cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A002878 Bisection of Lucas sequence: a(n) = L(2*n+1).

Original entry on oeis.org

1, 4, 11, 29, 76, 199, 521, 1364, 3571, 9349, 24476, 64079, 167761, 439204, 1149851, 3010349, 7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879, 17393796001, 45537549124, 119218851371, 312119004989, 817138163596, 2139295485799
Offset: 0

Views

Author

Keywords

Comments

In any generalized Fibonacci sequence {f(i)}, Sum_{i=0..4n+1} f(i) = a(n)*f(2n+2). - Lekraj Beedassy, Dec 31 2002
The continued fraction expansion for F((2n+1)*(k+1))/F((2n+1)*k), k>=1 is [a(n),a(n),...,a(n)] where there are exactly k elements (F(n) denotes the n-th Fibonacci number). E.g., continued fraction for F(12)/F(9) is [4, 4,4]. - Benoit Cloitre, Apr 10 2003
See A135064 for a possible connection with Galois groups of quintics.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(5)). - Thomas Baruchel, Sep 15 2003
All positive integer solutions of Pell equation a(n)^2 - 5*b(n)^2 = -4 together with b(n)=A001519(n), n>=0.
a(n) = L(n,-3)*(-1)^n, where L is defined as in A108299; see also A001519 for L(n,+3).
Inverse binomial transform of A030191. - Philippe Deléham, Oct 04 2005
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
Let r = (2n+1), then a(n), n>0 = Product_{k=1..floor((r-1)/2)} (1 + sin^2 k*Pi/r); e.g., a(3) = 29 = (3.4450418679...)*(4.801937735...)*(1.753020396...). - Gary W. Adamson, Nov 26 2008
a(n+1) is the Hankel transform of A001700(n)+A001700(n+1). - Paul Barry, Apr 21 2009
a(n) is equal to the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
Conjecture: for n > 0, a(n) = sqrt(Fibonacci(4*n+3) + Sum_{k=2..2*n} Fibonacci(2*k)). - Alex Ratushnyak, May 06 2012
Pisano period lengths: 1, 3, 4, 3, 2, 12, 8, 6, 12, 6, 5, 12, 14, 24, 4, 12, 18, 12, 9, 6, ... . - R. J. Mathar, Aug 10 2012
The continued fraction [a(n); a(n), a(n), ...] = phi^(2n+1), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 05 2013
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy + 5. - Michel Lagneau, Feb 01 2014
Conjecture: except for the number 3, a(n) are the numbers such that a(n)^2+2 are Lucas numbers. - Michel Lagneau, Jul 22 2014
Comment on the preceding conjecture: It is clear that all a(n) satisfy a(n)^2 + 2 = L(2*(2*n+1)) due to the identity (17 c) of Vajda, p. 177: L(2*n) + 2*(-1)^n = L(n)^2 (take n -> 2*n+1). - Wolfdieter Lang, Oct 10 2014
Limit_{n->oo} a(n+1)/a(n) = phi^2 = phi + 1 = (3+sqrt(5))/2. - Derek Orr, Jun 18 2015
If d[k] denotes the sequence of k-th differences of this sequence, then d[0](0), d[1](1), d[2](2), d[3](3), ... = A048876, cf. message to SeqFan list by P. Curtz on March 2, 2016. - M. F. Hasler, Mar 03 2016
a(n-1) and a(n) are the least phi-antipalindromic numbers (A178482) with 2*n and 2*n+1 digits in base phi, respectively. - Amiram Eldar, Jul 07 2021
Triangulate (hyperbolic) 2-space such that around every vertex exactly 7 triangles touch. Call any 7 triangles having a common vertex the first layer and let the (n+1)-st layer be all triangles that do not appear in any of the first n layers and have a common vertex with the n-th layer. Then the n-th layer contains 7*a(n-1) triangles. E.g., the first layer (by definition) contains 7 triangles, the second layer (the "ring" of triangles around the first layer) consists of 28 triangles, the third layer (the next "ring") consists of 77 triangles, and so on. - Nicolas Nagel, Aug 13 2022

