cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A336871 Number of divisors d of A076954(n) with distinct prime multiplicities such that the numerator of A006939(n)/d also has distinct prime multiplicities.

Original entry on oeis.org

1, 2, 4, 11, 28, 96, 309, 1256, 4676, 21647
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

The sequence A006939 is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
The sequence A076954 is A076954(n) = Product_{i=1..n} prime(i)^i.

Examples

			The a(0) = 1 through a(3) = 11 divisors:
  1  2  18   2250
     1   9   1125
         3    375
         1    125
               75
               45
               25
               18
                9
                5
                1
		

Crossrefs

A336419 is the version for superprimorials.
A336500 is the generalization to all positive integers.
A000005 counts divisors.
A006939 lists superprimorials or Chernoff numbers.
A007425 counts divisors of divisors.
A076954 is a sister of superprimorials.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327523 counts factorizations of elements of A130091 using elements of A130091.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    cochern[n_]:=Product[Prime[i]^i,{i,n}];
    Table[Length[Select[Divisors[cochern[n]],UnsameQ@@Last/@FactorInteger[#]&&UnsameQ@@Last/@FactorInteger[chern[n]/#]&]],{n,0,5}]

A339766 Decimal expansion of Sum_{n>=1} A054541(n)/A076954(n-1).

Original entry on oeis.org

2, 6, 1, 2, 0, 0, 0, 7, 4, 0, 4, 3, 4, 5, 2, 6, 0, 6, 4, 4, 3, 7, 3, 7, 1, 1, 3, 0, 9, 5, 4, 4, 5, 6, 7, 2, 4, 3, 3, 4, 0, 4, 5, 8, 7, 3, 7, 0, 9, 3, 8, 2, 6, 6, 0, 9, 3, 5, 1, 0, 8, 0, 6, 0, 5, 1, 5, 6, 0, 4, 1, 0, 8, 8, 7, 4, 9, 3, 0, 1, 3, 6, 2, 5, 1, 3, 6
Offset: 1

Views

Author

Davide Rotondo, Dec 16 2020

Keywords

Comments

With this constant f(1) and using the formula f(n+1) = (floor(f(n))*(f(n))) - ((floor(f(n)))^2 - floor(f(n))) it is possible to obtain the prime numbers repeated exactly a number of times corresponding to the position of the prime number. That is, 2 once, 3 twice, 5 thrice, etc.

Examples

			2.61200074043...
		

Crossrefs

Programs

  • Mathematica
    imax:=87;First[RealDigits[N[2+Sum[(Prime[i]-Prime[i-1])/Product[Prime[j-1]^(j-1),{j,2,i}],{i,2,imax}],imax]]] (* Stefano Spezia, Dec 16 2020 *)

Formula

Equals 2 + (3-2)/(2) + (5-3)/(2*3^2) + (7-5)/(2*3^2*5^3) + (11-7)/(2*3^2*5^3*7^4) + ...

A008302 Triangle of Mahonian numbers T(n,k): coefficients in expansion of Product_{i=0..n-1} (1 + x + ... + x^i), where k ranges from 0 to A000217(n-1). Also enumerates permutations by their major index.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1, 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 1, 7, 27, 76, 174, 343, 602, 961, 1415, 1940, 2493, 3017, 3450, 3736, 3836, 3736, 3450, 3017, 2493, 1940, 1415, 961, 602, 343, 174, 76, 27, 7, 1, 1, 8, 35, 111, 285, 628, 1230, 2191, 3606, 5545, 8031, 11021, 14395, 17957, 21450, 24584, 27073, 28675, 29228, 28675, 27073, 24584, 21450, 17957, 14395, 11021, 8031, 5545, 3606, 2191, 1230, 628, 285, 111, 35, 8, 1
Offset: 1

