cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 84 results. Next

A076264 Number of ternary (0,1,2) sequences without a consecutive '012'.

Original entry on oeis.org

1, 3, 9, 26, 75, 216, 622, 1791, 5157, 14849, 42756, 123111, 354484, 1020696, 2938977, 8462447, 24366645, 70160958, 202020427, 581694636, 1674922950, 4822748423, 13886550633, 39984728949, 115131438424, 331507764639
Offset: 0

Views

Author

John L. Drost, Nov 05 2002

Keywords

Comments

A transform of A000244 under the mapping g(x)->(1/(1+x^3))g(x/(1+x^3)). - Paul Barry, Oct 20 2004
b(n) := (-1)^n*a(n) appears in the formula for the nonpositive powers of rho(9) := 2*cos(Pi/9), when written in the power basis of the algebraic number field Q(rho(9)) of degree 3. See A187360 for the minimal polynomial C(9, x) of rho(9), and a link to the Q(2*cos(pi/n)) paper. 1/rho(9) = -3*1 + 0*rho(9) + 1*rho(9)^2 (see A230079, row n=5). 1/rho(9)^n = b(n)*1 + b(n-2)*rho(9) + b(n-1)*rho(9)^2, n >= 0, with b(-1) = 0 = b(-2). - Wolfdieter Lang, Nov 04 2013
The limit b(n+1)/b(n) = -a(n+1)/a(n) for n -> infinity is -tau(9) := -(1 + rho(9)) = 1/(2*cos(Pi*5/9)), approximately -2.445622407. tau(9) is known to be the length ratio (longest diagonal)/side in the regular 9-gon. This limit follows from the b(n)-recurrence and the solutions of X^3 + 3*X^2 - 1 = 0, which are given by the inverse of the known solutions of the minimal polynomial C(9, x) of rho(9) (see A187360). The other two X solutions are 1/rho(9) = -3 + rho(9)^2, approximately 0.5320888860 and 1/(2*cos(Pi*7/9)) = 1 + rho(9) - rho(9)^2, approximately -0.6527036445, and they are therefore irrelevant for this sequence. - Wolfdieter Lang, Nov 08 2013
a(n) is also the number of ternary (0,1,2) sequences of length n without a consecutive '110' because the patterns A=012 and B=110 have the same autocorrelation, i.e., AA=100=BB, in the sense of Guibas and Odlysko (1981). (A cyclic version of this sequence can be found in sequence A274018.) - Petros Hadjicostas, Sep 12 2017

Examples

			1/rho(9)^3 = -26*1 - 3*rho(9) + 9*rho(9)^2, (approximately 0.15064426) with rho(9) given in the Nov 04 2013 comment above. - _Wolfdieter Lang_, Nov 04 2013
G.f. = 1 + 3*x + 9*x^2 + 26*x^3 + 75*x^4 + 216*x^5 + 622*x^6 + 1791*x^7 + ...
		

References

  • A. Tucker, Applied Combinatorics, 4th ed. p. 277

Crossrefs

The g.f. corresponds to row 3 of triangle A225682.

Programs

  • GAP
    List([0..25],n->Sum([0..Int(n/3)],k->Binomial(n-2*k,k)*(-1)^k*3^(n-3*k))); # Muniru A Asiru, Feb 20 2018
  • Mathematica
    LinearRecurrence[{3,0,-1},{1,3,9},30] (* Harvey P. Dale, Feb 28 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / (1 - 3*x + x^3) + x * O(x^n), n))};
    

Formula

a(n) is asymptotic to g*c^n where c = cos(Pi/18)/cos(7*Pi/18) and g is the largest real root of 81*x^3 - 81*x^2 - 9*x + 1 = 0. - Benoit Cloitre, Nov 06 2002
G.f.: 1/(1 - 3x + x^3).
a(n) = 3*a(n-1) - a(n-3), n > 0.
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2k, k)(-1)^k*3^(n-3k). - Paul Barry, Oct 20 2004
a(n) = middle term in M^(n+1) * [1 0 0], where M = the 3 X 3 matrix [2 1 1 / 1 1 0 / 1 0 0]. Right term = A052536(n), left term = A052536(n+1). - Gary W. Adamson, Sep 05 2005

A255249 Decimal expansion of -2*cos(5*Pi/7).

