty) distinct queues. R(n,k) = (n+k-1)!/(k-1)!; R(n,k) = (n+k-1)*R(n-1,k).
Northwest corner:
1, 2, 3, 4, 5, ...;
2, 6, 12, 20, 30, ...;
6, 24, 60, 120, 210, ...;
24, 120, 360, 840, 1680, ...;
120, 720, 2520, 6720, 15120, ...;
...
Example: R(2,2)=6 because there are six ways that two people can get in line at a fast food restaurant that has two order windows open. Let 1 and 2 represent the two people and a | will separate the lines. 12|; 21|; |12; |21; 1|2; 2|1. (End)
Cf. [Hardy and Wright], Theorem 34.
The e.g.f. of the Norlund generalized Bernoulli (Appell) polynomials of order m, NB(n,x;m), is given by exponentiation of the e.g.f. of the Bernoulli numbers, i.e., multiple binomial self-convolutions of the Bernoulli numbers, through the e.g.f. exp[NB(.,x;m)t] = [t/(e^t-1)]^(m+1) * e^(xt). Norlund gave the relation to the factorials (x-1)!/(x-1-k)! = (x-1) ... (x-k) = NB(k,x;k), so T(n,k) = NB(k,n+1;k). - Tom Copeland, Oct 01 2015
T(n,k) is the number of sequences without repetition (partial permutations) of k elements taken from an n-set. For sequences with repetition (k-tuples) cf. A075363. - Manfred Boergens, Jun 18 2023

Examples

			Triangle begins:
  1;
  2,  2;
  3,  6,   6;
  4, 12,  24,  24;
  5, 20,  60, 120, 120;
  6, 30, 120, 360, 720, 720;
Square begins:
    1,   2,    3,    4,     5, ...
    2,   6,   12,   20,    30, ...
    6,  24,   60,  120,   210, ...
   24, 120,  360,  840,  1680, ...
  120, 720, 2520, 6720, 15120, ...
		

References

  • G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Fifth edition, 1979, p. 64.
  • O. Rigge, 9th Congr. Math. Scan., Helsingfors, 1938, Mercator, 1939, pp. 155-160.

Crossrefs

Same as A008279 for k>0.
Cf. A094587. - Gary W. Adamson, May 03 2009
Appears in A167546. - Johannes W. Meijer, Nov 12 2009

Programs

  • Mathematica
    Flatten[Table[n!/(n-k)!, {n, 10}, {k, n}]] (* or, from version 7: *)
    Flatten[Table[FactorialPower[n, k], {n, 10}, {k, n}]]  (* Jean-François Alcover, Jun 17 2011, updated Sep 29 2016 *)
  • PARI
    T(n,k)=if(k<1 || k>n,0,n!/(n-k)!)

Formula

As a triangle: T(n,k) = k!*binomial(n,k) = n!/(n-k)!, 1 <= k <= n. - Michael Somos, Apr 05 2003
E.g.f.: exp(x)*x*y/(1-x*y). - Michael Somos, Apr 05 2003
As a square: A(n,k) = (n+k-1)!/(k-1)!, 1 <= k <= n. - Ron L.J. van den Burg, Nov 28 2021

A238363 Coefficients for the commutator for the logarithm of the derivative operator [log(D),x^n D^n]=d[(xD)!/(xD-n)!]/d(xD) expanded in the operators :xD:^k.

Original entry on oeis.org

1, -1, 2, 2, -3, 3, -6, 8, -6, 4, 24, -30, 20, -10, 5, -120, 144, -90, 40, -15, 6, 720, -840, 504, -210, 70, -21, 7, -5040, 5760, -3360, 1344, -420, 112, -28, 8, 40320, -45360, 25920, -10080, 3024, -756, 168, -36, 9, -362880, 403200, -226800, 86400, -25200, 6048, -1260, 240, -45, 10
Offset: 1

