A002061 Central polygonal numbers: a(n) = n^2 - n + 1.
1, 1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183, 211, 241, 273, 307, 343, 381, 421, 463, 507, 553, 601, 651, 703, 757, 813, 871, 931, 993, 1057, 1123, 1191, 1261, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1981, 2071, 2163, 2257, 2353, 2451, 2551, 2653
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + 7*x^3 + 13*x^4 + 21*x^5 + 31*x^6 + 43*x^7 + ...
References
- Archimedeans Problems Drive, Eureka, 22 (1959), 15.
- Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 of the British Mathematical Olympiad 2007, page 160.
- Anthony Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 4 pp. 64 and 173 (1984).
- Paul R. Halmos, Linear Algebra Problem Book, MAA, 1995, pp. 75-6, 242-4.
- Ross Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 87.
- Daniel R. Hughes and Frederick Charles Piper, Projective Planes, Springer, 1973.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000 (first 1000 terms from T. D. Noe)
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Richard Bean and Ebadollah S. Mahmoodian, A new bound on the size of the largest critical set in a Latin square, Discrete mathematics, Vol. 267, No. 1-3 (2003), pp. 13-21, arXiv preprint, arXiv:math/0107159 [math.CO], 2001.
- Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
- Allan Bickle, Wiener indices of maximal k-degenerate graphs, International Journal of Mathematical Combinatorics 2 (2021) 68-79.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, Restricted generating trees for weak orderings, arXiv:2108.04302 [math.CO], 2021.
- British Mathematical Olympiad, 1984 - Problem 4.
- British Mathematical Olympiad, 2007 - Problem 1.
- R. J. Cook and G. V. Wood, Feynman's Triangle, Mathematical Gazette, Vol. 88, No. 512 (2004), pp. 299-302.
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co., London, 1950, p. 22.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seq., Vol. 7 (2004), Article 04.1.6.
- Craig Knecht, Maximum number of elementary hexagons in an order-n hexagon, 2018.
- Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations Discrete Math., Vol. 312, No. 21 (2012), pp. 3179-3194. MR2957938. - From _N. J. A. Sloane_, Sep 25 2012
- Boris D. Lubachevsky and Ronald L. Graham, Minimum perimeter rectangles that enclose congruent non-overlapping circles, arXiv:math/0412443 [math.MG], 2004-2008.
- Boris D. Lubachevsky and Ronald L. Graham, Minimum perimeter rectangles that enclose congruent non-overlapping circles, Discrete Mathematics, Vol. 309, No. 8, (28 April 2009), pp. 1947-1962.
- R. J. Mathar, Tiling hexagons with smaller hexagons and unit triangles, vixra:1608.0380 (2016) eq. (11).
- Robert Munafo, Sequence A002061, Hogben's Centered Polygonal Numbers.
- Enrique Navarrete, Central Polygonal Numbers in Finite Sequences.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Bruce E. Sagan, Yeong-Nan Yeh, and Ping Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., Vol. 60 (1996), pp. 959-969.
- A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, Journal of Integer Sequences, Vol. 14 (2011), #11.7.5.
- Steven H. Weintraub, An interesting recursion, Amer. Math. Monthly, Vol. 111, No. 6 (2004), pp. 528-530.
- Eric Weisstein's World of Mathematics, Alexander Polynomial.
- Eric Weisstein's World of Mathematics, Connected Graph.
- Eric Weisstein's World of Mathematics, Cycle Graph.
- Eric Weisstein's World of Mathematics, Fan Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph.
- Eric Weisstein's World of Mathematics, Wheel Graph.
- Wikipedia, Projective Plane.
- Index to values of cyclotomic polynomials of integer argument.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index to sequences related to Olympiads.
Crossrefs
Cf. A000037, A000124, A000217, A001263, A001844, A002383, A004273, A005408, A005563, A007645, A014206, A051890, A055494, A091776, A132014, A132382, A135668, A137928, A139250, A256188, A028387.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A010000 (minimum Weiner index of 3-degenerate graphs).
Programs
-
GAP
List([0..50], n->n^2-n+1); # Muniru A Asiru, May 27 2018
-
Haskell
a002061 n = n * (n - 1) + 1 -- Reinhard Zumkeller, Dec 18 2013
-
Magma
[ n^2 - n + 1 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 12 2014
-
Maple
A002061 := proc(n) numtheory[cyclotomic](6,n) ; end proc: seq(A002061(n), n=0..20); # R. J. Mathar, Feb 07 2014
-
Mathematica
FoldList[#1 + #2 &, 1, 2 Range[0, 50]] (* Robert G. Wilson v, Feb 02 2011 *) LinearRecurrence[{3, -3, 1}, {1, 1, 3}, 60] (* Harvey P. Dale, May 25 2011 *) Table[n^2 - n + 1, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 12 2014 *) CoefficientList[Series[(1 - 2x + 3x^2)/(1 - x)^3, {x, 0, 52}], x] (* Robert G. Wilson v, Feb 18 2018 *) Cyclotomic[6, Range[0, 100]] (* Paolo Xausa, Feb 09 2024 *)
-
Maxima
makelist(n^2 - n + 1,n,0,55); /* Martin Ettl, Oct 16 2012 */
-
PARI
a(n) = n^2 - n + 1
Formula
G.f.: (1 - 2*x + 3*x^2)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = -(n-5)*a(n-1) + (n-2)*a(n-2).