Original entry on oeis.org

1, 2, 4, 6, 9, 7, 9, 6, 0, 3, 7, 1, 7, 4, 6, 7, 0, 6, 1, 0, 5, 0, 0, 0, 9, 7, 6, 8, 0, 0, 8, 4, 7, 9, 6, 2, 1, 2, 6, 4, 5, 4, 9, 4, 6, 1, 7, 9, 2, 8, 0, 4, 2, 1, 0, 7, 3, 1, 0, 9, 8, 8, 7, 8, 1, 9, 3, 7, 0, 7, 3, 0, 4, 9, 1, 2, 9, 7, 4, 5, 6, 9, 1, 5, 1, 8, 8, 5, 0, 1, 4, 6, 5, 3, 1, 7, 0
Offset: 1

Views

Author

Wolfdieter Lang, Mar 13 2015

Keywords

Comments

rho_3 := +2*cos(5*Pi/7) is the negative zero of the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of the algebraic number rho(7) = 2*cos(Pi/7), the length ratio of the smaller diagonal and the side in the regular 7-gon (heptagon). See A187360 and a link to the arXiv paper given there, eq. (20) for the zeros of C(n, x). The positive zeros are rho(7) and rho_2 = 2*cos(3*Pi/7) shown in A160389 and A255241.
Essentially the same as A231187 and A116425. - R. J. Mathar, Mar 14 2015

Examples

			1.2469796037174670610500097680084796212645494617928042107310988781937073049...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Cf. A047385, A160389, A187360, A255241, A330002, A330003 (Beatty sequences), A362922.

Programs

  • Mathematica
    r = x /. FindRoot[1/x + 1/(x+1)^2 == 1, {x, 2, 10}, WorkingPrecision -> 210]
    RealDigits[r][[1]]
    Plot[1/x + 1/(x+1)^2, {x, 1, 2}] (* Clark Kimberling, Jan 04 2020 *)
  • PARI
    polrootsreal(x^3 + x^2 - 2*x - 1)[3] \\ Charles R Greathouse IV, Oct 30 2023

Formula

2*cos(5*Pi/7) = - 2*sin(3*Pi/14) = -1.246979603...
Solution of x^3 + x^2 - 2 x - 1 = 0; +1.246979603... - Clark Kimberling, Jan 04 2020
Equals i^(4/7) - i^(10/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 20 2021: (Start)
Equals z + z^6, where z = exp(2*Pi*i/7), so this constant is one of the three cubic Gaussian periods for the modulus 7. The other periods are - A255241 and - A160389.
Equals (1 - z^2)*(1 - z^5)/((1 - z)*(1 - z^6)) - 2.
Equals Product_{n >= 0} (7*n+3)*(7*n+4)/((7*n+2)*(7*n+5)) = A231187 - 1. (End)
Equals Product_{k>=1} (1 - (-1)^k/A047385(k)). - Amiram Eldar, Nov 22 2024
Equals 1/(A160389-1) = 2*A362922. - Hugo Pfoertner, Nov 22 2024

A255241 Decimal expansion of 2*cos(3*Pi/7).

Original entry on oeis.org

4, 4, 5, 0, 4, 1, 8, 6, 7, 9, 1, 2, 6, 2, 8, 8, 0, 8, 5, 7, 7, 8, 0, 5, 1, 2, 8, 9, 9, 3, 5, 8, 9, 5, 1, 8, 9, 3, 2, 7, 1, 1, 1, 3, 7, 5, 2, 9, 0, 8, 9, 9, 1, 0, 6, 2, 3, 9, 7, 4, 0, 3, 1, 7, 9, 4, 8, 4, 2, 4, 6, 4, 0, 5, 7, 0, 9, 4, 6, 3, 8, 1, 4, 9, 1, 6, 2, 1, 0, 5, 2, 1, 6, 1, 4, 5, 9, 1, 2, 6, 9, 7, 4, 9, 4
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2015

Keywords

Comments

This is also the decimal expansion of 2*sin(Pi/14).
rho_2 := 2*cos(3*Pi/7) and rho(7) := 2*cos(Pi/7) (see A160389) are the two positive zeros of the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of the algebraic number rho(7), the length ratio of the smaller diagonal and the side in the regular 7-gon (heptagon). See A187360 and a link to the arXiv paper given there, eq. (20) for the zeros of C(n, x). The other zero is negative, rho_3 := 2*cos(5*Pi/n). See -A255249.
Also the edge length of a regular 14-gon with unit circumradius. Such an m-gon is not constructible using a compass and a straightedge (see A004169). With an even m, in fact, it would be constructible only if the (m/2)-gon were constructible, which is not true in this case (see A272487). - Stanislav Sykora, May 01 2016

Examples

			0.445041867912628808577805128993589518932711137529089910623974031...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Edge lengths of other nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A130880 (n=18), A272491 (n=19). - Stanislav Sykora, May 01 2016

Programs

  • Magma
    R:= RealField(120); 2*Cos(3*Pi(R)/7); // G. C. Greubel, Sep 04 2022
    
  • Mathematica
    RealDigits[N[2Cos[3Pi/7], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/14)
    
  • PARI
    polrootsreal(x^3 - x^2 - 2*x + 1)[2] \\ Charles R Greathouse IV, Oct 30 2023
    
  • SageMath
    numerical_approx(2*cos(3*pi/7), digits=120) # G. C. Greubel, Sep 04 2022

Formula

2*cos(3*Pi/7) = 2*sin(Pi/14) = 2*A232736 = 1/A231187 = 0.4450418679...
See A232736 for the decimal expansion of cos(3*Pi/7) = sin(Pi/14).
Equals i^(6/7) - i^(8/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 11 2021: (Start)
Equals 2 - (1 - z^3)*(1 - z^4)/((1 - z^2)*(1 - z^5)), where z = exp(2*Pi*i/7).
Equals 1 - A255240. (End)

Extensions

Offset corrected by Stanislav Sykora, May 01 2016

A127677 Scaled coefficient table for Chebyshev polynomials 2*T(2*n, sqrt(x)/2) (increasing even scaled powers, without zero entries).

