A005044
Alcuin's sequence: expansion of x^3/((1-x^2)*(1-x^3)*(1-x^4)).
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120
Offset: 0
There are 4 triangles of perimeter 11, with sides 1,5,5; 2,4,5; 3,3,5; 3,4,4. So a(11) = 4.
G.f. = x^3 + x^5 + x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + 4*x^11 + 3*x^12 + ...
From _John M. Campbell_, Jan 29 2016: (Start)
Letting n = 15, there are a(n)=7 partitions mu |- 15 of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even:
(13,1,1) |- 15
(11,3,1) |- 15
(9,5,1) |- 15
(9,3,3) |- 15
(7,7,1) |- 15
(7,5,3) |- 15
(5,5,5) |- 15
(End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
- I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. Wiley, NY, Chap.10, Section 10.2, Problems 5 and 6, pp. 451-2.
- D. Olivastro: Ancient Puzzles. Classic Brainteasers and Other Timeless Mathematical Games of the Last 10 Centuries. New York: Bantam Books, 1993. See p. 158.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 8, #30 (First published: San Francisco: Holden-Day, Inc., 1964)
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Alcuin of York, Propositiones ad acuendos juvenes, [Latin with English translation] - see Problem 12.
- G. E. Andrews, A note on partitions and triangles with integer sides, Amer. Math. Monthly, 86 (1979), 477-478.
- G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
- G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis IX: k-gon partitions, Bull. Austral Math. Soc., 64 (2001), 321-329.
- G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package, p. 19.
- Donald J. Bindner and Martin Erickson, Alcuin's Sequence, Amer. Math. Monthly, 119, February 2012, pp. 115-121.
- P. Bürgisser and C. Ikenmeyer, Fundamental invariants of orbit closures, arXiv preprint arXiv:1511.02927 [math.AG], 2015. See Section 5.5.
- James East and Ron Niles, Integer polygons of given perimeter, Bull. Aust. Math. Soc. 100 (2019), no. 1, 131-147.
- James East and Ron Niles, Integer Triangles of Given Perimeter: A New Approach via Group Theory., Amer. Math. Monthly 126 (2019), no. 8, 735-739.
- Wulf-Dieter Geyer, Lecture on history of medieval mathematics [broken link]
- M. D. Hirschhorn, Triangles With Integer Sides
- M. D. Hirschhorn, Triangles With Integer Sides, Revisited
- R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39. [Annotated scanned copy]
- T. Jenkyns and E. Muller, Triangular triples from ceilings to floors, Amer. Math. Monthly, 107 (Aug. 2000), 634-639.
- J. H. Jordan, R. Walch and R. J. Wisner, Triangles with integer sides, Amer. Math. Monthly, 86 (1979), 686-689.
- Hermann Kremer, Posting to de.sci.mathematik (1), (2), and (3). [Dead links]
- Hermann Kremer, Posting to alt.math.recreational, June 2004.
- N. Krier and B. Manvel, Counting integer triangles, Math. Mag., 71 (1998), 291-295.
- Mathforum, Triangle Perimeters
- Augustine O. Munagi, Computation of q-partial fractions, INTEGERS: Electronic Journal Of Combinatorial Number Theory, 7 (2007), #A25.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- S. A. Shirali, Case Studies in Experimental Mathematics, 2013.
- David Singmaster, Triangles with Integer Sides and Sharing Barrels, College Math J, 21:4 (1990) 278-285.
- James Tanton, Young students approach integer triangles, FOCUS 22 no. 5 (2002), 4 - 6.
- James Tanton, Integer Triangles, Chapter 11 in "Mathematics Galore!" (MAA, 2012).
- Eric Weisstein's World of Mathematics, Alcuin's Sequence, Integer Triangle, and Triangle.
- Wikipedia, Propositiones ad acuendos juvenes.
- R. G. Wilson v, Letter to N. J. A. Sloane, date unknown.
- Index entries for two-way infinite sequences
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,1).
See
A266755 for a version without the three leading zeros.
Both bisections give (essentially)
A001399.
(See the comments.) Cf.