Examples

			G.f. = 1 + 4*x + 11*x^2 + 29*x^3 + 76*x^4 + 199*x^5 + 521*x^6 + ... - _Michael Somos_, Jan 13 2019
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Steven Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A000204. a(n) = A060923(n, 0), a(n)^2 = A081071(n).
Cf. A005248 [L(2n) = bisection (even n) of Lucas sequence].
Cf. A001906 [F(2n) = bisection (even n) of Fibonacci sequence], A000045, A002315, A004146, A029907, A113224, A153387, A153416, A178482, A192425, A285992 (prime subsequence).
Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in A264080.

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,2*n+1)[2] ); # G. C. Greubel, Jul 15 2019
    
  • Haskell
    a002878 n = a002878_list !! n
    a002878_list = zipWith (+) (tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Jan 11 2012
    
  • Magma
    [Lucas(2*n+1): n in [0..40]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    A002878 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,4]);
        else
            3*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    a[n_]:= FullSimplify[GoldenRatio^n - GoldenRatio^-n]; Table[a[n], {n, 1, 40, 2}]
    a[1]=1; a[2]=4; a[n_]:=a[n]= 3a[n-1] -a[n-2]; Array[a, 40]
    LinearRecurrence[{3, -1}, {1, 4}, 41] (* Jean-François Alcover, Sep 23 2017 *)
    Table[Sum[(-1)^Floor[k/2] Binomial[n -Floor[(k+1)/2], Floor[k/2]] 3^(n - k), {k, 0, n}], {n, 0, 40}] (* L. Edson Jeffery, Feb 26 2018 *)
    a[ n_] := Fibonacci[2n] + Fibonacci[2n+2]; (* Michael Somos, Jul 31 2018 *)
    a[ n_]:= LucasL[2n+1]; (* Michael Somos, Jan 13 2019 *)
  • PARI
    a(n)=fibonacci(2*n)+fibonacci(2*n+2) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    for(n=1,40,q=((1+sqrt(5))/2)^(2*n-1);print1(contfrac(q)[1],", ")) \\ Derek Orr, Jun 18 2015
    