Views

Author

Keywords

Comments

T(n,k) is the number of permutations of {1..n} with k inversions.
n-th row gives growth series for symmetric group S_n with respect to transpositions (1,2), (2,3), ..., (n-1,n).
T(n,k) is the number of permutations of (1,2,...,n) having disorder equal to k. The disorder of a permutation p of (1,2,...,n) is defined in the following manner. We scan p from left to right as often as necessary until all its elements are removed in increasing order, scoring one point for each occasion on which an element is passed over and not removed. The disorder of p is the number of points scored by the end of the scanning and removal process. For example, the disorder of (3,5,2,1,4) is 8, since on the first scan, 3,5,2 and 4 are passed over, on the second, 3,5 and 4 and on the third scan, 5 is once again not removed. - Emeric Deutsch, Jun 09 2004
T(n,k) is the number of permutations p=(p(1),...,p(n)) of {1..n} such that Sum_{i: p(i)>p(i+1)} = k (k is called the Major index of p). Example: T(3,0)=1, T(3,1)=2, T(3,2)=2, T(3,3)=1 because the major indices of the permutations (1,2,3), (2,1,3), (3,1,2), (1,3,2), (2,3,1) and (3,2,1) are 0,1,1,2,2 and 3, respectively. - Emeric Deutsch, Aug 17 2004
T(n,k) is the number of 2 X c matrices with column totals 1,2,3,...,n and row totals k and binomial(n+1,2) - k. - Mitch Harris, Jan 13 2006
T(n,k) is the number of permutations p of {1,2,...,n} for which den(p)=k. Here den is the Denert statistic, defined in the following way: let p=p(1)p(2)...p(n) be a permutation of {1,2,...,n}; if p(i)>i, then we say that i is an excedance of p; let i_1 < i_2 < ... < i_k be the excedances of p and let j_1 < j_2 < ... < j_{n-k} be the non-excedances of p; let Exc(p) = p(i_1)p(i_2)...p(i_k), Nexc(p)=p(j_1)p(j_2)...p(j_{n-k}); then, by definition den(p) = i_1 + i_2 + ... + i_k + inv(Exc(p)) + inv(Nexc(p)), where inv denotes "number of inversions". Example: T(4,5)=3 because we have 1342, 3241 and 4321. We show that den(4321)=5: the excedances are 1 and 2; Exc(4321)=43, Nexc(4321)=21; now den(4321) = 1 + 2 + inv(43) + inv(21) = 3+1+1 = 5. - Emeric Deutsch, Oct 29 2008
T(n,k) is the number of size k submultisets of the multiset {1,2,2,3,3,3,...,n-1} (which contains i copies of i for 0 < i < n).
The limit of products of the numbers of fixed necklaces of length n composed of beads of types N(n,b), n --> infinity, is the generating function for inversions (we must exclude one unimportant factor b^n/n!). The error is < (b^n/n!)*O(1/n^(1/2-epsilon)). See Gaichenkov link. - Mikhail Gaichenkov, Aug 27 2012
The number of ways to distribute k-1 indistinguishable balls into n-1 boxes of capacity 1,2,3,...,n-1. - Andrew Woods, Sep 26 2012
Partial sums of rows give triangle A161169. - András Salamon, Feb 16 2013
The number of permutations of n that require k pair swaps in the bubble sort to sort them into the natural 1,2,...,n order. - R. J. Mathar, May 04 2013
Also series coefficients of q-factorial [n]q ! -- see Mathematica line. - _Wouter Meeussen, Jul 12 2014
From Mikhail Gaichenkov, Aug 16 2016: (Start)
Following asymptotic expansions in the Central Limit Theorem developed by Valentin V. Petrov, the cumulative distribution function of these numbers, CDF_N(x), is equal to the CDF of the normal distribution - (0.06/sqrt(2*Pi))*exp(-x^2/2)(x^3-3x)*(6N^3+21N^2+31N+31)/(N(2N+5)^2(N-1)+O(1/N^2).
This can be written as: CDF of the normal distribution -(0.09/(N*sqrt(2*Pi)))*exp(-x^2/2)*He_3(x) + O(1/N^2), N > 1, natural numbers (Gaichenkov, private research).
According to B. H. Margolius, Permutations with inversions, J. Integ. Seqs. Vol. 4 (2001), #01.2.4, "the unimodal behavior of the inversion numbers suggests that the number of inversions in a random permutation may be asymptotically normal". See links.
Moreover, E. Ben-Naim (Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory), "On the Mixing of Diffusing Particles" (13 Oct 2010), states that the Mahonian Distribution becomes a function of a single variable for large numbers of element, i.e., the probability distribution function is normal. See links.
To be more precise the expansion of the distribution is presented for a finite number of elements (or particles in terms of E. Ben-Naim's article). The distribution tends to the normal distribution for an infinite numbers of elements.
(End)
T(n,k) statistic counts (labeled) permutation graphs with n vertices and k edges. - Mikhail Gaichenkov, Aug 20 2019
From Gus Wiseman, Aug 12 2020: (Start)
Number of divisors of A006939(n - 1) or A076954(n - 1) with k prime factors, counted with multiplicity, where A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1). For example, row n = 4 counts the following divisors:
1 2 4 8 24 72 360
3 6 12 36 120
5 9 18 40 180
10 20 60
15 30 90
45
Crossrefs:
A336420 is the case with distinct prime multiplicities.
A006939 lists superprimorials or Chernoff numbers.
A022915 counts permutations of prime indices of superprimorials.
A317829 counts factorizations of superprimorials.
A336941 counts divisor chains under superprimorials.
(End)
Named after the British mathematician Percy Alexander MacMahon (1854-1929). - Amiram Eldar, Jun 13 2021
Row maxima ~ n!/(sigma * sqrt(2*Pi)), sigma^2 = (2*n^3 + 9*n^2 + 7*n)/72 = variance of group type A_n (see also A161435). - Mikhail Gaichenkov, Feb 08 2023
Sum_{i>=0} T(n,i)*k^i = A069777(n,k). - Geoffrey Critzer, Feb 26 2025