A008615 (p=1, q=3, offset=0),
A008624 (3, 3, 0),
A008679 (3, -1, 0),
A026922 (1, 5, 1),
A028242 (5, 7, 0),
A030451 (6, 6, 0),
A051274 (3, 5, 0),
A052938 (8, 4, 0),
A059169 (0, 6, 1),
A106466 (5, 4, 0),
A130722 (2, 7, 0)
-
a005044 = p [2,3,4] . (subtract 3) where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Feb 28 2013
-
A005044 := n-> floor((1/48)*(n^2+3*n+21+(-1)^(n-1)*3*n)): seq(A005044(n), n=0..73);
A005044 := -1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
a[n_] := Round[If[EvenQ[n], n^2, (n + 3)^2]/48] (* Peter Bertok, Jan 09 2002 *)
CoefficientList[Series[x^3/((1 - x^2)*(1 - x^3)*(1 - x^4)), {x, 0, 105}], x] (* Robert G. Wilson v, Jun 02 2004 *)
me[n_] := Module[{i, j, sum = 0}, For[i = Ceiling[(n - 3)/3], i <= Floor[(n - 3)/2], i = i + 1, For[j = Ceiling[(n - i - 3)/2], j <= i, j = j + 1, sum = sum + 1] ]; Return[sum]; ] mine = Table[me[n], {n, 1, 11}]; (* Srikanth (sriperso(AT)gmail.com), Aug 02 2008 *)
LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1},{0,0,0,1,0,1,1,2,1},80] (* Harvey P. Dale, Sep 22 2014 *)
Table[Length@Select[IntegerPartitions[n, {3}], Max[#]*180 < 90 n &], {n, 1, 100}] (* Frank M Jackson, Nov 04 2022 *)
-
a(n) = round(n^2 / 12) - (n\2)^2 \ 4
-
a(n) = (n^2 + 6*n * (n%2) + 24) \ 48
-
a(n)=if(n%2,n+3,n)^2\/48 \\ Charles R Greathouse IV, May 02 2016
-
concat(vector(3), Vec((x^3)/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^70))) \\ Felix Fröhlich, Jun 07 2017
Yaglom reference and mod formulas from Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 27 2000
The reference to Alcuin of York (735-804) was provided by Hermann Kremer (hermann.kremer(AT)onlinehome.de), Jun 18 2004
A028242
Follow n+1 by n. Also (essentially) Molien series of 2-dimensional quaternion group Q_8.
Original entry on oeis.org
1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11, 10, 12, 11, 13, 12, 14, 13, 15, 14, 16, 15, 17, 16, 18, 17, 19, 18, 20, 19, 21, 20, 22, 21, 23, 22, 24, 23, 25, 24, 26, 25, 27, 26, 28, 27, 29, 28, 30, 29, 31, 30, 32, 31, 33, 32, 34, 33, 35, 34, 36, 35, 37, 36, 38
Offset: 0
G.f. = 1 + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 3*x^7 + 5*x^8 + 4*x^9 + 6*x^10 + 5*x^11 + ...
Molien g.f. = 1 + 2*t^4 + t^6 + 3*t^8 + 2*t^10 + 4*t^12 + 3*t^14 + 5*t^16 + 4*t^18 + 6*t^20 + ...
- D. Benson, Polynomial Invariants of Finite Groups, Cambridge, p. 23.
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 15.
- M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Amer. Math. Soc., 2002; see p. 97.
- L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 90.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- H. W. Gould, The inverse of a finite series and a third-order recurrent sequence, Fibonacci Quart. 44 (2006), no. 4, 302-315. See page 311.
- T. Mansour and A. Robertson, Refined restricted permutations avoiding subsets of patterns of length three, Annals of Combinatorics, 6, 2002, 407-418 (Theorem 3.3).
- MathOverflow, A question about an application of Molien's formula to find the generators and relations of an invariant ring.
- Gus Wiseman, The a(3) = 2 through a(7) = 4 graphs with exactly n - 1 endpoints.
- Index entries for Molien series.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Cf.
A052938 (same sequence except no leading 1,0,2).
Cf.
