cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 60 results. Next

A138573 a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=2, a(3)=5.

Original entry on oeis.org

0, 1, 2, 5, 16, 45, 130, 377, 1088, 3145, 9090, 26269, 75920, 219413, 634114, 1832625, 5296384, 15306833, 44237570, 127848949, 369490320, 1067846845, 3086134658, 8919094697, 25776662080, 74495936025, 215297250946, 622220603405
Offset: 0

Views

Author

Benoit Cloitre, May 12 2008

Keywords

Comments

This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m). - T. D. Noe, Dec 23 2008
Case P1 = 2, P2 = -4, Q = 1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 04 2014

Crossrefs

Programs

  • GAP
    a:=[0,1,2,5];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
  • Maple
    seq(coeff(series((x*(1-x)*(x+1))/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
  • Mathematica
    Round@Table[(((GoldenRatio + Sqrt[GoldenRatio])^n + (GoldenRatio - Sqrt[GoldenRatio])^n)/2 - (-1)^n Cos[n ArcTan[Sqrt[GoldenRatio]]])/Sqrt[5], {n, 0, 20}] (* or *) LinearRecurrence[{2, 2, 2, -1}, {0, 1, 2, 5}, 20] (* Vladimir Reshetnikov, May 11 2016 *)
    Table[Abs[Fibonacci[n, 1 + I]]^2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 05 2016 *)
    CoefficientList[Series[-x*(x-1)*(1+x)/(1-2*x-2*x^2-2*x^3+x^4), {x, 0, 20}], x] (* Stefano Spezia, Sep 12 2018 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x*(1-x)*(1+x)/(1 -2*x -2*x^2 -2*x^3 +x^4))) \\ G. C. Greubel, Aug 08 2017
    

Formula

a(n) = round(w^n/2/sqrt(5)) where w = (1+r)/(1-r) = 2.89005363826396... and r = sqrt(sqrt(5)-2) = 0.485868271756...; for n >= 3, a(n) = A071101(n+3).
G.f.: -x*(x-1)*(1+x)/(1 - 2*x - 2*x^2 - 2*x^3 + x^4). - R. J. Mathar, Jun 03 2009
From Peter Bala, Mar 04 2014: (Start)
Define a Lucas sequence {U(n)} in the ring of Gaussian integers by the recurrence U(n) = (1 + i)*U(n-1) + U(n-2) with U(0) = 0 and U(1) = 1. Then a(n) = |U(n)|^2.
Let a, b denote the zeros of x^2 - (1 + i)*x - 1 and c, d denote the zeros of x^2 - (1 - i)*x - 1.
Then a(n) = (a^n - b^n)*(c^n - d^n)/((a - b)*(c - d)).
a(n) = (alpha(1)^n + beta(1)^n - alpha(2)^n - beta(2)^n)/(2*sqrt(5)), where alpha(1), beta(1) are the roots of x^2 - ( 1 + sqrt(5))*x + 1 = 0, and alpha(2), beta(2) are the roots of x^2 - (1 - sqrt(5))*x + 1 = 0.
The o.g.f. is the Hadamard product of the rational functions x/(1 - (1 + i)x - x^2) and x/(1 - (1 - i)x - x^2). (End)
From Peter Bala, Mar 24 2014: (Start)
a(n) = (1/sqrt(5))*(T(n,phi) - T(n,-1/phi)), where phi = 1/2*(1 + sqrt(5)) is the golden ratio and T(n,x) denotes the Chebyshev polynomial of the first kind. Compare with the Fibonacci numbers, A000045, whose terms are given by the Binet formula 1/sqrt(5)*( phi^n - (-1/phi)^n ).
a(n) = top right (or bottom left) entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1; 1, 1]; the off-diagonal elements of M^n give the sequence of Fibonacci numbers. Bottom right entry of the matrix T(n, M) gives A138574. See the remarks in A100047 for the general connection between Chebyshev polynomials and linear divisibility sequences of the fourth order. (End)
a(n) = (((phi + sqrt(phi))^n + (phi - sqrt(phi))^n)/2 - (-1)^n * cos(n*arctan(sqrt(phi))))/sqrt(5), where phi=(1+sqrt(5))/2. - Vladimir Reshetnikov, May 11 2016
a(n) = A143056(n+1)^2 + A272665(n+1)^2. - Vladimir Reshetnikov, Oct 05 2016
Limit_{n -> oo} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018

A218134 Norm of coefficients in the expansion of 1/(1 - 2*x - i*x^2), where i is the imaginary unit.

