A124794 Coefficients of incomplete Bell polynomials in the prime factorization order.
1, 1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 6, 1, 5, 10, 1, 1, 15, 1, 10, 15, 6, 1, 10, 10, 7, 15, 15, 1, 60, 1, 1, 21, 8, 35, 45, 1, 9, 28, 20, 1, 105, 1, 21, 105, 10, 1, 15, 35, 70, 36, 28, 1, 105, 56, 35, 45, 11, 1, 210, 1, 12, 210, 1, 84, 168, 1, 36, 55, 280, 1, 105, 1, 13, 280, 45, 126, 252, 1
Offset: 1
Keywords
Examples
The a(6) = 3 set partitions of type (2,1) are {{1},{2,3}}, {{1,3},{2}}, {{1,2},{3}}. - _Gus Wiseman_, Sep 12 2018
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- Eric Weisstein's World of Mathematics, Bell Polynomial
- Eric Weisstein's World of Mathematics, Faà di Bruno's Formula
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> (l-> add(i*l[i], i=1..nops(l))!/mul(l[i]!*i!^l[i], i=1..nops(l)))([seq(padic[ordp](n, ithprime(i)), i=1..pi(max(1, factorset(n))))]): seq(a(n), n=1..100); # Alois P. Heinz, Feb 14 2020
-
Mathematica
numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn]; Table[numSetPtnsOfType[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,100}] (* Gus Wiseman, Sep 12 2018 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, primepi(f[k,1])*f[k,2])!/(prod(k=1, #f~, f[k,2]!)*prod(k=1, #f~, primepi(f[k,1])!^f[k,2])); \\ Michel Marcus, Oct 11 2023
Formula
For n = p1^k1*p2^k2*... where 2 = p1 < p2 < ... are the sequence of all primes, a(n) = a([k1,k2,...]) = (k1+2*k2+...)!/((k1!*k2!*...)*(1!^k1*2!^k2*...)).
a(2*prime(n)) = n + 1, for n > 1. See A065475. - Bill McEachen, Oct 11 2023
Comments