  • PARI
    Vec((1+x)/(1-3*x+x^2) + O(x^40)) \\ Altug Alkan, Oct 26 2015
    
  • Python
    a002878 = [1, 4]
    for n in range(30): a002878.append(3*a002878[-1] - a002878[-2])
    print(a002878) # Gennady Eremin, Feb 05 2022
  • Sage
    [lucas_number2(2*n+1,1,-1) for n in (0..40)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n+1) = 3*a(n) - a(n-1).
G.f.: (1+x)/(1-3*x+x^2). - Simon Plouffe in his 1992 dissertation
a(n) = S(2*n, sqrt(5)) = S(n, 3) + S(n-1, 3); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 3) = A001906(n+1) (even-indexed Fibonacci numbers).
a(n) ~ phi^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then (-1)^n*q(n, -1) = a(n). - Benoit Cloitre, Nov 10 2002
a(n) = A005248(n+1) - A005248(n) = -1 + Sum_{k=0..n} A005248(k). - Lekraj Beedassy, Dec 31 2002
a(n) = 2^(-n)*A082762(n) = 4^(-n)*Sum_{k>=0} binomial(2*n+1, 2*k)*5^k; see A091042. - Philippe Deléham, Mar 01 2004
a(n) = (-1)^n*Sum_{k=0..n} (-5)^k*binomial(n+k, n-k). - Benoit Cloitre, May 09 2004
From Paul Barry, May 27 2004: (Start)
Both bisection and binomial transform of A000204.
a(n) = Fibonacci(2n) + Fibonacci(2n+2). (End)
Sequence lists the numerators of sinh((2*n-1)*psi) where the denominators are 2; psi=log((1+sqrt(5))/2). Offset 1. a(3)=11. - Al Hakanson (hawkuu(AT)gmail.com), Mar 25 2009
a(n) = A001906(n) + A001906(n+1). - Reinhard Zumkeller, Jan 11 2012
a(n) = floor(phi^(2n+1)), where phi is the golden ratio, A001622. - Thomas Ordowski, Jun 10 2012
a(n) = A014217(2*n+1) = A014217(2*n+2) - A014217(2*n). - Paul Curtz, Jun 11 2013
Sum_{n >= 0} 1/(a(n) + 5/a(n)) = 1/2. Compare with A005248, A001906, A075796. - Peter Bala, Nov 29 2013
a(n) = lim_{m->infinity} Fibonacci(m)^(4n+1)*Fibonacci(m+2*n+1)/ Sum_{k=0..m} Fibonacci(k)^(4n+2). - Yalcin Aktar, Sep 02 2014
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 4, 0, 11, 0, 29, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -1, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
b(n) = (1/2)*((-1)^n - 1)*F(n) + (1 + (-1)^(n-1))*F(n+1), where F(n) is a Fibonacci number. The o.g.f. is x*(1 + x^2)/(1 - 3*x^2 + x^4).
Exp( Sum_{n >= 1} 2*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*x^n.
Exp( Sum_{n >= 1} (-2)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 2*F(n)*(-x)^n.
Exp( Sum_{n >= 1} 4*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*x^n.
Exp( Sum_{n >= 1} (-4)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 4*A029907(n)*(-x)^n. Cf. A002315, A004146, A113224 and A192425. (End)
a(n) = sqrt(5*F(2*n+1)^2-4), where F(n) = A000045(n). - Derek Orr, Jun 18 2015
For n > 1, a(n) = 5*F(2*n-1) + L(2*n-3) with F(n) = A000045(n). - J. M. Bergot, Oct 25 2015
For n > 0, a(n) = L(n-1)*L(n+2) + 4*(-1)^n. - J. M. Bergot, Oct 25 2015
For n > 2, a(n) = a(n-2) + F(n+2)^2 + F(n-3)^2 = L(2*n-3) + F(n+2)^2 + F(n-3)^2. - J. M. Bergot, Feb 05 2016 and Feb 07 2016
E.g.f.: ((sqrt(5) - 5)*exp((3-sqrt(5))*x/2) + (5 + sqrt(5))*exp((3+sqrt(5))*x/2))/(2*sqrt(5)). - Ilya Gutkovskiy, Apr 24 2016
a(n) = Sum_{k=0..n} (-1)^floor(k/2)*binomial(n-floor((k+1)/2), floor(k/2))*3^(n-k). - L. Edson Jeffery, Feb 26 2018
a(n)*F(m+2n-1) = F(m+4n-2)-F(m), with Fibonacci number F(m), empirical observation. - Dan Weisz, Jul 30 2018
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jul 31 2018
Sum_{n>=0} 1/a(n) = A153416. - Amiram Eldar, Nov 11 2020
a(n) = Product_{k=1..n} (1 + 4*sin(2*k*Pi/(2*n+1))^2). - Seiichi Manyama, Apr 30 2021
Sum_{n>=0} (-1)^n/a(n) = (1/sqrt(5)) * A153387 (Carlitz, 1967). - Amiram Eldar, Feb 05 2022
The continued fraction [a(n);a(n),a(n),...] = phi^(2*n+1), with phi = A001622. - A.H.M. Smeets, Feb 25 2022
a(n) = 2*sinh((2*n + 1)*arccsch(2)). - Peter Luschny, May 25 2022
This gives the sequence with 2 1's prepended: b(1)=b(2)=1 and, for k >= 3, b(k) = Sum_{j=1..k-2} (2^(k-j-1) - 1)*b(j). - Neal Gersh Tolunsky, Oct 28 2022 (formula due to Jon E. Schoenfield)
For n > 0, a(n) = 1 + 1/(Sum_{k>=1} F(k)/phi^(2*n*k + k)). - Diego Rattaggi, Nov 08 2023
From Peter Bala, Apr 16 2025: (Start)
a(3*n+1) = a(n)^3 + 3*a(n).
a(5*n+2) = a(n)^5 + 5*a(n)^3 + 5*a(n).
a(7*n+3) = a(n)^7 + 7*a(n)^5 + 14*a(n)^3 + 7*a(n).
For the coefficients see A034807.
The general result is: for k >= 0, a(k*n + (k-1)/2) = 2 * T(k, a(n)/2), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind and a(n) = ((1 + sqrt(5))/2)^(2*n+1) + ((1 - sqrt(5))/2)^(2*n+1).
Sum_{n >= 0} (-1)^n/a(n) = (1/4)* (theta_3(phi) - theta_3(phi^2)) = 0.815947983588122..., where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122) and phi = (sqrt(5) - 1)/2. See Borwein and Borwein, Exercise 3 a, p. 94 and Carlitz, 1967. (End)
From Peter Bala, May 15 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/5 (telescoping series: 5/(a(n) - 1/a(n)) = 1/A001906(n+1) + 1/A001906(n) ).
More generally, for k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - s(k)/a(k*n)) = 1/(1 + a(k)) where s(k) = a(0) + a(1) + ... + a(k-1) = Lucas(2*k) - 2.
For k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(n) + L(2*k)^2/a(n)) = (1/5) * A064170(k+2).
Sum_{n >= 1} 1/(a(n) + 9/a(n)) = 3/10 (follows from 1/(a(n) + 9/a(n)) = L(2*n)/A081076(n) - L(2*n+2)/A081076(n+1) ).
More generally, it appears that for k >= 1, Sum_{n >= 1} 1/(a(n) + L(2*k)^2/a(n)) is rational.
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(5) [telescoping product: Product_{k = 1..n} ((a(k) + 1)/(a(k) - 1))^2 = 5*(1 - 4/A240926(n+1)) ]. (End)