Original entry on oeis.org

2, -2, 1, 2, -4, 1, -2, 9, -6, 1, 2, -16, 20, -8, 1, -2, 25, -50, 35, -10, 1, 2, -36, 105, -112, 54, -12, 1, -2, 49, -196, 294, -210, 77, -14, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, -2, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 2, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 07 2007

Keywords

Comments

2*T(2*n,x) = Sum_{m=0..n} a(n,m)*(2*x)^(2*m).
Closely related to A284982, which has opposite signs and rows begin with 0 of alternating signs instead of +/2. - Eric W. Weisstein, Apr 07 2017
Bisection triangle of A127672 (without zero entries, even part). The odd part is ((-1)^(n-m))*A111125(n,m).
If the leading 2 is replaced by a 1 we get the essentially identical sequence A110162. - N. J. A. Sloane, Jun 09 2007
Also row n gives coefficients of characteristic polynomial of the Cartan matrix for the root system B_n (or, equally, C_n). - Roger L. Bagula, May 23 2007
From Wolfdieter Lang, Oct 04 2013: (Start)
This triangle a(n,m) is used to express the length ratio side/R given by s(4*n+2) = 2*sin(Pi/(4*n+2)) = 2*cos(2*n*Pi/(4*n+2)) in a regular (4*n+2)-gon, inscribed in a circle with radius R, in terms of rho(4*n+2) = 2*cos(Pi/4*n+2), the length ratio of (the smallest diagonal)/side (for n=2 there is no such diagonal).
s(4*n+2) = Sum_{m=0..n}a(n,m)*rho(4*n+2)^(2*m). This formula is needed to show that the total sum of all length ratios in a (4*n+2)-gon is an integer in the algebraic number field Q(rho(4*n+2)). Note that rho(4*n+2) has degree delta(4*n+2) = A055034(4*n+2). Therefore one has to take s(4*n+2) modulo C(4*n+2, x=rho(4*n+2)), the minimal polynomial of rho(4*n+2) (see A187360). Thanks go to Seppo Mustonen for asking me to look into this problem. See ((-1)^(n-m))*A111125(n,m) for the (4*n)-gon situation. (End)

Examples

			The triangle a(n,m) starts:
n\m  0    1    2     3     4     5     6     7    8   9  10 ...
0:   2
1:  -2    1
2:   2   -4    1
3:  -2    9   -6     1
4:   2  -16   20    -8     1
5:  -2   25  -50    35   -10     1
6:   2  -36  105  -112    54   -12     1
7:  -2   49 -196   294  -210    77   -14     1
8:   2  -64  336  -672   660  -352   104   -16    1
9:  -2   81 -540  1386 -1782  1287  -546   135  -18   1
10:  2 -100  825 -2640  4290 -4004  2275  -800  170 -20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 21 2012.
n=3: [-2,9,-6,1] stands for -2*1 + 9*(2*x)^2 -6*(2*x)^4 +1*(2*x)^6 = 2*(1+18*x^2-48*x^4+32*x^6) = 2*T(6,x).
(4*n+2)-gon side/radius s(4*n+2) as polynomial in rho(4*n+2) = smallest diagonal/side: n=0: s(2) = 2 (rho(2)=0); n=1: s(6) = -2 + rho(6)^2 = -2 + 3 = 1, (C(6,x) = x^2 - 3); n=2: s(10) = 2 - 4*rho(10)^2 + 1*rho(10)^4 = 2 - 4*rho(10)^2 + (5*rho(10)^2 - 5) = -3 + rho(10)^2, (C(10,x) = x^4 - 5*x^2 + 5). - _Wolfdieter Lang_, Oct 04 2013
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 62
  • Sigurdur Helgasson,Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S. :ISBN 0-8218-2848-7, 1978,p. 463.

Crossrefs

Cf. A284982 (opposite signs and rows begin with 0).
Row sums (signed): -A061347(n+3) for n>=0.
Row sums (unsigned): A005248(n) = L(2*n), where L=Lucas.