Original entry on oeis.org

1, 4, 17, 80, 369, 1700, 7841, 36160, 166753, 768996, 3546289, 16354000, 75417809, 347795396, 1603886913, 7396455680, 34109360321, 157298104900, 725393076049, 3345209499600, 15426707209777, 71141522037604, 328074947492321, 1512944453384000, 6977067089461281
Offset: 0

Views

Author

Paul D. Hanna, Oct 21 2012

Keywords

Comments

The radius of convergence of g.f. equals 1 + sqrt(2) - sqrt(2)*sqrt(1 + sqrt(2)) = 0.216845335...
The following remarks assume an offset of 1. This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. The sequence satisfies a linear recurrence of order 4. It is the case P1 = 4, P2 = -4, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Examples

			G.f.: A(x) = 1 + 4*x + 17*x^2 + 80*x^3 + 369*x^4 + 1700*x^5 + 7841*x^6 +...
The terms equal the norm of the complex coefficients in the expansion:
1/(1 - 2*x - i*x^2) = 1 + 2*x + (4 + i)*x^2 + (8 + 4*i)*x^3 + (15 + 12*i)*x^4 + (26 + 32*i)*x^5 + (40 + 79*i)*x^6 + (48 + 184*i)*x^7 +...
so that
a(1) = 2^2, a(2) = 4^2 + 1, a(3) = 8^2 + 4^2, a(4) = 15^2 + 12^2, a(5) = 26^2 + 32^2, ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, 2, 4, -1}, {1, 4, 17, 80}, 25] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=norm(polcoeff(1/(1-2*x-I*x^2+x*O(x^n)), n))}
    for(n=0,31,print1(a(n),", "))

Formula

G.f.: (1 - x^2)/(1 - 4*x - 2*x^2 - 4*x^3 + x^4).
From Peter Bala, Mar 25 2014: (Start)
The following formulas assume an offset of 1.
a(n) = 1/(2*sqrt(2))*(T(n,1 + sqrt(2)) - T(n,1 - sqrt(2))), where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1; 1, 2]. Note, the bottom left element of the matrix M^n gives the Lucas sequence A000129.
a(n) = U(n-1,exp(2*i*Pi/8))*U(n-1,exp(-2*i*Pi/8)) = U(n-1,(1 + i)/sqrt(2))*U(n-1,(1 - i)/sqrt(2)), where U(n,x) denotes the Chebyshev polynomial of the second kind.
The o.g.f. is the Chebyshev transform of the rational function x/(1 - 4*x - 4*x^2), where the Chebyshev transform takes the function A(x) to the function (1 - x^2)/(1 + x^2)*A(x/(1 + x^2)). See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)

A097732 Pell equation solutions (7*a(n))^2 - 2*(5*b(n))^2 = -1 with b(n):=A097733(n), n >= 0. Note that D=50=2*5^2 is not squarefree.

Original entry on oeis.org

1, 199, 39401, 7801199, 1544598001, 305822602999, 60551330795801, 11988857674965599, 2373733268312392801, 469987198268178808999, 93055091523831091789001, 18424438134520287995413199, 3647945695543493192000024401, 722274823279477131728009418199
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

Also numbers k such that (7*k+1)^2 + (7*k-1)^2 is a square. - Bruno Berselli, Oct 11 2019

Examples

			(x,y) = (7,1), (1393,197), (275807,39005), ... give the positive integer solutions to x^2 - 50*y^2 =-1.
		

Crossrefs

Cf. A097731 for S(n, 2*99), A100047.
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    LinearRecurrence[{198, -1}, {1, 199}, 12] (* Ray Chandler, Aug 11 2015 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-2*99*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 2*99*x + x^2).
a(n) = S(n, 2*99) + S(n-1, 2*99) = S(2*n, 10*sqrt(2)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 7*i)/(7*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 198*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=199. - Philippe Deléham, Nov 18 2008
From Peter Bala, Mar 23 2015: (Start)
a(n) = ( Pell(6*n + 6 - 2*k) + Pell(6*n + 2*k) )/( Pell(6 - 2*k) + Pell(2*k) ), for k an arbitrary integer.
a(n) = ( Pell(6*n + 6 - 2*k - 1) - Pell(6*n + 2*k + 1) )/( Pell(6 - 2*k - 1) - Pell(2*k + 1) ), for k an arbitrary integer, k != 1.
The aerated sequence (b(n))n>=1 = [1, 0, 199, 0, 39401, 0, 7801199, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -196, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)
a(n) = (1/7)*sinh((2*n + 1)*arcsinh(7)). - Bruno Berselli, Apr 03 2018