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

A298675 Rectangular array A: first differences of row entries of array A294099, read by antidiagonals.

Original entry on oeis.org

1, 2, -1, 3, 2, -2, 4, 7, 2, -1, 5, 14, 18, 2, 1, 6, 23, 52, 47, 2, 2, 7, 34, 110, 194, 123, 2, 1, 8, 47, 198, 527, 724, 322, 2, -1, 9, 62, 322, 1154, 2525, 2702, 843, 2, -2, 10, 79, 488, 2207, 6726, 12098, 10084, 2207, 2, -1, 11, 98, 702, 3842, 15127, 39202, 57965, 37634, 5778, 2, 1
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
From Charles L. Hohn, Sep 28 2024: (Start)
For rows n >= 3, values x >= 3 where (x^2-4)/(n^2-4) is a square.
For rows n >= 3, Lim_{k->oo}(T(n, k+1)/T(n, k)) = (sqrt(n^2-4)+n)/2. (End)

Examples

			Array begins:
   1 -1  -2   -1     1      2       1       -1        -2         -1
   2  2   2    2     2      2       2        2         2          2
   3  7  18   47   123    322     843     2207      5778      15127
   4 14  52  194   724   2702   10084    37634    140452     524174
   5 23 110  527  2525  12098   57965   277727   1330670    6375623
   6 34 198 1154  6726  39202  228486  1331714   7761798   45239074
   7 47 322 2207 15127 103682  710647  4870847  33385282  228826127
   8 62 488 3842 30248 238142 1874888 14760962 116212808  914941502
   9 79 702 6239 55449 492802 4379769 38925119 345946302 3074591599
  10 98 970 9602 95050 940898 9313930 92198402 912670090 9034502498
		

Crossrefs

Programs

  • Mathematica
    t[n_, 0] := 2; t[n_, 1] := n; t[n_, k_] := n*t[n, k - 1] - t[n, k - 2]; Table[t[n, k], {n, 10}, {k, 10}] // Grid

Formula

A(n,k) = T_k(n), n >= 1, k >= 1, where T_j(x) = x*T_{j-1}(x) - T_{j-2}(x), j >= 2, T_0(x) = 2, T_1(x) = x, (dilated Chebyshev polynomials of the first kind).