Programs

  • Mathematica
    T[n_, m_, d_] := If[ n == m, 2, If[n == d && m == d - 1, -2, If[(n == m - 1 || n == m + 1), -1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] a = Join[M[1], Table[CoefficientList[CharacteristicPolynomial[M[d], x], x], {d, 1, 10} ]] (* Roger L. Bagula, May 23 2007 *)
    CoefficientList[2 ChebyshevT[2 Range[0, 10], Sqrt[x]/2], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[(-1)^n LucasL[2 n, Sqrt[-x]], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
  • PARI
    a(n,m) = {if(n>=2, -2*a(n-1,m)+a(n-1,m-1)-a(n-2,m), if(n==0, if(m!=0,0,2), if(m==0,-2, if(m==1,1,0))))};
    for(n=0,10,for(m=0,n,print1(a(n,m),", "))) \\ Hugo Pfoertner, Jul 19 2020

Formula

a(n,m) = 0 if n < m; a(n,0) = 2*(-1)^n; a(n,m) = ((-1)^(n+m))*n*binomial(n+m-1, 2*m-1)/m.
a(n,m) = 0 if n < m, a(0,0) = 2, a(n,m) = (-1)^(n-m)*(2*n/(n+m))*binomial(n+m, n-m), n >= 1. From Waring's formula applied to Chebyshev's T-polynomials. See also A110162. - Wolfdieter Lang, Nov 21 2012
The o.g.f. Sum_{n>=0} p(n,x)*z^n, n>=0, for the row polynomials p(n,x) := Sum_{m=0..n} a(n,m)*x^m is (2 + z*(2-x))/((z+1)^2 - z*x). Here p(n,x) = R(2*n,sqrt(x)) := 2*T(2*n,sqrt(x)/2) with Chebyshev's T-polynomials. For the R-polynomials see A127672. - Wolfdieter Lang, Nov 28 2012
From Tom Copeland, Nov 07 2015: (Start)
A logarithmic generator is 2*(1-log(1+x))-log(1-t*x/(1+x)^2) = 2 - log(1+(2-t)*x+x^2) = 2 + (-2 + t)*x + (2 - 4*t + t^2) x^2/2 + (-2 + 9*t - 6*t^2 + t^3) x^3/3 + ..., so a number of relations to the Faber polynomials of A263916 hold with p(0,x) = 2:
1) p(n,x) = F(n,(2-x),1,0,0,..)
2) p(n,x) = (-1)^n 2 + F(n,-x,2x,-3x,...,(-1)^n n*x)
3) p(n,x) = (-1)^n [2 + F(n,x,2x,3x,...,n*x)].
The unsigned array contains the partial sums of A111125 modified by appending a column of zeros, except for an initial two, to A111125. Then the difference of consecutive rows of unsigned A127677, further modified by appending an initial rows of zeros, generates the modified A111125. Cf. A208513 and A034807.
For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 12, 20, and 21) and Damianou and Evripidou (p. 7).
See A111125 for a relation to the squares of the odd row polynomials here with the constant removed.
p(n,x)^2 = 2 + p(2*n,x). See also A127672. (End)
a(n,m) = -2*a(n-1,m) + a(n-1,m-1) - a(n-2,m) for n >= 2 with initial conditions a(0,0) = 2, a(1,0) = -2, a(1,1) = 1, a(0,m) = 0 for m != 0, a(1,m) = 0 for m != 0,1. - William P. Orrick, Jun 09 2020
p(n,x) = (x-2)*p(n-1,x) - p(n-2,x) for n >= 2. - William P. Orrick, Jun 09 2020

Extensions

Definition corrected by Eric W. Weisstein, Apr 06 2017

A033200 Primes congruent to {1, 3} (mod 8); or, odd primes of form x^2 + 2*y^2.

Original entry on oeis.org

3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499
Offset: 1

Views

Author

Keywords

Comments

Rational primes that decompose in the field Q(sqrt(-2)). - N. J. A. Sloane, Dec 25 2017
Fermat knew of the relationship between a prime being congruent to 1 or 3 mod 8 and its being the sum of a square and twice a square, and claimed to have a firm proof of this fact. These numbers are not primes in Z[sqrt(-2)], as they have x - y sqrt(-2) as a divisor. - Alonso del Arte, Dec 07 2012
Terms m in A047471 with A010051(m) = 1. - Reinhard Zumkeller, Dec 29 2012
This sequence gives the primes p which satisfy norm(rho(p)) = + 1 with rho(p) := 2*cos(Pi/p) (the length ratio (smallest diagonal)/side in the regular p-gon). The norm of an algebraic number (over Q) is the product over all zeros of its minimal polynomial. Here norm(rho(p)) = (-1)^delta(p)* C(p, 0), with the degree delta(p) = A055034(p) = (p-1)/2. For the minimal polynomial C see A187360. For p == 1 (mod 8) the norm is C(p, 0) (see a comment on 4*A005123) and for p == 3 (mod 8) the norm is -C(p, 0) (see a comment on A186297). For the primes with norm(rho(p)) = -1 see A003628. - Wolfdieter Lang, Oct 24 2013
If p is a member then it has a unique representation as x^2+2y^2 [Frei, Theorem 3]. - N. J. A. Sloane, May 30 2014
Primes that are the quarter perimeter of a Heronian triangle. Such primes are unique to the Heronian triangle (see Yiu link). - Frank M Jackson, Nov 30 2014

Examples

			Since 11 is prime and 11 == 3 (mod 8), 11 is in the sequence. (Also 11 = 3^2 + 2 * 1^2 = (3 + sqrt(-2))(3 - sqrt(-2)).)
Since 17 is prime and 17 == 1 (mod 8), 17 is in the sequence.
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 7.