A000035,
A004526,
A004110,
A059167,
A109613,
A110654,
A110657,
A110658,
A110660,
A168361,
A245797,
A327227,
A327369,
A327370,
A327377.
-
a:=[1];; for n in [2..80] do a[n]:=(n-1)-a[n-1]; od; a; # Muniru A Asiru, Dec 16 2018
-
import Data.List (transpose)
a028242 n = n' + 1 - m where (n',m) = divMod n 2
a028242_list = concat $ transpose [a000027_list, a001477_list]
-- Reinhard Zumkeller, Nov 27 2012
-
&cat[ [n+1, n]: n in [0..37] ]; // Klaus Brockhaus, Nov 23 2009
-
series((1+x^3)/(1-x^2)^2,x,80);
A028242:=n->floor((n+1+(-1)^n)/2): seq(A028242(n), n=0..100); # Wesley Ivan Hurt, Mar 17 2015
-
Table[(1 + 2 n + 3 (-1)^n)/4, {n, 0, 74}] (* or *)
LinearRecurrence[{1, 1, -1}, {1, 0, 2}, 75] (* or *)
CoefficientList[Series[(1 - x + x^2)/((1 - x) (1 - x^2)), {x, 0, 74}], x] (* Michael De Vlieger, May 21 2017 *)
Table[{n,n-1},{n,40}]//Flatten (* Harvey P. Dale, Jun 26 2017 *)
Table[3*floor(n/2)-n+1,{n,0,40}] (* Pierre-Alain Sallard, Dec 15 2018 *)
-
{a(n) = (n\2) - (n%2) + 1} \\ Michael Somos, Oct 02 1999
-
A028242(n)=n\2+!bittest(n,0) \\ M. F. Hasler, Oct 05 2017
-
s=((1+x^3)/(1-x^2)^2).series(x, 80); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 16 2018
First part of definition adjusted to match offset by
Klaus Brockhaus, Nov 23 2009
A084964
Follow n+2 by n. Also solution of a(n+2)=a(n)+1, a(0)=2, a(1)=0.
Original entry on oeis.org
2, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 6, 9, 7, 10, 8, 11, 9, 12, 10, 13, 11, 14, 12, 15, 13, 16, 14, 17, 15, 18, 16, 19, 17, 20, 18, 21, 19, 22, 20, 23, 21, 24, 22, 25, 23, 26, 24, 27, 25, 28, 26, 29, 27, 30, 28, 31, 29, 32, 30, 33, 31, 34, 32, 35, 33, 36, 34, 37, 35, 38, 36, 39
Offset: 0
-
import Data.List (transpose)
a084964 n = a084964_list !! n
a084964_list = concat $ transpose [[2..], [0..]]
-- Reinhard Zumkeller, Apr 06 2015
-
&cat[ [n+2, n]: n in [0..37] ]; // Klaus Brockhaus, Nov 23 2009
-
A084964:=n->floor(n/2)+1+(-1)^n; seq(A084964(k), k=0..100); # Wesley Ivan Hurt, Nov 08 2013
-
lst={}; a=1; Do[a=n-a; AppendTo[lst, a], {n, 0, 100}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2008 *)
Table[{n,n-2},{n,2,40}]//Flatten (* or *) LinearRecurrence[{1,1,-1},{2,0,3},80] (* Harvey P. Dale, Sep 12 2021 *)
-
a(n)=n\2-2*(n%2)+2
First part of definition adjusted to match offset by
Klaus Brockhaus, Nov 23 2009
A113881
Table of smallest number of squares, T(m,n), needed to tile an m X n rectangle, read by antidiagonals.
Original entry on oeis.org
1, 2, 2, 3, 1, 3, 4, 3, 3, 4, 5, 2, 1, 2, 5, 6, 4, 4, 4, 4, 6, 7, 3, 4, 1, 4, 3, 7, 8, 5, 2, 5, 5, 2, 5, 8, 9, 4, 5, 3, 1, 3, 5, 4, 9, 10, 6, 5, 5, 5, 5, 5, 5, 6, 10, 11, 5, 3, 2, 5, 1, 5, 2, 3, 5, 11, 12, 7, 6, 6, 5, 5, 5, 5, 6, 6, 7, 12, 13, 6, 6, 4, 6, 4, 1, 4, 6, 4, 6, 6, 13, 14, 8, 4, 6, 2, 3, 7, 7, 3, 2, 6, 4, 8, 14
Offset: 1
Devin Kilminster (devin(AT)27720.net), Jan 27 2006
T(n,n) = 1 (1 n X n square).