A098306 Unsigned member r=-6 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 6, 49, 384, 3025, 23814, 187489, 1476096, 11621281, 91494150, 720331921, 5671161216, 44648957809, 351520501254, 2767515052225, 21788599916544, 171541284280129, 1350541674324486, 10632792110315761, 83711795208201600
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

((-1)^(n+1))*a(n) = S_{-6}(n), n>=0, defined in A092184.
This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 6, P2 = -16, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/10*((4 + Sqrt[15])^n + (4 - Sqrt[15])^n - 2*(-1)^n) // Simplify; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 28 2017 *)
    LinearRecurrence[{7, 7, -1}, {0, 1, 6, 49, 384, 3025}, 50] (* G. C. Greubel, Aug 08 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(1-x)/((1+x)*(1-8*x+x^2))) \\ G. C. Greubel, Aug 08 2017

Formula

a(n) = (T(n, 4)-(-1)^n)/5, with Chebyshev's polynomials of the first kind evaluated at x=4: T(n, 4)=A001091(n)=((4+sqrt(15))^n + (4-sqrt(15))^n)/2.
a(n) = 8*a(n-1) - a(n-2) + 2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
a(n) = 7*a(n-1) + 7*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=6.
G.f.: x*(1-x)/((1+x)*(1-8*x+x^2)) = x*(1-x)/(1-7*x-7*x^2+x^3) (from the Stephan link, see A092184).
From Peter Bala, Mar 25 2014: (Start)
a(2*n) = 6*A001090(n)^2; a(2*n+1) = A070997(n)^2.
a(n) = |u(n)|^2, where {u(n)} is the Lucas sequence in the quadratic integer ring Z[sqrt(-6)] defined by the recurrence u(0) = 0, u(1) = 1, u(n) = sqrt(-6)*u(n-1) - u(n-2) for n >= 2.
Equivalently, a(n) = U(n-1,sqrt(-6)/2)*U(n-1,-sqrt(-6)/2), where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = 1/10*( (4 + sqrt(15))^n + (4 - sqrt(15))^n - 2*(-1)^n ).
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 4; 1, 3] and T(n,x) denotes the Chebyshev polynomial of the first kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

A100050 A Chebyshev transform of n.

Original entry on oeis.org

0, 1, 2, 0, -4, -5, 0, 7, 8, 0, -10, -11, 0, 13, 14, 0, -16, -17, 0, 19, 20, 0, -22, -23, 0, 25, 26, 0, -28, -29, 0, 31, 32, 0, -34, -35, 0, 37, 38, 0, -40, -41, 0, 43, 44, 0, -46, -47, 0, 49, 50, 0, -52, -53, 0, 55, 56, 0, -58, -59, 0, 61, 62, 0, -64, -65, 0, 67, 68, 0, -70, -71, 0, 73, 74, 0, -76, -77, 0, 79, 80, 0, -82, -83, 0, 85, 86, 0
Offset: 0

Views

Author

Paul Barry, Oct 31 2004

Keywords

Comments

A Chebyshev transform of x/(1-x)^2: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)).

Examples

			x + 2*x^2 - 4*x^4 - 5*x^5 + 7*x^7 + 8*x^8 - 10*x^10 - 11*x^11 + 13*x^13 + ...
		

Crossrefs

Cf. A165202 (partial sums).