Crossrefs

Cf. A033203.

Programs

  • Haskell
    a033200 n = a033200_list !! (n-1)
    a033200_list = filter ((== 1) . a010051) a047471_list
    -- Reinhard Zumkeller, Dec 29 2012
    
  • Magma
    [p: p in PrimesUpTo(600) | p mod 8 in [1, 3]]; // Vincenzo Librandi, Aug 04 2012
    
  • Mathematica
    Rest[QuadPrimes2[1, 0, 2, 10000]] (* see A106856 *)
    Select[Prime[Range[200]],MemberQ[{1,3},Mod[#,8]]&] (* Harvey P. Dale, Jun 09 2017 *)
  • PARI
    is(n)=n%8<4 && n%2 && isprime(n) \\ Charles R Greathouse IV, Feb 09 2017

Formula

a(n) = A033203(n+1). - Zak Seidov, May 29 2014
A007519 UNION A007520. - R. J. Mathar, Jun 09 2020
L(-2, a(n)) = +1, n >= 1, with the Legendre symbol L. -Wolfdieter Lang, Jul 24 2024

A106609 Numerator of n/(n+8).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 2, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 4, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 6, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 8, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77, 39, 79
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

The graph of this sequence is made up of four linear functions: a(n_odd)=n, a(n=2+4i)=n/2, a(4+8i)=n/4, a(8i)=n/8. - Zak Seidov, Oct 30 2006. [In general, f(n) = numerator of n/(n+m) consists of linear functions n/d_i, where d_i are divisors of m (including 1 and m).]
a(n+2), n>=0, is the denominator of the harmonic mean H(n,2) = 4*n/(n+2). a(n+2) = (n+2)/gcd(n+2,8). a(n+5) = A227042(n+2, 2), n >= 0. - Wolfdieter Lang, Jul 04 2013
The sequence p(n) = a(n-4), n>=1, with a(-3) = a(3) = 3, a(-2) = a(2) = 1 and a(-1) = a(1) = 1, appears in the problem of writing 2*sin(2*Pi/n) as an integer in the algebraic number field Q(rho(q(n))), where rho(k) = 2*cos(Pi/k) and q(n) = A225975(n). One has 2*sin(2*Pi/n) = R(p(n), x) modulo C(q(n), x), with x = rho(q(n)) and the integer polynomials R and C given in A127672 and A187360, respectively. See a comment on A225975. - Wolfdieter Lang, Dec 04 2013
A204455(n) divides a(n) for n>=1. - Alexander R. Povolotsky, Apr 06 2015
A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 20 2019

Crossrefs

Cf. A109049, A204455, A225975, A227042 (second column, starting with a(5)).
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([0..80],n->NumeratorRat(n/(n+8))); # Muniru A Asiru, Feb 19 2019
  • Magma
    [Numerator(n/(n+8)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    a := n -> iquo(n, [8, 1, 2, 1, 4, 1, 2, 1][1 + modp(n, 8)]):
    seq(a(n), n=0..79); # using Wolfdieter Lang's formula, Peter Luschny, Feb 22 2019
  • Mathematica
    f[n_]:=Numerator[n/(n+8)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
    LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1},{0,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15},100] (* Harvey P. Dale, Sep 27 2019 *)
  • PARI
    vector(100, n, n--; numerator(n/(n+8))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [lcm(n,8)/8 for n in range(0, 100)] # Zerinvary Lajos, Jun 09 2009
    