a(n) = Phi_6(n) = Phi_3(n-1), where Phi_k is the k-th cyclotomic polynomial.
a(1-n) = a(n). - Michael Somos, Sep 04 2006
a(n) = a(n-1) + 2*(n-1) = 2*a(n-1) - a(n-2) + 2 = 1+A002378(n-1) = 2*A000124(n-1) - 1. - Henry Bottomley, Oct 02 2000 [Corrected by N. J. A. Sloane, Jul 18 2010]
From Paul Barry, Mar 13 2003: (Start)
x*(1+x^2)/(1-x)^3 is g.f. for 0, 1, 3, 7, 13, ...
a(n) = 2*C(n, 2) + C(n-1, 0).
E.g.f.: (1+x^2)*exp(x). (End)
a(n) = ceiling((n-1/2)^2). - Benoit Cloitre, Apr 16 2003. [Hence the terms are about midway between successive squares and so (except for 1) are not squares. - N. J. A. Sloane, Nov 01 2005]
a(n) = 1 + Sum_{j=0..n-1} (2*j). - Xavier Acloque, Oct 08 2003
a(n) = leftmost term in M^(n-1) * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 0 1 2 / 0 0 1]. E.g., a(6) = 31 since M^5 * [1 1 1] = [31 11 1]. - Gary W. Adamson, Nov 11 2004
a(n+1) = n^2 + n + 1. a(n+1)*a(n) = (n^6-1)/(n^2-1) = n^4 + n^2 + 1 = a(n^2+1) (a product of two consecutive numbers from this sequence belongs to this sequence). (a(n+1) + a(n))/2 = n^2 + 1. (a(n+1) - a(n))/2 = n. a((a(n+1) + a(n))/2) = a(n+1)*a(n). - Alexander Adamchuk, Apr 13 2006
a(n+1) is the numerator of ((n + 1)! + (n - 1)!)/ n!. - Artur Jasinski, Jan 09 2007
a(n) = A132111(n-1, 1), for n > 1. - Reinhard Zumkeller, Aug 10 2007
a(n) = Det[Transpose[{{-1, 1}, {0, -1}}] - n {{-1, 1}, {0, -1}}]. - Artur Jasinski, Mar 31 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3. - Jaume Oliver Lafont, Dec 02 2008
a(n) = A176271(n,1) for n > 0. - Reinhard Zumkeller, Apr 13 2010
a(n) == 3 (mod n+1). - Bruno Berselli, Jun 03 2010
a(n) = (n-1)^2 + (n-1) + 1 = 111 read in base n-1 (for n > 2). - Jason Kimberley, Oct 18 2011
a(n) = A228643(n, 1), for n > 0. - Reinhard Zumkeller, Aug 29 2013
a(n) = sqrt(A058031(n)). - Richard R. Forberg, Sep 03 2013
G.f.: 1 / (1 - x / (1 - 2*x / (1 + x / (1 - 2*x / (1 + x))))). - Michael Somos, Apr 03 2014
For n >= 2, a(n) = ceiling(4/(Sum_{k = A000217(n-1)..A000217(n) - 1}, 1/k)). - Richard R. Forberg, Aug 17 2014
A256188(a(n)) = 1. - Reinhard Zumkeller, Mar 26 2015
Sum_{n>=0} 1/a(n) = 1 + Pi*tanh(Pi*sqrt(3)/2)/sqrt(3) = 2.79814728056269018... . - Vaclav Kotesovec, Apr 10 2016
a(n) = A101321(2,n-1). - R. J. Mathar, Jul 28 2016
Sum_{n>=1} arctan(1/a(n)) = Pi/2. - Amiram Eldar, Nov 01 2020
Sum_{n=1..M} arctan(1/a(n)) = arctan(M). - Lee A. Newberg, May 08 2024
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(7)*Pi/2)*sech(sqrt(3)*Pi/2).
Product_{n>=2} (1 - 1/a(n)) = Pi*sech(sqrt(3)*Pi/2). (End)
For n > 1, sqrt(a(n)+sqrt(a(n)-sqrt(a(n)+sqrt(a(n)- ...)))) = n. - Diego Rattaggi, Apr 17 2021
a(n) = (1 + (n-1)^4 + n^4) / (1 + (n-1)^2 + n^2) [see link B.M.O. 2007 and Steve Dinh reference]. - Bernard Schott, Dec 27 2021
Extensions
Partially edited by Joerg Arndt, Mar 11 2010
Partially edited by Bruno Berselli, Dec 19 2013
Comments