T(n,1) = n (n 1 X 1 squares).
T(6,7) = 6 (2 3 X 3, 1 4 X 4, 1 2 X 2, 2 1 X 1).
T(11,13) = 6 (1 7 X 7, 1 6 X 6, 1 5 X 5, 2 4 X 4 1 1 X 1).
Table T(m,n) begins:
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
: 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...
: 3, 3, 1, 4, 4, 2, 5, 5, 3, 6, ...
: 4, 2, 4, 1, 5, 3, 5, 2, 6, 4, ...
: 5, 4, 4, 5, 1, 5, 5, 5, 6, 2, ...
: 6, 3, 2, 3, 5, 1, 5, 4, 3, 4, ...
: 7, 5, 5, 5, 5, 5, 1, 7, 6, 6, ...
: 8, 4, 5, 2, 5, 4, 7, 1, 7, 5, ...
: 9, 6, 3, 6, 6, 3, 6, 7, 1, 6, ...
: 10, 5, 6, 4, 2, 4, 6, 5, 6, 1, ...
- Alois P. Heinz, Antidiagonals n = 1..350, flattened (using data from A219158)
- Bertram Felgenhauer, Filling rectangles with integer-sided squares
- Richard J. Kenyon, Tiling a rectangle with the fewest squares, Combin. Theory Ser. A 76 (1996), no. 2, 272-291.
- M. Ortolano, M. Abrate, and L. Callegaro, On the synthesis of Quantum Hall Array Resistance Standards, arXiv preprint arXiv:1311.0756 [physics.ins-det], 2013.
- Mark Walters, Rectangles as sums of squares, Discrete Math. 309 (2009), no. 9, 2913-2921.
-
(* *** Warning *** This empirical toy-program is based on the greedy algorithm. Its output was only verified for n+k <= 32. Any use outside this domain might produce only upper bounds instead of minimums. *)
nmax = 31; Clear[T];
Tmin[n_, k_] := Table[{1 + T[ c, k - c] + T[n - c, k], 1 + T[n, k - c] + T[n - c, c]}, {c, 1, k - 1}] // Flatten // Min;
Tmin2[n_, k_] := Module[{n1, n2, k1, k2}, 1 + T[n2, k1 + 1] + T[n - n1, k2] + T[n - n2, k1] + T[n1, k - k1] /. {Reduce[1 <= n1 <= n - 1 && 1 <= n2 <= n - 1 && 1 <= k1 <= k - 1 && 1 <= k2 <= k - 1 && n1 + 1 + n2 == n && k1 + 1 + k2 == k, Integers] // ToRules} // Min];
T[n_, n_] = 1;
T[n_, 1] := n;
T[1, k_] := k;
T[n_, k_ /; k > 1] /; n > k && Divisible[n, k] := n/k;
T[n_, k_ /; k > 1] /; n > k := T[n, k] = If[k >= 5 && n >= 6 && n - k <= 3, Min[Tmin[n, k], Tmin2[n, k], T[k, n - k] + 1], T[k, n - k] + 1];
T[n_, k_ /; k > 1] /; n < k := T[n, k] = T[k, n];
Table[T[n - k + 1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 11 2016, checked against first 496 terms of the b-file *)
A219158
Minimum number of integer-sided squares needed to tile an m X n rectangle.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 2, 4, 1, 5, 4, 4, 5, 1, 6, 3, 2, 3, 5, 1, 7, 5, 5, 5, 5, 5, 1, 8, 4, 5, 2, 5, 4, 7, 1, 9, 6, 3, 6, 6, 3, 6, 7, 1, 10, 5, 6, 4, 2, 4, 6, 5, 6, 1, 11, 7, 6, 6, 6, 6, 6, 6, 7, 6, 1, 12, 6, 4, 3, 6, 2, 6, 3, 4, 5, 7, 1, 13, 8, 7, 7, 6, 6, 6, 6, 7, 7, 6, 7, 1
Offset: 1
T(6,5) = 5 because a 6 X 5 rectangle can be subdivided into two 3 X 3 squares and three 2 X 2 squares.