A269254 To find a(n), define a sequence by s(k) = n*s(k-1) - s(k-2), with s(0) = 1, s(1) = n + 1; then a(n) is the smallest index k such that s(k) is prime, or -1 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, -1, 2, 2, 1, 2, 1, 2, -1, 2, 1, 3, 1, 2, 2, 2, 1, -1, 2, 6, 2, 3, 1, 3, 1, 2, 9, 9, -1, 2, 1, 6, 2, 2, 1, 2, 1, 5, 2, 2, 1, -1, 2, 5, 2, 9, 1, 2, 2, 2, 2, 6, 1, 2, 1, 14, -1, 5, 2, 2, 1, 5, 2, 3, 1, 6, 1, 8, 3, 6, 2, 3, 1, -1, 3, 18, 1, 2, 3, 2, 2, 3, 1, 2, 9, 3, 5, 2, 2, 96, 1, 3, -1, 5, 1, 2, 1, 2, 15, 14, 1, 44, 1, 3, -1
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 09 2016

Keywords

Comments

The s(k) sequences can be viewed in A294099, where they appear as rows. - Peter Munn, Aug 31 2020
For n >= 3, a(n) is that positive integer k yielding the smallest prime of the form (x^y - 1/x^y)/(x - 1/x), where x = (sqrt(n+2) +- sqrt(n-2))/2 and y = 2*k + 1, or -1 if no such k exists.
Every positive term belongs to A005097.
When n=7, the sequence {s(k)} is A033890, which is Fibonacci(4i+2), and since x|y <=> F_x|F_y, and 2i+1|4i+2, A033890 is never prime, and so a(7)=-1. For the other -1 terms below 100, see the theorem below and the Klee link - N. J. A. Sloane, Oct 20 2017 and Oct 22 2017
Theorem (Brad Klee): For all n > 2, a(n^2 - 2) = -1. See Klee link for a proof. - L. Edson Jeffery, Oct 22 2017
Theorem (Based on work of Hans Havermann, L. Edson Jeffery, Brad Klee, Don Reble, Bob Selcoe, and N. J. A. Sloane) a(110) = -1. [For proof see link. - N. J. A. Sloane, Oct 23 2017]
From Bob Selcoe, Oct 24 2017, edited by N. J. A. Sloane, Oct 27 2017: (Start)
Suppose n = m^2 - 2, where m >= 3, and let j = m-2, with j >= 1.
For this value of n, the sequence s(k) satisfies s(k) = (c(k) + d(k))*(c(k) - d(k)), where c(0) = 1, d(0) = 0; and for k >= 1: c(k) = (j+2)*c(k-1) - d(k-1), and d(k) = c(k-1). So (as Brad Klee already proved) a(n) = -1 .
We have s(0) = 1 and s(1) = n+1 = j^2 + 4j + 3. In general, the coefficients of s(k) when expanded in powers of j are given by the (4k+2)-th row of A011973 (the triangle of coefficients of Fibonacci polynomials) in reverse order. For example, s(2) = j^4 + 8j^3 + 21j^2 + 20j + 5, s(3) = j^6 + 12j^5 + 55j^4 + 120j^3 + 126j^2 + 56j + 7, etc.
Perhaps the above comments could be generalized to apply to a(110) or to other n for which a(n) = -1?
(End)
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Examples

			Let b(k) be the recursive sequence defined by the initial conditions b(0) = 1, b(1) = 16, and the recursive equation b(k) = 15*b(k-1) - b(k-2). a(15) = 2 because b(2) = 239 is the smallest prime in b(k).
Let c(k) be the recursive sequence defined by the initial conditions c(0) = 1, c(1) = 18, and the recursive equation c(k) = 17*c(k-1) - c(k-2). a(17) = 3 because c(3) = 5167 is the smallest prime in c(k).
		