Examples

			1; 1+x; (1+x)*(1+x+x^2) = 1+2*x+2*x^2+x^3; etc.
Triangle begins:
  n\k| 0  1   2    3    4     5     6     7     8      9     10
  ---+--------------------------------------------------------------
   1 | 1;
   2 | 1, 1;
   3 | 1, 2,  2,   1;
   4 | 1, 3,  5,   6,   5,    3,    1;
   5 | 1, 4,  9,  15,  20,   22,   20,   15,    9,     4,     1;
   6 | 1, 5, 14,  29,  49,   71,   90,  101,  101,    90,    71, ...
   7 | 1, 6, 20,  49,  98,  169,  259,  359,  455,   531,   573, ...
   8 | 1, 7, 27,  76, 174,  343,  602,  961, 1415,  1940,  2493, ...
   9 | 1, 8, 35, 111, 285,  628, 1230, 2191, 3606,  5545,  8031, ...
  10 | 1, 9, 44, 155, 440, 1068, 2298, 4489, 8095, 13640, 21670, ...
From _Gus Wiseman_, Aug 12 2020: (Start)
Row n = 4 counts the following submultisets of {1,1,1,2,2,3}:
  {}  {1}  {11}  {111}  {1112}  {11122}  {111223}
      {2}  {12}  {112}  {1122}  {11123}
      {3}  {22}  {122}  {1113}  {11223}
           {13}  {113}  {1123}
           {23}  {123}  {1223}
                 {223}
(End)
		

References

  • Miklós Bóna, Combinatorics of permutations, Chapman & Hall/CRC, Boca Raton, Florida, 2004 (p. 52).
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 240.
  • Florence Nightingale David, Maurice George Kendall, and David Elliot Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • Pierre de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 163, top display.
  • Eugen Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • Valentin V. Petrov, Sums of Independent Random Variables, Springer Berlin Heidelberg, 1975, p. 134.
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Corollary 1.3.10, p. 21.

Crossrefs

Diagonals: A000707 (k=n-1), A001892 (k=n-2), A001893 (k=n-3), A001894 (k=n-4), A005283 (k=n-5), A005284 (k=n-6), A005285 (k=n-7).
Columns: A005286 (k=3), A005287 (k=4), A005288 (k=5), A242656 (k=6), A242657 (k=7).
Rows: A161435 (n=4), A161436 (n=5), A161437 (n=6), A161438 (n=7), A161439 (n=8), A161456 (n=9), A161457 (n=10).
Row-maxima: A000140, truncated table: A060701, row sums: A000142, row lengths: A000124.
A001809 gives total Denert index of all permutations.
A357611 gives a refinement.

Programs

  • Maple
    g := proc(n,k) option remember; if k=0 then return(1) else if (n=1 and k=1) then return(0) else if (k<0 or k>binomial(n,2)) then return(0) else g(n-1,k)+g(n,k-1)-g(n-1,k-n) end if end if end if end proc; # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
    BB:=j->1+sum(t^i, i=1..j): for n from 1 to 8 do Z[n]:=sort(expand(simplify(product(BB(j), j=0..n-2)))) od: for n from 1 to 8 do seq(coeff(Z[n], t, j), j=0..(n-1)*(n-2)/2) od; # Zerinvary Lajos, Apr 13 2007
    # alternative Maple program:
    b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
           add(b(u+j-1, o-j)*x^(u+j-1), j=1..o)+
           add(b(u-j, o+j-1)*x^(u-j), j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=1..10);  # Alois P. Heinz, May 02 2017
  • Mathematica
    f[n_] := CoefficientList[ Expand@ Product[ Sum[x^i, {i, 0, j}], {j, n}], x]; Flatten[Array[f, 8, 0]]
    (* Second program: *)
    T[0, 0] := 1; T[-1, k_] := 0;
    T[n_, k_] := T[n, k] = If[0 <= k <= n*(n - 1)/2, T[n, k - 1] + T[n - 1, k] - T[n - 1, k - n], 0]; (* Peter Kagey, Mar 18 2021; corrected the program by Mats Granvik and Roger L. Bagula, Jun 19 2011 *)
    alternatively (versions 7 and up):
    Table[CoefficientList[Series[QFactorial[n,q],{q,0,n(n-1)/2}],q],{n,9}] (* Wouter Meeussen, Jul 12 2014 *)
    b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1,
       Sum[b[u + j - 1, o - j]*x^(u + j - 1), {j, 1, o}] +
       Sum[b[u - j, o + j - 1]*x^(u - j), {j, 1, u}]]];
    T[n_] := With[{p = b[n, 0]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Apr 21 2025, after Alois P. Heinz *)
  • PARI
    {T(n,k) = my(A=1+x); for(i=1,n, A = 1 + intformal(A - q*subst(A,x,q*x +x^2*O(x^n)))/(1-q)); polcoeff(n!*polcoeff(A,n,x),k,q)}
    for(n=1,10, for(k=0,n*(n-1)/2, print1(T(n,k),", ")); print("")) \\ Paul D. Hanna, Dec 31 2016
    