Triangle begins:
1;
2, 1;
3, 3, 1;
4, 2, 4, 1;
5, 4, 4, 5, 1;
6, 3, 2, 3, 5, 1;
7, 5, 5, 5, 5, 5, 1;
8, 4, 5, 2, 5, 4, 7, 1;
9, 6, 3, 6, 6, 3, 6, 7, 1;
10, 5, 6, 4, 2, 4, 6, 5, 6, 1;
11, 7, 6, 6, 6, 6, 6, 6, 7, 6, 1;
12, 6, 4, 3, 6, 2, 6, 3, 4, 5, 7, 1;
13, 8, 7, 7, 6, 6, 6, 6, 7, 7, 6, 7, 1;
14, 7, 7, 5, 7, 5, 2, 5, 7, 5, 7, 5, 7, 1;
15, 9, 5, 7, 3, 4, 8, 8, 4, 3, 7, 5, 8, 7, 1;
- Massimo Ortolano, Table of n, a(n) for n = 1..75466, rows 1..388 of triangle, flattened. Corrected version provided by Qizheng He.
- Gary Antonick, Matt Enlow's Rectangle Division Puzzle, The New York Times, June 15, 2015.
- Bertram Felgenhauer, Filling rectangles with integer-sided squares
- Richard J. Kenyon, Tiling a rectangle with the fewest squares, Combin. Theory Ser. A 76 (1996), no. 2, 272-291.
- M. Ortolano, M. Abrate, and L. Callegaro, On the synthesis of Quantum Hall Array Resistance Standards, arXiv preprint arXiv:1311.0756 [physics.ins-det], 2013.
- Mark Walters, Rectangles as sums of squares, Discrete Math. 309 (2009), no. 9, 2913-2921.
A065423
Number of ordered length 2 compositions of n with at least one even summand.
Original entry on oeis.org
0, 0, 2, 1, 4, 2, 6, 3, 8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18, 9, 20, 10, 22, 11, 24, 12, 26, 13, 28, 14, 30, 15, 32, 16, 34, 17, 36, 18, 38, 19, 40, 20, 42, 21, 44, 22, 46, 23, 48, 24, 50, 25, 52, 26, 54, 27, 56, 28, 58, 29, 60, 30, 62, 31, 64, 32, 66, 33, 68, 34, 70, 35, 72, 36, 74
Offset: 1
a(7) = 6 because we can write 7 = 1+6 = 2+5 = 3+4 = 4+3 = 5+2 = 6+1; a(8) = 3 because we can write 8 = 2+6 = 4+4 = 6+2.
-
int a(int n){n--;return n>>(n&1);} // Mia Boudreau, Aug 27 2025
-
A065423 := proc(n)
(3*n-4-(-1)^n*n)/4 ;
end proc:
seq(A065423(n),n=1..40) ; # R. J. Mathar, Jan 24 2022
-
LinearRecurrence[{0,2,0,-1},{0,0,2,1},100] (* Harvey P. Dale, May 14 2014 *)
-
a(n)=n-=2;if(n%2,n+1,n/2)
Original entry on oeis.org
1, 2, 1, 3, 2, 5, 3, 8, 5, 13, 8, 21, 13, 34, 21, 55, 34, 89, 55, 144, 89, 233, 144, 377, 233, 610, 377, 987, 610, 1597, 987, 2584, 1597, 4181, 2584, 6765, 4181, 10946, 6765, 17711, 10946, 28657, 17711, 46368, 28657, 75025, 46368, 121393, 75025, 196418
Offset: 1
-
a:=[1,2,1,3];; for n in [5..50] do a[n]:=a[n-2]+a[n-4]; od; a; # Muniru A Asiru, Oct 12 2018
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 + 2*x + x^3)/(1 - x^2 - x^4))); // G. C. Greubel, Oct 12 2018
-
seq(coeff(series(-x*(1+2*x+x^3)/(x^4+x^2-1),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Oct 12 2018