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [1..85] do if n gt 2 and IsSquare(n+2) then Append(~lst, -1); else a:=n+1; c:=1; t:=1; if IsPrime(a) then Append(~lst, t); else repeat b:=n*a-c; c:=a; a:=b; t+:=1; until IsPrime(a); Append(~lst, t); end if; end if; end for; lst;
    
  • Mathematica
    kmax = 100;
    a[1] = a[2] = 1;
    a[n_ /; IntegerQ[Sqrt[n+2]]] = -1;
    a[n_] := Module[{s}, s[0] = 1; s[1] = n+1; s[k_] := s[k] = n s[k-1] - s[k-2]; For[k=1, k <= kmax, k++, If[PrimeQ[s[k]], Return[k]]]; Print["For n = ", n, ", k = ", k, " exceeds the limit kmax = ", kmax]; -1];
    Array[a, 110] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    allocatemem(2^30);
    default(primelimit,(2^31)+(2^30));
    s(n,k) = if(0==k,1,if(1==k,(1+n),((n*s(n,k-1)) - s(n,k-2))));
    A269254(n) = { my(k=1); if((n>2)&&issquare(2+n),-1,while(!isprime(s(n,k)),k++);(k)); }; \\ Antti Karttunen, Oct 20 2017

Formula

If n is prime then a(n-1) = 1.

Extensions

a(86)-a(94) from Antti Karttunen, Oct 20 2017
a(95)-a(109) appended by L. Edson Jeffery, Oct 22 2017

A294099 Rectangular array read by (upward) antidiagonals: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*n^(k-j), n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 5, -1, 1, 5, 11, 7, -2, 1, 6, 19, 29, 9, -1, 1, 7, 29, 71, 76, 11, 1, 1, 8, 41, 139, 265, 199, 13, 2, 1, 9, 55, 239, 666, 989, 521, 15, 1, 1, 10, 71, 377, 1393, 3191, 3691, 1364, 17, -1, 1, 11, 89, 559, 2584, 8119, 15289, 13775, 3571, 19, -2
Offset: 1

Views

Author

Keywords

Comments

This array is used to compute A269254: A269254(n) = least k such that A(n,k) is a prime, or -1 if no such k exists.
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023

Examples

			Array begins:
  1   2    1    -1     -2      -1        1         2          1          -1
  1   3    5     7      9      11       13        15         17          19
  1   4   11    29     76     199      521      1364       3571        9349
  1   5   19    71    265     989     3691     13775      51409      191861
  1   6   29   139    666    3191    15289     73254     350981     1681651
  1   7   41   239   1393    8119    47321    275807    1607521     9369319
  1   8   55   377   2584   17711   121393    832040    5702887    39088169
  1   9   71   559   4401   34649   272791   2147679   16908641   133121449
  1  10   89   791   7030   62479   555281   4935050   43860169   389806471
  1  11  109  1079  10681  105731  1046629  10360559  102558961  1015229051
		

Crossrefs

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[LinearRecurrence[{n, -1}, {1, 1 + n}, 10], {n, 10}]]
    (* Array antidiagonals flattened (gives this sequence): *)
    A294099[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] n^(k - j), {j, 0, k}]; Flatten[Table[A294099[n - k, k], {n, 11}, {k, 0, n - 1}]]
  • PARI
    {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*n^(k-j))}; /* Michael Somos, Jun 19 2023 */

Formula

A(n,0) = 1, A(n,1) = n + 1, A(n,k) = n*A(n,k-1) - A(n,k-2), n >= 1, k >= 2.
G.f. for row n: (1 + x)/(1 - n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A299045. - Michael Somos, Jun 19 2023

A299109 Probable primes in A030221.

Original entry on oeis.org

29, 139, 3191, 15289, 350981, 1681651, 20344613659, 2237722536169, 5650248517599839, 1464318118372209903213451940281613111, 471219735266432821374794400248484805597413615642086220363989152195627985749609
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Subsequent terms have too many digits to display.