Formula

a(n) = 2*a(n-8) - a(n-16).
G.f.: x* (x^2-x+1) * (x^12 +2*x^11 +4*x^10 +3*x^9 +4*x^8 +4*x^7 +7*x^6 +4*x^5 +4*x^4 +3*x^3 +4*x^2 +2*x +1) / ( (x-1)^2 *(x+1)^2 *(x^2+1)^2 *(x^4+1)^2 ). - R. J. Mathar, Dec 02 2010
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109049(n)/8.
Dirichlet g.f. zeta(s-1)*(1-1/2^s-1/2^(2s)-1/2^(3s)).
Multiplicative with a(2^e) = 2^max(0,e-3). a(p^e) = p^e if p>2. (End)
a(n) = n/gcd(n,8), n >= 0. See the harmonic mean comment above. - Wolfdieter Lang, Jul 04 2013
a(n) = n if n is odd; for n == 0 (mod 8) it is n/8, for n == 2 or 6 (mod 8) it is n/2 and for n == 4 (mod 8) it is n/4. - Wolfdieter Lang, Dec 04 2013
From Peter Bala, Feb 20 2019: (Start)
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - F(x^2) - F(x^4) - F(x^8), where F(x) = x/(1 - x)^2.
More generally, for m >= 1, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 2^m)*( F(m,x^2) + F(m,x^4) + F(m,x^8) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m-th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Sum_{n >= 1} (1/n)*a(n)*x^n = G(x) - (1/2)*G(x^2) - (1/4)*G(x^4) - (1/8)*G(x^8), where G(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4)^2*L(x^4) - (1/8)^2*L(x^8), where L(x) = Log(1/(1 - x)).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8). (End)
Sum_{k=1..n} a(k) ~ (43/128) * n^2. - Amiram Eldar, Nov 25 2022

A094829 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 6.

Original entry on oeis.org

1, 6, 27, 109, 417, 1548, 5644, 20349, 72846, 259579, 922209, 3269889, 11579032, 40967400, 144863001, 512050438, 1809503019, 6393427173, 22587086305, 79791176292, 281856708180, 995606748757, 3516721295214
Offset: 2

Views

Author

Herbert Kociemba, Jun 13 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i)-s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k.
a(n)/a(n-1) tends to 3.53208888...; = 2 + 2*cos(2*Pi/9) = A332438. - Gary W. Adamson, May 29 2008
From Wolfdieter Lang, Mar 27 2020: (Start)
The explicit form is written in terms of r = rho(9) = 2*cos(Pi/9) = A332437 as a Binet - de Moivre type formula a(n+2) = r^(2*(n+1))*(A(r) + Bp(r)*Cp(r)^(n+1)) + Bm(r)*Cm(r)^(n+1)), with A(r) = (1/9)*(2 + 5*r -r^2), approx. 0.87387081, Bp(r) = (1/18)*((14*r^2 - 5*r - 42)*sqrt(3*(3*r + 1)*(r - 1)) + r^2 - 5*r - 2) = (1/9)*(8 - r - 4*r^2), approx. -0.88974898, Cp(r) = (1/2)*(9*r^2 - 3*r - 26)*(3*r - 1 + sqrt(3*(3*r+1)*(r-1))) = 32 + 4*r - 11*r^2, approx. 0.66456322, Bm(r) = (1/18)*(-(14*r^2 - 5*r - 42)*sqrt(3*(3*r + 1)*(r - 1)) + r^2 - 5*r - 2) = (1/9)*(-10 -4*r + 5*r^2), approx. 0.01587816, and Cm(r) = (1/2)*(9*r^2 - 3*r - 26)*(3*r - 1 - sqrt(3*(3*r + 1)*(r - 1))) = 21 + 2*r - 7*r^2, approx. 0.03414828, for n >= 0.
Proof by partial fraction decomposition of the g.f. using the roots of 1 - 6*x + 9*x^2 - x^3 written in terms of r, which are X1(r) = 1/r^2 = 9 + r - 3*r^2, approx. 0.28311858, Xp(r) = (r/2)*(3*r - 1 + sqrt((3*(3*r+1))*(r-1))) = 1 + 2*r + r^2, approx. 8.29085937, Xm(r) = (r/2)*(3*r - 1 - sqrt((3*(3*r + 1))*(r - 1))) = -1 - 3*r + 2*r^2, approx. 0.42602205. Xp(r)*Xm(r) = r^2. The reduction with the minimal polynomial of r = rho(9), i.e., C(9, x) = x^3 - 3*x - 1 (see A187360) has been used to avoid all powers of r larger than 2. The reciprocal roots turn out to be the roots of the minimal polynomial of r^2, see A332438. 1/X1(r) = r^2, 1/Xp(r) = 2 - r, and 1/Xm(r) = 4 + r - r^2.
This proves the above stated limit of a(n+3)/a(n+2) for n to infinity, namely r^2 = A332438, approx. 3.53208889.
(End)

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^2/(1 - 6 x + 9 x^2 - x^3), {x, 0, 24}], x], 2] (* Michael De Vlieger, Aug 05 2021 *)

Formula

a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/9)*sin(2*r*Pi/3)*(2*cos(r*Pi/9))^(2*n+1), for n >= 2.
a(n) = 6*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: x^2/(1 - 6x + 9x^2 - x^3).
For the explicit form of a(n+2), for n >= 0, see a comment above. - Wolfdieter Lang, Mar 26 2020

A332437 Decimal expansion of 2*cos(Pi/9).

