A075398 Duplicate of A072868.
4, 8, 32, 128, 8192, 131072, 524288, 2147483648, 2305843009213693952, 618970019642690137449562112, 162259276829213363391578010288128, 170141183460469231731687303715884105728
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A000668:=Filtered(List(Filtered([1..600], IsPrime),i->2^i-1),IsPrime); # Muniru A Asiru, Oct 01 2017
A000668 := proc(n) local i; i := 2^(ithprime(n))-1: if (isprime(i)) then return i fi: end: seq(A000668(n), n=1..31); # Jani Melik, Feb 09 2011 # Alternate: seq(numtheory:-mersenne([i]),i=1..26); # Robert Israel, Jul 13 2014
2^Array[MersennePrimeExponent, 18] - 1 (* Jean-François Alcover, Feb 17 2018, Mersenne primes with less than 1000 digits *) 2^MersennePrimeExponent[Range[18]] - 1 (* Eric W. Weisstein, Sep 04 2021 *)
forprime(p=2,1e5,if(ispseudoprime(2^p-1),print1(2^p-1", "))) \\ Charles R Greathouse IV, Jul 15 2011
LL(e) = my(n, h); n = 2^e-1; h = Mod(2, n); for (k=1, e-2, h=2*h*h-1); return(0==h) \\ after Joerg Arndt in A000043 forprime(p=1, , if(LL(p), print1(p, ", "))) \\ Felix Fröhlich, Feb 17 2018
from sympy import isprime, primerange print([2**n-1 for n in primerange(1, 1001) if isprime(2**n-1)]) # Karl V. Keller, Jr., Jul 16 2020
sigma(sigma(4))=2*4, so 4 is in the sequence.
sigma = DivisorSigma[1, #]&; For[n = 2, True, n++, If[sigma[sigma[n]] == 2 n, Print[n]]] (* Jean-François Alcover, Sep 11 2018 *)
is(n)=sigma(sigma(n))==2*n \\ Charles R Greathouse IV, Nov 20 2012
from itertools import count, islice def A019279_gen(): # generator of terms return (n for n in count(1) if divisor_sigma(divisor_sigma(n)) == 2*n) A019279_list = list(islice(A019279_gen(),6)) # Chai Wah Wu, Feb 18 2022
2^(Select[Range[512], PrimeQ[2^# - 1] &] - 1) (* Alonso del Arte, Apr 22 2011 *) 2^(MersennePrimeExponent[Range[15]]-1) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 20 2021 *)
forprime(p=2,1e3,if(ispseudoprime(2^p-1),print1(2^(p-1)", "))) \\ Charles R Greathouse IV, Mar 14 2012
a(5) = 33554432 because A000043(5) = 13 and 2^(2*13 - 1) = 2^25 = 33554432. Also, if there are no odd perfect and odd superperfect numbers then we can write a(5) = A000396(5) + A019279(5) = A000396(5) + A061652(5) = 33554432.
2^(2 * MersennePrimeExponent[Range[10]] - 1) (* Amiram Eldar, Oct 17 2024 *)
Table[DivisorSigma[1,DivisorSigma[1,n]-n],{n,2,80}] (* Harvey P. Dale, Sep 23 2013 *)
A072869(n) = sigma(sigma(n)-n); \\ Antti Karttunen, Oct 30 2017
pp=324900 is OK because pp=570^2 and pp+1=324901 (prime).
pp = Join[ Select[ Range[56000], Apply[GCD, Last[ Transpose[ FactorInteger[ # ]]]] > 1 & ]]; Select[pp, PrimeQ[ # + 1] & ]
from sympy import isprime print([n**2 for n in range(1,240) if isprime(n**2 + 1)]) # Karl-Heinz Hofmann, Feb 02 2023
a(2) = 24 because A000043(2) = 3 then 2^(2*3 - 1) - 2^3 = 2^5 - 2^3 = 32 - 8 = 24.
Map[2^(2*#-1) - 2^# &, MersennePrimeExponent[Range[10]]] (* Amiram Eldar, Oct 17 2024 *)
a(19)=109051904=13*2^23: 24 prime factors, a(20)=169869312=3^4*2^21: 25 prime factors, a(21)=654311424=13*3*2^24: 26 prime factors. a(19)-1, a(20)-1 and a(21)-1 are primes.
Comments