  • PARI
    row(n)=Vec(prod(k=1,n,(1-'q^k)/(1-'q))); \\ Joerg Arndt, Apr 13 2019
  • Sage
    from sage.combinat.q_analogues import q_factorial
    for n in (1..6): print(q_factorial(n).list()) # Peter Luschny, Jul 18 2016
    

Formula

Bourget, Comtet and Moritz-Williams give recurrences.
Mendes and Stanley give g.f.'s.
G.f.: Product_{j=1..n} (1-x^j)/(1-x) = Sum_{k=0..M} T{n, k} x^k, where M = n*(n-1)/2.
From Andrew Woods, Sep 26 2012, corrected by Peter Kagey, Mar 18 2021: (Start)
T(1, 0) = 1,
T(n, k) = 0 for n < 0, k < 0 or k > n*(n-1)/2.
T(n, k) = Sum_{j=0..n-1} T(n-1, k-j),
T(n, k) = T(n, k-1) + T(n-1, k) - T(n-1, k-n). (End)
E.g.f. satisfies: A(x,q) = 1 + Integral (A(x,q) - q*A(q*x,q))/(1-q) dx, where A(x,q) = Sum_{n>=0} x^n/n! * Sum_{k=0..n*(n-1)/2} T(n,k)*q^k, when T(0,0) = 1 is included. - Paul D. Hanna, Dec 31 2016

Extensions

There were some mistaken edits to this entry (inclusion of an initial 1, etc.) which I undid. - N. J. A. Sloane, Nov 30 2009
Added mention of "major index" to definition. - N. J. A. Sloane, Feb 10 2019

A006939 Chernoff sequence: a(n) = Product_{k=1..n} prime(k)^(n-k+1).

Original entry on oeis.org

1, 2, 12, 360, 75600, 174636000, 5244319080000, 2677277333530800000, 25968760179275365452000000, 5793445238736255798985527240000000, 37481813439427687898244906452608585200000000, 7517370874372838151564668004911177464757864076000000000, 55784440720968513813368002533861454979548176771615744085560000000000
Offset: 0

Views

Author

Keywords

Comments

Product of first n primorials: a(n) = Product_{i=1..n} A002110(i).
Superprimorials, from primorials by analogy with superfactorials.
Smallest number k with n distinct exponents in its prime factorization, i.e., A071625(k) = n.
Subsequence of A130091. - Reinhard Zumkeller, May 06 2007
Hankel transform of A171448. - Paul Barry, Dec 09 2009
This might be a good place to explain the name "Chernoff sequence" since his name does not appear in the References or Links as of Mar 22 2014. - Jonathan Sondow, Mar 22 2014
Pickover (1992) named this sequence after Paul Chernoff of California, who contributed this sequence to his book. He was possibly referring to American mathematician Paul Robert Chernoff (1942 - 2017), a professor at the University of California. - Amiram Eldar, Jul 27 2020

Examples

			a(4) = 360 because 2^3 * 3^2 * 5 = 1 * 2 * 6 * 30 = 360.
a(5) = 75600 because 2^4 * 3^3 * 5^2 * 7 = 1 * 2 * 6 * 30 * 210 = 75600.
		

References

  • Clifford A. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 351.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James K. Strayer, Elementary number theory, Waveland Press, Inc., Long Grove, IL, 1994. See p. 37.

Crossrefs

Cf. A000178 (product of first n factorials), A007489 (sum of first n factorials), A060389 (sum of first n primorials).
A000142 counts divisors of superprimorials.
A000325 counts uniform divisors of superprimorials.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 is a sister-sequence.
A118914 has row a(n) equal to {1..n}.
A124010 has row a(n) equal to {n..1}.
A130091 lists numbers with distinct prime multiplicities.
A317829 counts factorizations of superprimorials.
A336417 counts perfect-power divisors of superprimorials.
A336426 gives non-products of superprimorials.