Original entry on oeis.org

1, 8, 7, 9, 3, 8, 5, 2, 4, 1, 5, 7, 1, 8, 1, 6, 7, 6, 8, 1, 0, 8, 2, 1, 8, 5, 5, 4, 6, 4, 9, 4, 6, 2, 9, 3, 9, 8, 7, 2, 4, 1, 6, 2, 6, 8, 5, 2, 8, 9, 2, 9, 2, 6, 6, 1, 8, 0, 5, 7, 3, 3, 2, 5, 5, 4, 8, 4, 4, 2, 4, 2, 1, 9, 9, 1, 7, 7, 8, 9, 1, 7, 8, 9, 9, 4, 9, 1, 7, 7, 9, 6, 7, 5, 8, 9, 6, 1, 3, 4, 9
Offset: 1

Views

Author

Wolfdieter Lang, Mar 27 2020

Keywords

Comments

This algebraic number called rho(9) of degree 3 = A055034(9) has minimal polynomial C(9, x) = x^3 - 3*x - 1 (see A187360).
rho(9) gives the length ratio diagonal/side of the smallest diagonal in the regular 9-gon.
The length ratio diagonal/side of the second smallest and the third smallest (or the largest) diagonal in the regular 9-gon are rho(9)^2 - 1 = A332438 - 1 and rho(9) + 1, respectively. - Mohammed Yaseen, Oct 31 2020

Examples

			rho(9) = 1.87938524157181676810821855464946293987241626852892926618...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Programs

  • Mathematica
    RealDigits[2 * Cos[Pi/9], 10, 100][[1]] (* Amiram Eldar, Mar 27 2020 *)
  • PARI
    2*cos(Pi/9) \\ Michel Marcus, Mar 28 2020

Formula

rho(9) = 2*cos(Pi/9).
Equals (-1)^(-1/9)*((-1)^(1/9) - i)*((-1)^(1/9) + i). - Peter Luschny, Mar 27 2020
Equals 2*A019879. - Michel Marcus, Mar 28 2020
Equals sqrt(A332438). - Mohammed Yaseen, Oct 31 2020
From Peter Bala, Oct 20 2021: (Start)
The zeros of x^3 - 3*x - 1 are r_1 = -2*cos(2*Pi/9), r_2 = -2*cos(4*Pi/9) and r_3 = -2*cos(8*Pi/9) = 2*cos(Pi/9).
The polynomial x^3 - 3*x - 1 is irreducible over Q (since it is irreducible mod 2) with discriminant equal to 3^4, a square. It follows that the Galois group of the number field Q(2*cos(Pi/9)) over Q is cyclic of order 3.
The mapping r -> 2 - r^2 cyclically permutes the zeros r_1, r_2 and r_3. The inverse cyclic permutation is given by r -> r^2 - r - 2.
The first differences r_1 - r_2, r_2 - r_3 and r_3 - r_1 are the zeros of the cyclic cubic polynomial x^3 - 9*x - 9 of discriminant 3^6.
First quotient relations:
r_1/r_2 = 1 + (r_3 - r_1); r_2/r_3 = 1 + (r_1 - r_2); r_3/r_1 = 1 + (r_2 - r_3);
r_2/r_1 = (r_3 - r_2) - 2; r_3/r_2 = (r_1 - r_3) - 2; r_1/r_3 = (r_2 - r_1) - 2;
r_1/r_2 + r_2/r_3 + r_3/r_1 = 3; r_2/r_1 + r_3/r_2 + r_1/r_3 = -6.
Thus the first quotients r_1/r_2, r_2/r_3 and r_3/r_1 are the zeros of the cyclic cubic polynomial x^3 - 3*x^2 - 6*x - 1 of discriminant 3^6. See A214778.
Second quotient relations:
(r_1*r_2)/(r_3^2) = 3*r_2 - 6*r_1 - 8, with two other similar relations by cyclically permuting the 3 zeros. The three second quotients are the zeros of the cyclic cubic polynomial x^3 + 24*x^2 + 3*x - 1 of discriminant 3^10.
(r_1^2)/(r_2*r_3) = 1 - 3*(r_2 + r_3), with two other similar relations by cyclically permuting the 3 zeros. (End)
Equals i^(2/9) + i^(-2/9). - Gary W. Adamson, Jun 25 2022
Equals Re((4+4*sqrt(3)*i)^(1/3)). - Gerry Martens, Mar 19 2024
From Amiram Eldar, Nov 22 2024: (Start)
Equals Product_{k>=1} (1 - (-1)^k/A056020(k)).
Equals 1 + Product_{k>=1} (1 + (-1)^k/A156638(k)). (End)

A332438 Decimal expansion of (2*cos(Pi/9))^2 = A332437^2.