Views

Author

Tom Copeland, Feb 25 2014

Keywords

Comments

Let D=d/dx and [A,B]=A·B-B·A. Then each row corresponds to the coefficients of the operators :xD:^k = x^k D^k in the expansion of the commutator [log(D),:xD:^n]=[-log(x),:xD:^n]=sum(k=0 to n-1, a(n,k) :xD:^k). The e.g.f. is derived from [log(D), exp(t:xD:)]=[-log(x), exp(t:xD:)]= log(1+t)exp(t:xD:), using the shift property exp(t:xD:)f(x)=f((1+t)x).
The reversed unsigned array is A111492.
See the mathoverflow link and link therein to an associated mathstackexchange question for other formulas for log(D). In addition, R_x = log(D) = -log(x) + c - sum[n=1 to infnty, (-1)^n 1/n :xD:^n/n!]=
-log(x) + Psi(1+xD) = -log(x) + c + Ein(:xD:), where c is the Euler-Mascheroni constant, Psi(x), the digamma function, and Ein(x), a breed of the exponential integrals (cf. Wikipedia). The :xD:^k ops. commute; therefore, the commutator reduces to the -log(x) term.
Also the n-th row corresponds to the expansion of d[(xD)!/(xD-n)!]/d(xD) = d[:xD:^n]/d(xD) in the operators :xD:^k, or, equivalently, the coefficients of x in d[z!/(z-n)!]/dz=d[St1(n,z)]]/dz evaluated umbrally with z=St2(.,x), i.e., z^n replaced by St2(n,x), where St1(n,x) and St2(n,x) are the signed and unsigned Stirling polynomials of the first (A008275) and second (A008277) kinds. The derivatives of the unsigned St1 are A028421. See examples. This formalism follows from the relations between the raising and lowering operators presented in the MathOverflow link and the Pincherle derivative. The results can be generalized through the operator relations in A094638, which are related to the celebrated Witt Lie algebra and pseudodifferential operators / symbols, to encompass other integral arrays.
A002741(n)*(-1)^(n+1) (row sums), A002104(n)*(-1)^(n+1) (alternating row sums). Column sequences: A133942(n-1), A001048(n-1), A238474, ... - Wolfdieter Lang, Mar 01 2014
Add an additional head row of zeros to the lower triangular array and denote it as T (with initial indexing in columns and rows being 0). Let dP = A132440, the infinitesimal generator for the Pascal matrix, and I, the identity matrix, then exp(T)=I+dP, i.e., T=log(I+dP). Also, (T_n)^n=0, where T_n denotes the n X n submatrix, i.e., T_n is nilpotent of order n. - Tom Copeland, Mar 01 2014
Any pair of lowering and raising ops. L p(n,x) = n·p(n-1,x) and R p(n,x) = p(n+1,x) satisfy [L,R]=1 which implies (RL)^n = St2(n,:RL:), and since (St2(·,u))!/(St2(·,u)-n)!= u^n, when evaluated umbrally, d[(RL)!/(RL-n)!]/d(RL) = d[:RL:^n]/d(RL) is well-defined and gives A238363 when the LHS is reduced to a sum of :RL:^k terms, exactly as for L=d/dx and R=x above. (Note that R_x above is a raising op. different from x, with associated L_x=-xD.) - Tom Copeland, Mar 02 2014
For relations to colored forests, disposition of flags on flagpoles, and the colorings of the vertices of the complete graphs K_n, encoded in their chromatic polynomials, see A130534. - Tom Copeland, Apr 05 2014
The unsigned triangle, omitting the main diagonal, gives A211603. See also A092271. Related to the infinitesimal generator of A008290. - Peter Bala, Feb 13 2017

Examples

			The first few row polynomials are
p(1,x)=  1
p(2,x)= -1 + 2x
p(3,x)=  2 - 3x + 3x^2
p(4,x)= -6 + 8x - 6x^2 + 4x^3
p(5,x)= 24 -30x +20x^2 -10x^3 + 5x^4
...........
For n=3: z!/(z-3)!=z^3-3z^2+2z=St1(3,z) with derivative 3z^2-6z+2, and
3·St2(2,x)-6·St2(1,x)+2=3(x^2+x)-6x+2=3x^2-3x+2=p(3,x). To see the relation to the operator formalism, note that (xD)^k=St2(k,:xD:) and (xD)!/(xD-k)!=[St2(·,:xD:)]!/[St2(·,:xD:)-k]!= :xD:^k.
The triangle a(n,k) begins:
n\k       0       1       2      3      4     5      6    7   8   9 ...
1:        1
2:       -1       2
3:        2      -3       3
4:       -6       8      -6      4
5:       24     -30      20    -10      5
6:     -120     144     -90     40    -15     6
7:      720    -840     504   -210     70   -21      7
8:    -5040    5760   -3360   1344   -420   112    -28    8
9:    40320  -45360   25920 -10080   3024  -756    168  -36   9
10: -362880  403200 -226800  86400 -25200  6048  -1260  240 -45  10
... formatted by _Wolfdieter Lang_, Mar 01 2014
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := (-1)^(n-k-1)*n!/((n-k)*k!); Table[a[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 09 2015 *)