Programs

  • Haskell
    a006939 n = a006939_list !! n
    a006939_list = scanl1 (*) a002110_list -- Reinhard Zumkeller, Jul 21 2012
    
  • Magma
    [1] cat [(&*[NthPrime(k)^(n-k+1): k in [1..n]]): n in [1..15]]; // G. C. Greubel, Oct 14 2018
    
  • Maple
    a := []; printlevel := -1; for k from 0 to 20 do a := [op(a),product(ithprime(i)^(k-i+1),i=1..k)] od; print(a);
  • Mathematica
    Rest[FoldList[Times,1,FoldList[Times,1,Prime[Range[15]]]]] (* Harvey P. Dale, Jul 07 2011 *)
    Table[Times@@Table[Prime[i]^(n - i + 1), {i, n}], {n, 12}] (* Alonso del Arte, Sep 30 2011 *)
  • PARI
    a(n)=prod(k=1,n,prime(k)^(n-k+1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • Python
    from math import prod
    from sympy import prime
    def A006939(n): return prod(prime(k)**(n-k+1) for k in range(1,n+1)) # Chai Wah Wu, Aug 12 2025

Formula

a(n) = m(1)*m(2)*m(3)*...*m(n), where m(n) = n-th primorial number. - N. J. A. Sloane, Feb 20 2005
a(0) = 1, a(n) = a(n - 1)p(n)#, where p(n)# is the n-th primorial A002110(n) (the product of the first n primes). - Alonso del Arte, Sep 30 2011
log a(n) = n^2(log n + log log n - 3/2 + o(1))/2. - Charles R Greathouse IV, Mar 14 2011
A181796(a(n)) = A000110(n+1). It would be interesting to have a bijective proof of this theorem, which is stated at A181796 without proof. See also A336420. - Gus Wiseman, Aug 03 2020

Extensions

Corrected and extended by Labos Elemer, May 30 2001

A109298 Primal codes of finite idempotent functions on positive integers.

Original entry on oeis.org

1, 2, 9, 18, 125, 250, 1125, 2250, 2401, 4802, 21609, 43218, 161051, 300125, 322102, 600250, 1449459, 2701125, 2898918, 4826809, 5402250, 9653618, 20131375, 40262750, 43441281, 86882562, 181182375, 362364750, 386683451, 410338673, 603351125, 773366902, 820677346
Offset: 1

Views

Author

Jon Awbrey, Jul 06 2005

Keywords

Comments

Finite idempotent functions are identity maps on finite subsets, counting the empty function as the idempotent on the empty set.
From Gus Wiseman, Mar 09 2019: (Start)
Also numbers whose ordered prime signature is equal to the distinct prime indices in increasing order. A prime index of n is a number m such that prime(m) divides n. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base. The case where the prime indices are taken in decreasing order is A324571.
Also numbers divisible by prime(k) exactly k times for each prime index k. These are a kind of self-describing numbers (cf. A001462, A304679).
Also Heinz numbers of integer partitions where the multiplicity of m is m for all m in the support (counted by A033461). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A062457. For example, 43218 = prime(1)^1 * prime(2)^2 * prime(4)^4.
(End)

Examples

			Writing (prime(i))^j as i:j, we have the following table of examples:
Primal Codes of Finite Idempotent Functions on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = ` ` 2:2
` ` `18 = 1:1 2:2
` ` 125 = ` ` ` ` 3:3
` ` 250 = 1:1 ` ` 3:3
` `1125 = ` ` 2:2 3:3
` `2250 = 1:1 2:2 3:3
` `2401 = ` ` ` ` ` ` 4:4
` `4802 = 1:1 ` ` ` ` 4:4
` 21609 = ` ` 2:2 ` ` 4:4
` 43218 = 1:1 2:2 ` ` 4:4
`161051 = ` ` ` ` ` ` ` ` 5:5
`300125 = ` ` ` ` 3:3 4:4
`322102 = 1:1 ` ` ` ` ` ` 5:5
`600250 = 1:1 ` ` 3:3 4:4
From _Gus Wiseman_, Mar 09 2019: (Start)
The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2) has prime signature {1,2} and the distinct prime indices are also {1,2}.
       1: {}
       2: {1}
       9: {2,2}
      18: {1,2,2}
     125: {3,3,3}
     250: {1,3,3,3}
    1125: {2,2,3,3,3}
    2250: {1,2,2,3,3,3}
    2401: {4,4,4,4}
    4802: {1,4,4,4,4}
   21609: {2,2,4,4,4,4}
   43218: {1,2,2,4,4,4,4}
  161051: {5,5,5,5,5}
  300125: {3,3,3,4,4,4,4}
  322102: {1,5,5,5,5,5}
  600250: {1,3,3,3,4,4,4,4}
(End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]==k]&]
  • PARI
    is(n) = my(f = factor(n)); for(i = 1, #f~, if(prime(f[i, 2]) != f[i, 1], return(0))); 1 \\ David A. Corneth, Mar 09 2019

Formula

Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + 1/prime(n)^n) = 1.6807104966... - Amiram Eldar, Jan 03 2021

Extensions

Offset set to 1, missing terms inserted and more terms added by Alois P. Heinz, Mar 08 2019

A276076 Factorial base exp-function: digits in factorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450, 3675, 7350, 11025, 22050, 6125, 12250, 18375, 36750, 55125, 110250, 343
Offset: 0

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the digit in one-based position k of the factorial base representation of n. See the examples.