Original entry on oeis.org

3, 5, 3, 2, 0, 8, 8, 8, 8, 6, 2, 3, 7, 9, 5, 6, 0, 7, 0, 4, 0, 4, 7, 8, 5, 3, 0, 1, 1, 1, 0, 8, 3, 3, 3, 4, 7, 8, 7, 1, 6, 6, 4, 9, 1, 4, 1, 6, 0, 7, 9, 0, 4, 9, 1, 7, 0, 8, 0, 9, 0, 5, 6, 9, 2, 8, 4, 3, 1, 0, 7, 7, 7, 7, 1, 3, 7, 4, 9, 4, 4, 7, 0, 5, 6, 4, 5, 8, 5, 5, 3, 3, 6, 1, 0, 9, 6, 9
Offset: 1

Views

Author

Wolfdieter Lang, Mar 31 2020

Keywords

Comments

This algebraic number rho(9)^2 of degree 3 is a root of its minimal polynomial x^3 - 6*x^2 + 9*x - 1.
The other two roots are x2 = (2*cos(5*Pi/9))^2 = (2*cos(4*Pi/9))^2 = (R(4,rho(9)))^2 = 2 - rho(9) = 0.120614758..., and x3 = (2*cos(7*Pi/9))^2 = (2*cos(7*Pi/9))^2 = (R(7,rho(9)))^2 = 4 + rho(9) - rho(9)^2 = 2.347296355... = A130880 + 2, with rho(9) = 2*cos(Pi/9) = A332437, the monic Chebyshev polynomials R (see A127672), and the computation is done modulo the minimal polynomial of rho(9) which is x^3 - 3*x - 1 (see A187360).
This gives the representation of these roots in the power basis of the simple field extension Q(rho(9)). See the linked W. Lang paper in A187360, sect. 4.
This number rho(9)^2 appears as limit of the quotient of consecutive numbers af various sequences, e.g., A094256 and A094829.
The algebraic number rho(9)^2 - 2 = 1.532088898... of Q(rho(9)) has minimal polynomial x^3 - 3*x + 1 over Q. The other roots are -rho(9) = -A332437 and 2 + rho(9) - rho(9)^2 = A130880. - Wolfdieter Lang, Sep 20 2022

Examples

			3.5320888862379560704047853011108333478716649...
		

Crossrefs

2 + 2*cos(2*Pi/n): A104457 (n = 5), A116425 (n = 7), A296184 (n = 10), A019973 (n = 12).

Programs

  • Mathematica
    RealDigits[(2*Cos[Pi/9])^2, 10, 100][[1]] (* Amiram Eldar, Mar 31 2020 *)
  • PARI
    (2*cos(Pi/9))^2 \\ Michel Marcus, Sep 23 2022

Formula

Equals (2*cos(Pi/9))^2 = rho(9)^2 = A332437^2.
Equals 2 + i^(4/9) - i^(14/9). - Peter Luschny, Apr 04 2020
Equals 2 + w1^(1/3) + w2^(1/3), where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1. - Wolfdieter Lang, Sep 20 2022
Constant c = 2 + 2*cos(2*Pi/9). The linear fractional transformation z -> c - c/z has order 9, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(z))))))))). - Peter Bala, May 09 2024
From Amiram Eldar, Nov 22 2024: (Start)
Equals 3 + sec(Pi/9)/2 = 3 + 1/(2*A019879).
Equals 3 + Product_{k>=3} (1 + (-1)^k/A063289(k)). (End)

A206551 Moduli n for which the multiplicative group Modd n is cyclic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 67, 69, 71, 73, 74, 75, 77, 79, 81, 82, 83, 86, 87, 89, 93, 94, 95, 97, 98, 99
Offset: 1

Views

Author

Wolfdieter Lang, Mar 27 2012

Keywords

Comments

For Modd n (not to be confused with mod n) see a comment on A203571.
For n=1 one has the Modd 1 residue class [0], the integers. The group of order 1 is the cyclic group Z_1 with the unit element 0==1 (Modd 1). [Changed by Wolfdieter Lang, Apr 04 2012]
For the non-cyclic (acyclic) values see A206552.
For these numbers n, and only for these (only the n values < 100 are shown above), there exist primitive roots Modd n. See the nonzero values of A206550 for the smallest positive ones.
For n=1 the primitive root is 0 == 1 (Modd 1), see above.
For n>=1 the multiplicative group Modd n is the Galois group Gal(Q(rho(n))/Q), with the algebraic number rho(n) := 2*cos(Pi/n) with minimal polynomial C(n,x), whose coefficients are given in A187360.

Examples

			a(2) = 2 for the multiplicative group Modd 2, with representative [1], and there is a primitive root, namely 1, because 1^1 = 1 == 1 (Modd 1). The cycle structure is [[1]], the group is Z_1.
a(3) = 3 for the multiplicative group Modd 3 which coincides with the one for Modd 2.
a(4) = 4 for the multiplicative group Modd 4 with representatives [1,3]. The smallest positive  primitive root is 3, because 3^2 == 1 (Modd 4). This group is cyclic, it is Z_2.
		

Crossrefs

Cf. A206550, A033948 (mod n case).

Formula

A206550(a(n)) > 0, n>=1.
Previous Showing 21-30 of 84 results. Next