Programs

  • Mathematica
    LinearRecurrence[{2, -3, 2, -1}, {0, 1, 2, 0},50] (* G. C. Greubel, Aug 08 2017 *)
  • PARI
    {a(n) = n * (-1)^(n\3) * sign( n%3)} /* Michael Somos, Mar 19 2011 */
    
  • PARI
    {a(n) = local(A, p, e); if( abs(n)<1, 0, A = factor(abs(n)); prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p==2, -(-2)^e, (kronecker( -12, p) * p)^e))))} /* Michael Somos, Mar 19 2011 */
  • Sage
    [lucas_number1(n,2,1)*lucas_number1(n,1,1) for n in range(0,88)] # Zerinvary Lajos, Jul 06 2008
    

Formula

Euler transform of length 6 sequence [ 2, -3, -2, 0, 0, 2]. - Michael Somos, Mar 19 2011
a(n) is multiplicative with a(2^e) = -(-2)^e if e>0, a(3^e) = 0^e, a(p^e) = p^e if p == 1 (mod 6), a(p^e) = (-p)^e if p == 5 (mod 6). - Michael Somos, Mar 19 2011
G.f.: x*(1 - x^2)^3 *(1 - x^3)^2 / ((1 - x)^2 *(1 - x^6)^2) = x *(1 + x)^2 *(1 - x^2) / (1 + x^3)^2. - Michael Somos, Mar 19 2011
a(3*n) = 0, a(3*n + 1) = (-1)^n * (3*n + 1), a(3*n + 2) = (-1)^n * (3*n + 2). a(-n) = a(n). - Michael Somos, Mar 19 2011
G.f.: x(1-x^2)/(1-x+x^2)^2.
a(n) = 2*a(n-1) -3*a(n-2) +2*a(n-3) -a(n-4).
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*(n-2k)/(n-k).

A108045 Triangle read by rows: lower triangular matrix obtained by inverting the lower triangular matrix in A108044.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -3, 0, 1, 2, 0, -4, 0, 1, 0, 5, 0, -5, 0, 1, -2, 0, 9, 0, -6, 0, 1, 0, -7, 0, 14, 0, -7, 0, 1, 2, 0, -16, 0, 20, 0, -8, 0, 1, 0, 9, 0, -30, 0, 27, 0, -9, 0, 1, -2, 0, 25, 0, -50, 0, 35, 0, -10, 0, 1, 0, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, 2, 0, -36, 0, 105, 0, -112, 0, 54, 0, -12, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jun 02 2005

Keywords

Comments

Signed version of A114525. - Eric W. Weisstein, Apr 07 2017
For n >= 3, also the coefficients of the matching polynomial for the n-cycle graph C_n. - Eric W. Weisstein, Apr 07 2017
This triangle describes the Chebyshev transform of A100047 and following. Chebyshev transform of sequence b is c(n) = Sum_{k=1..n} a(n,k)*b(k). - Christian G. Bower, Jun 12 2005

Examples

			Triangle begins:
   1;
   0,  1;
  -2,  0,  1;
   0, -3,  0,  1;
   2,  0, -4,  0,  1;
		

Crossrefs

Cf. A114525 (unsigned version).
Cf. A127672.

Programs

  • Maple
    f:=(1-x^2)/(1+x^2): g:=x/(1+x^2): G:=simplify(f/(1-t*g)): Gser:=simplify(series(G,x=0,14)): P[0]:=1: for n from 1 to 12 do P[n]:=coeff(Gser,x^n) od: for n from 0 to 12 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form # Emeric Deutsch, Jun 06 2005
  • Mathematica
    a[n_, k_] := SeriesCoefficient[(1-x^2)/(1+x^2-t*x), {x, 0, n}, {t, 0, k}]; a[0, 0] = 1; Table[a[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2014, after Emeric Deutsch *)
    Flatten[{{1}, CoefficientList[Table[I^n LucasL[n, -I x], {n, 10}], x]}] (* Eric W. Weisstein, Apr 07 2017 *)
    Flatten[{{1}, CoefficientList[LinearRecurrence[{x, -1}, {x, -2 + x^2}, 10], x]}] (* Eric W. Weisstein, Apr 07 2017 *)

Formula

Riordan array ( (1-x^2)/(1+x^2), x/(1+x^2)).
G.f.: (1-x^2)/(1+x^2-tx). - Emeric Deutsch, Jun 06 2005
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x^2) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = ( 1 + sqrt(1 - 4*x^2) )/2.
In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

Extensions

More terms from Emeric Deutsch and Christian G. Bower, Jun 06 2005

A108196 Expansion of (x-1)*(x+1) / (8*x^2 + 1 - 3*x + x^4 - 3*x^3).