Examples

			   n  A007623   polynomial     encoded as             a(n)
   -------------------------------------------------------
   0       0    0-polynomial   (empty product)        = 1
   1       1    1*x^0          prime(1)^1             = 2
   2      10    1*x^1          prime(2)^1             = 3
   3      11    1*x^1 + 1*x^0  prime(2) * prime(1)    = 6
   4      20    2*x^1          prime(2)^2             = 9
   5      21    2*x^1 + 1*x^0  prime(2)^2 * prime(1)  = 18
   6     100    1*x^2          prime(3)^1             = 5
   7     101    1*x^2 + 1*x^0  prime(3) * prime(1)    = 10
and:
  23     321  3*x^2 + 2*x + 1  prime(3)^3 * prime(2)^2 * prime(1)
                                      = 5^3 * 3^2 * 2 = 2250.
		

Crossrefs

Cf. A276075 (a left inverse).
Cf. A276078 (same terms in ascending order).
Cf. also A275733, A275734, A275735, A275725 for other such encodings of factorial base related polynomials, and A276086 for a primorial base analog.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, p = 2, q = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, q *= p^r; p = NextPrime[p]; m++]; q]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)

Formula

a(0) = 1, for n >= 1, a(n) = A275733(n) * a(A276009(n)).
Or: for n >= 1, a(n) = a(A257687(n)) * A000040(A084558(n))^A099563(n).
Other identities.
For all n >= 0:
A276075(a(n)) = n.
A001221(a(n)) = A060130(n).
A001222(a(n)) = A034968(n).
A051903(a(n)) = A246359(n).
A048675(a(n)) = A276073(n).
A248663(a(n)) = A276074(n).
a(A007489(n)) = A002110(n).
a(A059590(n)) = A019565(n).
For all n >= 1:
a(A000142(n)) = A000040(n).
a(A033312(n)) = A076954(n-1).
From Antti Karttunen, Apr 18 2022: (Start)
a(n) = A276086(A351576(n)).
A276085(a(n)) = A351576(n)
A003557(a(n)) = A351577(n).
A003415(a(n)) = A351950(n).
A069359(a(n)) = A351951(n).
A083345(a(n)) = A342001(a(n)) = A351952(n).
A351945(a(n)) = A351954(n).
A181819(a(n)) = A275735(n).
(End)
lambda(a(n)) = A262725(n+1), where lambda is Liouville's function, A008836. - Antti Karttunen and Peter Munn, Aug 09 2024

Extensions

Name changed by Antti Karttunen, Apr 18 2022

A022915 Multinomial coefficients (0, 1, ..., n)! = C(n+1,2)!/(0!*1!*2!*...*n!).

Original entry on oeis.org

1, 1, 3, 60, 12600, 37837800, 2053230379200, 2431106898187968000, 73566121315513295589120000, 65191584694745586153436251091200000, 1906765806522767212441719098019963758016000000, 2048024348726152339387799085049745725891853852479488000000
Offset: 0

Views

Author

Keywords

Comments

Number of ways to put numbers 1, 2, ..., n*(n+1)/2 in a triangular array of n rows in such a way that each row is increasing. Also number of ways to choose groups of 1, 2, 3, ..., n-1 and n objects out of n*(n+1)/2 objects. - Floor van Lamoen, Jul 16 2001
a(n) is the number of ways to linearly order the multiset {1,2,2,3,3,3,...n,n,...n}. - Geoffrey Critzer, Mar 08 2009
Also the number of distinct adjacency matrices in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017

Examples

			From _Gus Wiseman_, Aug 12 2020: (Start)
The a(3) = 60 permutations of the prime indices of A006939(3) = 360:
  (111223)  (121123)  (131122)  (212113)  (231211)
  (111232)  (121132)  (131212)  (212131)  (232111)
  (111322)  (121213)  (131221)  (212311)  (311122)
  (112123)  (121231)  (132112)  (213112)  (311212)
  (112132)  (121312)  (132121)  (213121)  (311221)
  (112213)  (121321)  (132211)  (213211)  (312112)
  (112231)  (122113)  (211123)  (221113)  (312121)
  (112312)  (122131)  (211132)  (221131)  (312211)
  (112321)  (122311)  (211213)  (221311)  (321112)
  (113122)  (123112)  (211231)  (223111)  (321121)
  (113212)  (123121)  (211312)  (231112)  (321211)
  (113221)  (123211)  (211321)  (231121)  (322111)
(End)
		

Crossrefs

A190945 counts the case of anti-run permutations.
A317829 counts partitions of this multiset.
A325617 is the version for factorials instead of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A008480 counts permutations of prime indices.
A181818 gives products of superprimorials, with complement A336426.