Formula

a(n,k) = (-1)^(n-k-1)*n!/((n-k)*k!) for k=0 to (n-1).
E.g.f.: log(1+t)*exp(x*t).
E.g.f.for unsigned array: -log(1-t)*exp(x*t).
The lowering op. for the row polynomials is L=d/dx, i.e., L p(n,x) = n*p(n-1,x).
An e.g.f. for an unsigned related version is -log(1+t)*exp(x*t)/t= exp(t*s(·,x)) with s(n,x)=(-1)^n * p(n+1,-x)/(n+1). Let L=d/dx and R= x-(1/((1-D)log(1-D))+1/D),then R s(n,x)= s(n+1,x) and L s(n,x)= n*s(n-1,x), defining a special Sheffer sequence of polynomials, an Appell sequence. So, R (-1)^(n-1) p(n,-x)/n = (-1)^n p(n+1,-x)/(n+1).
From Tom Copeland, Apr 17 2014: (Start)
Dividing each diagonal by its first element (-1)^(n-1)*(n-1)! yields the reverse of A104712.
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result as A007318(x) = P(x). Then with dP = A132440, M = padded A238363 = A238385-I, I = identity matrix, and (B(.,x))^n = B(n,x) = the n-th Bell polynomial Bell(n,x) of A008277,
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x), and
B) P(:xD:)=exp(dP:xD:)=exp[(e^M-I):xD:]=exp[M*B(.,:xD:)]=exp[M*xD]=
(1+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x].
C) P(x)^m = P(m*x). P(2x) = A038207(x) = exp[M*B(.,2x)], face vectors of n-D hypercubes. (End)
From Tom Copeland, Apr 26 2014: (Start)
M = padded A238363 = A238385-I
A) = [St1]*[dP]*[St2] = [padded A008275]*A132440*A048993
B) = [St1]*[dP]*[St1]^(-1)
C) = [St2]^(-1)*[dP]*[St2]
D) = [St2]^(-1)*[dP]*[St1]^(-1),
where [St1]=padded A008275 just as [St2]=A048993=padded A008277.
E) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I + dP)^x*[St1].
F) exp(x*M) = [St1]*P(x)*[St2] = (I + dP)^x,
where (I + dP)^x = sum(k>=0, C(x,k)*dP^k).
Let the row vector Rv=(c0 c1 c2 c3 ...) and the column vector Cv(x)=(1 x x^2 x^3 ...)^Transpose. Form the power series V(x)= Rv * Cv(x) and W(y) := V(x.) evaluated umbrally with (x.)^n = x_n = (y)_n = y!/(y-n)!. Then
G) U(:xD:) = dV(:xD:)/d(xD) = dW(xD)/d(xD) evaluated with (xD)^n = Bell(n,:xD:),
H) U(x) = dV(x.)/dy := dW(y)/dy evaluated with y^n=y_n=Bell(n,x), and
I) U(x) = Rv * M * Cv(x). (Cf. A132440, A074909.) (End)
The Bernoulli polynomials Ber_n(x) are related to the polynomials q_n(x) = p(n+1,x) / (n+1) with the e.g.f. [log(1+t)/t] e^(xt) (cf. s_n (x) above) as Ber_n(x) = St2_n[q.(St1.(x))], umbrally, or [St2]*[q]*[St1], in matrix form. Since q_n(x) is an Appell sequence of polynomials, q_n(x) = [log(1+D_x)/D_x]x^n. - Tom Copeland, Nov 06 2016

Extensions

Pincherle formalism added by Tom Copeland, Feb 27 2014
Previous Showing 11-20 of 51 results. Next