Original entry on oeis.org

-1, -3, 0, 21, 55, 0, -377, -987, 0, 6765, 17711, 0, -121393, -317811, 0, 2178309, 5702887, 0, -39088169, -102334155, 0, 701408733, 1836311903, 0, -12586269025, -32951280099, 0, 225851433717, 591286729879, 0, -4052739537881
Offset: 0

Views

Author

Creighton Dement, Jul 23 2005

Keywords

Comments

Terms (or their respective absolute values) appear to be contained in A000045.
Working with an offset of 1, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 3, P2 = 6, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Crossrefs

Programs

  • Maple
    seriestolist(series((x-1)*(x+1)/(8*x^2+1-3*x+x^4-3*x^3), x=0,40));
  • Mathematica
    CoefficientList[Series[(x-1)(x+1)/(8x^2+1-3x+x^4-3x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,-8,3,-1},{-1,-3,0,21},40] (* Harvey P. Dale, Dec 25 2012 *)
  • PARI
    x='x+O('x^50); Vec((x-1)*(x+1)/(8*x^2 +1 -3*x + x^4 - 3*x^3)) \\ G. C. Greubel, Aug 08 2017
  • Sage
    [lucas_number1(n,3,1)*lucas_number1(n,1,1)*(-1) for n in range(1,33)] # Zerinvary Lajos, Jul 06 2008
    

Formula

a(0)=-1, a(1)=-3, a(2)=0, a(3)=21, a(n) = 3*a(n-1) - 8*a(n-2) + 3*a(n-3) - a(n-4). - Harvey P. Dale, Dec 25 2012
From Peter Bala, Mar 25 2014: (Start)
The following formulas assume an offset of 1.
a(n) = (-1)*A001906(n)*A010892(n-1). Equivalently, a(n) = (-1)*U(n-1,1/2)*U(n-1,3/2), where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = (-1)*bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -3/2; 1, 3/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.
The ordinary generating function is the Hadamard product of -x/(1 - x + x^2) and x/(1 - 3*x + x^2).
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

A226162 a(n) = Kronecker Symbol (-5/n), n >= 0.

Original entry on oeis.org

0, 1, -1, 1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, -1, 0, 1, -1, -1, -1, 0, 1, 1, 1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, 1, 0, 1, -1, 1, -1, 0, 1, -1, 1, -1, 0, -1, 1, 1, 1, 0, -1, -1, -1, -1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, 1, 1, -1, 1, 0, -1, -1, -1, 1, 0, -1, -1, 1, -1, 0, 1, -1, 1, 1, 0, -1, 1, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 29 2013

Keywords

Comments

The number of -1's among the four terms following the 0 at a(5*k), for k >= 0, is 1, 2, 3, 3, 1, 0, 3, 2, 2, 1, 4, 4, 0, 1, 3, 3, 1, 1, 3, 4, ...
See the Weisstein link, where it is stated that the period length is 0.
In general, the sequence {(k/n)} is not periodic if and only if k == 3 (mod 4). - Jianing Song, Dec 30 2018

Crossrefs

Cf. A035183 (inverse Moebius transform).
Sequences related to Kronecker symbols that do not form a Dirichlet character: this sequence {(-5/n)}, A034947 {(-1/n)}, A091338 {(3/n)}, A089509 {(7/n)}.
Cf. A080891 (5/n), A100047.

Programs

  • Maple
    0, seq(numtheory:-jacobi(-5, n), n=1..89); # Peter Luschny, Dec 30 2018
  • Mathematica
    Table[KroneckerSymbol[-5, n],{n,0,89}]
  • PARI
    a(n)=kronecker(-5,n); \\ Andrew Howroyd, Jul 23 2018

Formula

Completely multiplicative with a(2) = -1, a(5) = 0, a(p) = 1 if p == 1, 3, 7, 9 (mod 20), a(p) = -1 if p == 11, 13, 17, 19 (mod 20). - Jianing Song, Dec 30 2018

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A085903 Expansion of (1 + 2*x^2)/((1 + x)*(1 - 2*x)*(1 - 2*x^2)).