Programs

  • Maple
    with(combinat):
    a:= n-> multinomial(binomial(n+1, 2), $0..n):
    seq(a(n), n=0..12);  # Alois P. Heinz, May 18 2013
  • Mathematica
    Table[Apply[Multinomial ,Range[n]], {n, 0, 20}]  (* Geoffrey Critzer, Dec 09 2012 *)
    Table[Multinomial @@ Range[n], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
    Table[Binomial[n + 1, 2]!/BarnesG[n + 2], {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
    Table[Length[Permutations[Join@@Table[i,{i,n},{i}]]],{n,0,4}] (* Gus Wiseman, Aug 12 2020 *)
  • PARI
    a(n) = binomial(n+1,2)!/prod(k=1, n, k^(n+1-k)); \\ Michel Marcus, May 02 2019

Formula

a(n) = (n*(n+1)/2)!/(0!*1!*2!*...*n!).
a(n) = a(n-1) * A014068(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001.
a(n) = A052295(n)/A000178(n). - Lekraj Beedassy, Feb 19 2004
a(n) = A208437(n*(n+1)/2,n). - Alois P. Heinz, Apr 08 2016
a(n) ~ A * exp(n^2/4 + n + 1/6) * n^(n^2/2 + 7/12) / (2^((n+1)^2/2) * Pi^(n/2)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 02 2019
a(n) = A327803(n*(n+1)/2,n). - Alois P. Heinz, Sep 25 2019
a(n) = A008480(A006939(n)). - Gus Wiseman, Aug 12 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 11 2001
More terms from Michel ten Voorde, Apr 12 2001
Better definition from L. Edson Jeffery, May 18 2013

A181818 Products of superprimorials (A006939).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 360, 384, 512, 576, 720, 768, 1024, 1152, 1440, 1536, 1728, 2048, 2304, 2880, 3072, 3456, 4096, 4320, 4608, 5760, 6144, 6912, 8192, 8640, 9216, 11520, 12288, 13824, 16384, 17280, 18432, 20736, 23040, 24576, 27648, 32768
Offset: 1

Views

Author

Matthew Vandermast, Nov 30 2010

Keywords

Comments

Sorted list of positive integers with a factorization Product p(i)^e(i) such that (e(1) - e(2)) >= (e(2) - e(3)) >= ... >= (e(k-1) - e(k)) >= e(k), with k = A001221(n), and p(k) = A006530(n) = A000040(k), i.e., the prime factors p(1) .. p(k) must be consecutive primes from 2 onward. - Comment clarified by Antti Karttunen, Apr 28 2022
Subsequence of A025487. A025487(n) belongs to this sequence iff A181815(n) is a member of A025487.
If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A182863. - Matthew Vandermast, May 20 2012

Examples

			2, 12, and 360 are all superprimorials (i.e., members of A006939). Therefore, 2*2*12*360 = 17280 is included in the sequence.
From _Gus Wiseman_, Aug 12 2020 (Start):
The sequence of factorizations (which are unique) begins:
    1 = empty product
    2 = 2
    4 = 2*2
    8 = 2*2*2
   12 = 12
   16 = 2*2*2*2
   24 = 2*12
   32 = 2*2*2*2*2
   48 = 2*2*12
   64 = 2*2*2*2*2*2
   96 = 2*2*2*12
  128 = 2*2*2*2*2*2*2
  144 = 12*12
  192 = 2*2*2*2*12
  256 = 2*2*2*2*2*2*2*2
(End)
		

Crossrefs

A181817 rearranged in numerical order. Also includes all members of A000079, A001021, A006939, A009968, A009992, A066120, A166475, A167448, A181813, A181814, A181816, A182763.
Subsequence of A025487, A055932, A087980, A130091, A181824.
A001013 is the version for factorials.
A336426 is the complement.
A336496 is the version for superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A317829 counts factorizations of superprimorials.
Cf. A022915, A076954, A304686, A325368, A336419, A336420, A336421, A353518 (characteristic function).