Crossrefs

Formula

a(n) = A030221(A299101(n)).

A298677 a(n) = 110*a(n-1) - a(n-2) for n >= 2, a(0)=1, a(1)=111.

Original entry on oeis.org

1, 111, 12209, 1342879, 147704481, 16246150031, 1786928798929, 196545921732159, 21618264461738561, 2377812544869509551, 261537761671184312049, 28766775971285404815839, 3164083819079723345430241, 348020453322798282592510671, 38279085781688731361830743569, 4210351415532437651518789281919
Offset: 0

Views

Author

Keywords

Comments

Sequence {s_k(110)} of A269254.
The sequence contains no primes; see A269254 for a proof by N. J. A. Sloane.
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Crossrefs

Programs

  • Mathematica
    s[0, n_] := 1; s[1, n_] := n + 1; s[k_, n_] := n*s[k - 1, n] - s[k - 2, n]; Table[s[k, 110], {k, 0, 15}]
    LinearRecurrence[{110, -1}, {1, 111}, 15]
    CoefficientList[Series[(1 + x)/(1 - 110*x + x^2), {x, 0, 14}], x]
  • PARI
    Vec((1 + x)/(1 - 110*x + x^2) + O(x^20)) \\ Colin Barker, Jan 25 2018

Formula

G.f.: (1 + x)/(1 - 110*x + x^2).
a(n) = (1/18)*((55+12*sqrt(21))^(-n)*(9-2*sqrt(21) + (9+2*sqrt(21))*(55+12*sqrt(21))^(2*n))). - Colin Barker, Jan 25 2018

A117522 Numbers k such that L(2*k + 1) is prime, where L(m) is a Lucas number.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 15, 18, 20, 23, 26, 30, 35, 39, 56, 156, 176, 251, 306, 308, 431, 548, 680, 2393, 2396, 2925, 3870, 4233, 5345, 6125, 6981, 7224, 9734, 17724, 18389, 22253, 25584, 28001, 40835, 44924, 47411, 70028, 74045, 79760, 91544, 96600, 101333, 172146, 193716, 221804, 266138, 287109, 308393, 315590, 318875, 325910, 346073, 450828, 525924
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 26 2006

Keywords

Comments

For n = 24..43, we can only claim that L(2*a(n) + 1) is a probable prime. Sequence arises in a study of A269254; for detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Examples

			If k = 56, then L(2*k + 1) is a prime with twenty-four digits.
		

Crossrefs

Extensions

Values beyond 680 from L. Edson Jeffery, et al., Feb 02 2018
a(44)-a(56) from Robert Price, Jun 12 2025
a(57)-a(59) (using data in A001606) from Alois P. Heinz, Jun 12 2025

A269253 Smallest prime in the sequence s(k) = n*s(k-1) - s(k-2), with s(0) = 1, s(1) = n + 1 (or -1 if no such prime exists).

Original entry on oeis.org

2, 3, 11, 5, 29, 7, -1, 71, 89, 11, 131, 13, 181, -1, 239, 17, 5167, 19, 379, 419, 461, 23, -1, 599, 251894449, 701, 20357, 29, 25171, 31, 991, 36002209323169, 47468744103199, -1, 1259, 37, 2625505273, 1481, 1559, 41, 1721, 43, 150103799, 1979, 2069, 47, -1, 2351, 287762399
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 09 2016