Original entry on oeis.org

1, 1, 7, 9, 31, 49, 127, 225, 511, 961, 2047, 3969, 8191, 16129, 32767, 65025, 131071, 261121, 524287, 1046529, 2097151, 4190209, 8388607, 16769025, 33554431, 67092481, 134217727, 268402689, 536870911, 1073676289, 2147483647
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003

Keywords

Comments

Resultant of the polynomial x^n - 1 and the Chebyshev polynomial of the first kind T_2(x).
This sequence is the case P1 = 1, P2 = 0, Q = -2 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 27 2014

Crossrefs

Programs

  • Magma
    [Round((Sqrt(2)^n - 1)*(Sqrt(2)^n - (-1)^n)): n in [1..40]]; // Vincenzo Librandi, Apr 28 2014
    
  • Maple
    seq(simplify((sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n)), n = 1..30); # Peter Bala, Apr 27 2014
  • Mathematica
    CoefficientList[ Series[(1 + 2x^2)/(1 - x - 4x^2 + 2x^3 + 4x^4), {x, 0, 30}], x] (* Robert G. Wilson v, May 04 2013 *)
    LinearRecurrence[{1,4,-2,-4},{1,1,7,9},40] (* Harvey P. Dale, Jul 25 2016 *)
  • PARI
    a(n) = polresultant(x^n - 1, 2*x^2 - 1) \\ David Wasserman, Feb 10 2005
    
  • Python
    def A085903(n): return (1<>1))-1)**2 # Chai Wah Wu, Jun 19 2024

Formula

a(2*n) = 2*4^n - 1, a(2*n + 1) = (2^n - 1)^2; interlaces A083420 with A060867 (squares of Mersenne numbers A000225). - Creighton Dement, May 19 2005
A107663(2*n) = a(2*n) = A083420(n). - Creighton Dement, May 19 2005
From Peter Bala, Apr 27 2014: (Start)
a(n) = (sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n).
a(n) = Product_{k = 1..n} ( 2 - exp(4*k*Pi*i/n) ). (End)
E.g.f.: exp(-x) + exp(2*x) - 2*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Jun 16 2016

Extensions

More terms from David Wasserman, Feb 10 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007

A161158 a(n) = A003696(n+1)/A001353(n+1).

Original entry on oeis.org

1, 14, 161, 1792, 19809, 218638, 2412353, 26614784, 293628097, 3239445006, 35739069409, 394290020096, 4349990523425, 47991114171406, 529460241815169, 5841251080892416, 64443392518654337, 710969410782059534
Offset: 0

Views

Author

R. J. Mathar, Jun 03 2009

Keywords

Comments

Proposed by R. Guy in the seqfan list Mar 28 2009.
With an offset of 1, this sequence is the case P1 = 14, P2 = 32, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 27 2014

Crossrefs

Programs

  • GAP
    a:=[1,14,161,1792];; for n in [5..20] do a[n]:=14*a[n-1]-34*a[n-2] +14*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Dec 24 2019
  • Magma
    I:=[1,14,161,1792]; [n le 4 select I[n] else 14*Self(n-1)-34*Self(n-2) +14*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 28 2014
    
  • Maple
    seq(simplify( ChebyshevU(n, (4+sqrt(2))/2)*ChebyshevU(n, (4-sqrt(2))/2) ), n = 0 .. 20); # G. C. Greubel, Dec 24 2019
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-14x+34x^2-14x^3+x^4), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 28 2014 *)
    Table[Simplify[ChebyshevU[n, (4+Sqrt[2])/2]*ChebyshevU[n, (4-Sqrt[2])/2]], {n, 0, 20}] (* G. C. Greubel, Dec 24 2019 *)
  • PARI
    vector(21, n, round(polchebyshev(n-1, 2, (4+sqrt(2))/2)*polchebyshev(n-1, 2, (4-sqrt(2))/2)) ) \\ G. C. Greubel, Dec 24 2019
    
  • Sage
    [round(chebyshev_U(n,(4+sqrt(2))/2)*chebyshev_U(n,(4-sqrt(2))/2)) for n in (0..20)] # G. C. Greubel, Dec 24 2019
    

Formula

a(n) = 14*a(n-1) -34*a(n-2) +14*a(n-3) -a(n-4).
G.f.: (1-x^2)/(1-14*x+34*x^2-14*x^3+x^4).
From Peter Bala, Apr 27 2014: (Start)
The following remarks assume an offset of 1.
a(n) = (1/sqrt(17))*( T(n,(7 + sqrt(17))/2) - T(n,(7 - sqrt(17))/2) ), where T(n,x) is the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n,M), where M is the 2 X 2 matrix [0, -8; 1, 7].
a(n) = U(n-1,1/2*(4 + sqrt(2)))*U(n-1,1/2*(4 - sqrt(2))), where U(n,x) is the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
Previous Showing 41-50 of 60 results. Next