Programs

  • Mathematica
    Select[Range[100],PrimePi[First/@If[#==1,{}, FactorInteger[#]]]==Range[ PrimeNu[#]]&&LessEqual@@Differences[ Append[Last/@FactorInteger[#],0]]&] (* Gus Wiseman, Aug 12 2020 *)
  • PARI
    firstdiffs0forward(vec) = { my(v=vector(#vec)); for(n=1,#v,v[n] = vec[n]-if(#v==n,0,vec[1+n])); (v); };
    A353518(n) = if(1==n,1,my(f=factor(n), len=#f~); if(primepi(f[len,1])!=len, return(0), my(diffs=firstdiffs0forward(f[,2])); for(i=1,#diffs-1,if(diffs[i+1]>diffs[i],return(0))); (1)));
    isA181818(n) = A353518(n); \\ Antti Karttunen, Apr 28 2022

A109297 Primal codes of finite permutations on positive integers.

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 112, 125, 250, 352, 360, 540, 600, 675, 832, 1008, 1125, 1350, 1500, 2176, 2250, 2268, 2352, 2401, 3168, 3969, 4802, 4864, 7488, 7938, 10692, 11616, 11776, 14000, 19584, 21609, 27440, 28812, 29403, 29696, 32448, 35000, 37908, 43218, 43776
Offset: 1

Views

Author

Jon Awbrey, Jul 08 2005

Keywords

Comments

A finite permutation is a bijective mapping from a finite set to itself, counting the empty mapping as a permutation of the empty set.
Also Heinz numbers of integer partitions where the set of distinct parts is equal to the set of distinct multiplicities. These partitions are counted by A114640. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019

Examples

			Writing (prime(i))^j as i:j, we have the following table:
Primal Codes of Finite Permutations on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = 2:2
` ` `12 = 1:2 2:1
` ` `18 = 1:1 2:2
` ` `40 = 1:3 3:1
` ` 112 = 1:4 4:1
` ` 125 = 3:3
` ` 250 = 1:1 3:3
` ` 352 = 1:5 5:1
` ` 360 = 1:3 2:2 3:1
` ` 540 = 1:2 2:3 3:1
` ` 600 = 1:3 2:1 3:2
` ` 675 = 2:3 3:2
` ` 832 = 1:6 6:1
` `1008 = 1:4 2:2 4:1
` `1125 = 2:2 3:3
` `1350 = 1:1 2:3 3:2
` `1500 = 1:2 2:1 3:3
` `2176 = 1:7 7:1
` `2250 = 1:1 2:2 3:3
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0,
          a(n-1)) while (l-> sort(map(i-> i[2], l)) <> sort(map(
          i-> numtheory[pi](i[1]), l)))(ifactors(k)[2]) do od; k
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],#==1||Union[PrimePi/@First/@FactorInteger[#]]==Union[Last/@FactorInteger[#]]&] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    is(n) = {my(f = factor(n), p = f[,1], e = vecsort(f[,2])); for(i=1, #p, if(primepi(p[i]) != e[i], return(0))); 1}; \\ Amiram Eldar, Jul 30 2022

Extensions

More terms from Franklin T. Adams-Watters, Dec 19 2005
Offset set to 1 by Alois P. Heinz, Mar 08 2019

A276075 a(1) = 0, a(n) = (e1*i1! + e2*i2! + ... + ez*iz!) for n = prime(i1)^e1 * prime(i2)^e2 * ... * prime(iz)^ez, where prime(k) is the k-th prime, A000040(k).

Original entry on oeis.org

0, 1, 2, 2, 6, 3, 24, 3, 4, 7, 120, 4, 720, 25, 8, 4, 5040, 5, 40320, 8, 26, 121, 362880, 5, 12, 721, 6, 26, 3628800, 9, 39916800, 5, 122, 5041, 30, 6, 479001600, 40321, 722, 9, 6227020800, 27, 87178291200, 122, 10, 362881, 1307674368000, 6, 48, 13, 5042, 722, 20922789888000, 7, 126, 27, 40322, 3628801, 355687428096000, 10, 6402373705728000, 39916801, 28, 6, 726, 123
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

Additive with a(p^e) = e * (PrimePi(p)!), where PrimePi(n) = A000720(n).
a(3181) has 1001 decimal digits. - Michael De Vlieger, Dec 24 2017

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 0, Total[FactorInteger[#] /. {p_, e_} /; p > 1 :> e PrimePi[p]!]] &, 66] (* Michael De Vlieger, Dec 24 2017 *)
  • Python
    from sympy import factorint, factorial as f, primepi
    def a(n):
        F=factorint(n)
        return 0 if n==1 else sum(F[i]*f(primepi(i)) for i in F)
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Jun 21 2017

Formula

a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A000142(A055396(n))).
Other identities.
For all n >= 0:
a(A276076(n)) = n.
a(A002110(n)) = A007489(n).
a(A019565(n)) = A059590(n).
a(A206296(n)) = A276080(n).
a(A260443(n)) = A276081(n).
For all n >= 1:
a(A000040(n)) = n! = A000142(n).
a(A076954(n-1)) = A033312(n).
Showing 1-10 of 37 results. Next