-
p[0, x] = 1; p[1, x] = x + 1; p[k_, x_] := p[k, x] = x*p[k - 1, x] + (-1)^(n + 1)p[k - 2, x]; Table[Sum[CoefficientList[p[n, x], x][[m]], {m, 1, n + 1}], {n, 0, 20}]
Rest[Flatten[Reverse/@Partition[Fibonacci[Range[30]],2,1]]] (* Harvey P. Dale, Mar 19 2013 *)
-
vector(50, n, fibonacci(3/4 -(-1)^(n+1)*3/4 +(n+1)/2)) \\ G. C. Greubel, Oct 12 2018
A110570
Triangle read by rows: T(n,0) = T(n,n) = 1 and for 0
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 2, 4, 1, 1, 5, 4, 4, 5, 1, 1, 6, 3, 2, 3, 6, 1, 1, 7, 5, 5, 5, 5, 7, 1, 1, 8, 4, 5, 2, 5, 4, 8, 1, 1, 9, 6, 3, 6, 6, 3, 6, 9, 1, 1, 10, 5, 6, 4, 2, 4, 6, 5, 10, 1, 1, 11, 7, 6, 6, 7, 7, 6, 6, 7, 11, 1, 1, 12, 6, 4, 3, 6, 2, 6, 3, 4, 6, 12, 1, 1, 13, 8, 7, 7, 6, 8, 8, 6, 7, 7
Offset: 1
. . . . . . . . . . 1 . . . . . . . . . . . .
. . . . . . . . . 1 . 1 . . . . . . . . . . .
. . . . . . . . 1 . x . 1 . . . . B = 1 + A .
. . . . . . . 1 . x . x . 1 . . . . . . . . .
. . . . . . 1 . x . x . x . 1 . . F = E + 1 .
. . . . . 1 . x . E . - . - . 1 . . . . . . .
. . . . 1 . x . x . \ . x . / . 1 . . . . . .
. . . 1 . x . x . x . \ . / . x . 1 . . . . .
. . 1 . - . A . x . x . F . x . x . 1 . . . .
. 1 . \ . / . x . x . x . x . x . x . 1 . . .
1 . x . B . x . x . x . x . x . x . x . 1 . .
-
T[n_, k_] := T[n, k] = If[Min[k, n - k] == 0, 1, 1 + T[n - Min[k, n - k], Min[k, n - k]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 31 2017 *)
A322544
a(n) is the reciprocal of the coefficient of x^n in the power series defined by ((1+2x)*exp(x) + 3*exp(-x) - 4)/ (4x^2).
Original entry on oeis.org
1, 6, 8, 60, 180, 1680, 8064, 90720, 604800, 7983360, 68428800, 1037836800, 10897286400, 186810624000, 2324754432000, 44460928512000, 640237370572800, 13516122267648000, 221172909834240000, 5109094217170944000, 93666727314800640000, 2350183339898634240000, 47726800133326110720000
Offset: 0
-
List([0..25],n->(4*Factorial(n+2))/(2*n+5+3*(-1)^n)); # Muniru A Asiru, Dec 20 2018
-
a:=n->factorial(n+2)/(3*floor(n/2)-n+2): seq(a(n),n=0..25); # Muniru A Asiru, Dec 20 2018
-
Table[4*Factorial[n + 2]/(2*n + 5 + 3*(-1)^n), {n, 0, 25}]
(* or *)
Function[x, 1/x] /@
CoefficientList[Series[(Exp[x]/4 + 3/4*Exp[-x] + x/2*Exp[x] - 1)/x^2, {x, 0, 20}], x]
-
a(n)={(4*(n+2)!)/(5 + 3*(-1)^n + 2*n)} \\ Andrew Howroyd, Dec 14 2018
-
my(x='x + O('x^30)); Vec(apply(x->1/x, ((1+2*x)*exp(x) + 3*exp(-x) - 4)/ (4*x^2))) \\ Michel Marcus, Dec 19 2018
Showing 1-9 of 9 results.
Comments