Keywords

Comments

For n >= 3, smallest prime of the form (x^y - 1/x^y)/(x - 1/x), where x = (sqrt(n+2) +/- sqrt(n-2))/2 and y is an odd positive integer, or -1 if no such prime exists.
When n=7, the sequence {s(k)} is A033890, which is Fibonacci(4i+2), and since x|y <=> F_x|F_y, and 2i+1|4i+2, A033890 is never prime, and so a(7) = -1. What is the proof for the other entries that are -1? Answer: See the Comments in A269254. - N. J. A. Sloane, Oct 22 2017
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [1..49] do if n gt 2 and IsSquare(n+2) then Append(~lst, -1); else a:=n+1; c:=1; if IsPrime(a) then Append(~lst, a); else repeat b:=n*a-c; c:=a; a:=b; until IsPrime(a); Append(~lst, a); end if; end if; end for; lst;
  • Mathematica
    terms = 172;
    kmax = 120;
    a[n_] := Module[{s, k}, s[k_] := s[k] = n s[k-1] - s[k-2]; s[0] = 1; s[1] = n+1; For[k = 1, k <= kmax, k++, If[PrimeQ[s[k]], Return[s[k]]]]];
    Array[a, terms] /. Null -> -1 (* Jean-François Alcover, Aug 30 2018 *)

Formula

If n is prime then a(n-1) = n.

A299045 Rectangular array: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*(-n)^(k-j), n >= 1, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, -1, -1, 1, -2, 1, 1, 1, -3, 5, -1, 0, 1, -4, 11, -13, 1, -1, 1, -5, 19, -41, 34, -1, 1, 1, -6, 29, -91, 153, -89, 1, 0, 1, -7, 41, -169, 436, -571, 233, -1, -1, 1, -8, 55, -281, 985, -2089, 2131, -610, 1, 1, 1, -9, 71, -433, 1926, -5741, 10009, -7953, 1597, -1, 0
Offset: 1

Views

Author

Keywords

Comments

This array is used to compute A269252: A269252(n) = least k such that |A(n,k)| is a prime, or -1 if no such k exists.
For detailed theory, see [Hone].
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023

Examples

			Array begins:
1   0  -1     1     0      -1       1         0        -1           1
1  -1   1    -1     1      -1       1        -1         1          -1
1  -2   5   -13    34     -89     233      -610      1597       -4181
1  -3  11   -41   153    -571    2131     -7953     29681     -110771
1  -4  19   -91   436   -2089   10009    -47956    229771    -1100899
1  -5  29  -169   985   -5741   33461   -195025   1136689    -6625109
1  -6  41  -281  1926  -13201   90481   -620166   4250681   -29134601
1  -7  55  -433  3409  -26839  211303  -1663585  13097377  -103115431
1  -8  71  -631  5608  -49841  442961  -3936808  34988311  -310957991
1  -9  89  -881  8721  -86329  854569  -8459361  83739041  -828931049
		

Crossrefs

Cf. A094954 (unsigned version of this array, but missing the first row).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[LinearRecurrence[{-n, -1}, {1, 1 - n}, 10], {n, 10}]]
    (*Array antidiagonals flattened (gives this sequence):*)
    A299045[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] (-n)^(k - j), {j, 0, k}]; Flatten[Table[A299045[n - k, k], {n, 11}, {k, 0, n - 1}]]
  • PARI
    {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*(-n)^(k-j))}; /* Michael Somos, Jun 19 2023 */

Formula

G.f. for row n: (1 + x)/(1 + n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A294099. - Michael Somos, Jun 19 2023

A299071 Union_{odd primes p, n >= 3} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).

Original entry on oeis.org

18, 52, 110, 123, 198, 488, 702, 724, 843, 970, 1298, 1692, 2158, 2525, 3330, 4048, 4862, 5778, 6726, 6802, 7940, 9198, 10084, 10582, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 30248, 32672, 35838, 39603, 42770, 46548, 50542
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Sequence avoids numbers of the form T_p(T_2(j)).

Crossrefs

Programs

  • Mathematica
    maxT = 55000; maxn = 12;
    T[0][] = 2; T[1][x] = x;
    T[m_][x_] := T[m][x] = x T[m-1][x] - T[m-2][x];
    TT = Table[T[p][n], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn]}] // Flatten // Union // Select[#, # <= maxT&]&;
    avoid = Table[T[p][T[2][n]], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn] }] // Flatten // Union // Select[#, # <= maxT&]&;
    Complement[TT, avoid] (* Jean-François Alcover, Nov 03 2018 *)
Showing 1-10 of 16 results. Next