cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A016789 a(n) = 3*n + 2.

Original entry on oeis.org

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179
Offset: 0

Views

Author

Keywords

Comments

Except for 1, n such that Sum_{k=1..n} (k mod 3)*binomial(n,k) is a power of 2. - Benoit Cloitre, Oct 17 2002
The sequence 0,0,2,0,0,5,0,0,8,... has a(n) = n*(1 + cos(2*Pi*n/3 + Pi/3) - sqrt(3)*sin(2*Pi*n + Pi/3))/3 and o.g.f. x^2(2+x^3)/(1-x^3)^2. - Paul Barry, Jan 28 2004 [Artur Jasinski, Dec 11 2007, remarks that this should read (3*n + 2)*(1 + cos(2*Pi*(3*n + 2)/3 + Pi/3) - sqrt(3)*sin(2*Pi*(3*n + 2)/3 + Pi/3))/3.]
Except for 2, exponents e such that x^e + x + 1 is reducible. - N. J. A. Sloane, Jul 19 2005
The trajectory of these numbers under iteration of sum of cubes of digits eventually turns out to be 371 or 407 (47 is the first of the second kind). - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 19 2009
Union of A165334 and A165335. - Reinhard Zumkeller, Sep 17 2009
a(n) is the set of numbers congruent to {2,5,8} mod 9. - Gary Detlefs, Mar 07 2010
It appears that a(n) is the set of all values of y such that y^3 = k*n + 2 for integer k. - Gary Detlefs, Mar 08 2010
These numbers do not occur in A000217 (triangular numbers). - Arkadiusz Wesolowski, Jan 08 2012
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
Also indices of even Bell numbers (A000110). - Enrique Pérez Herrero, Sep 10 2013
Central terms of the triangle A108872. - Reinhard Zumkeller, Oct 01 2014
A092942(a(n)) = 1 for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n-1), n >= 1, is also the complex dimension of the manifold E(S), the set of all second-order irreducible Fuchsian differential equations defined on P^1 = C U {oo}, having singular points at most in S = {a_1, ..., a_n, a_{n+1} = oo}, a subset of P^1. See the Iwasaki et al. reference, Proposition 2.1.3., p. 149. - Wolfdieter Lang, Apr 22 2016
Except for 2, exponents for which 1 + x^(n-1) + x^n is reducible. - Ron Knott, Sep 16 2016
The reciprocal sum of 8 distinct items from this sequence can be made equal to 1, with these terms: 2, 5, 8, 14, 20, 35, 41, 1640. - Jinyuan Wang, Nov 16 2018
There are no positive integers x, y, z such that 1/a(x) = 1/a(y) + 1/a(z). - Jinyuan Wang, Dec 31 2018
As a set of positive integers, it is the set sum S + S where S is the set of numbers in A016777. - Michael Somos, May 27 2019
Interleaving of A016933 and A016969. - Leo Tavares, Nov 16 2021
Prepended with {1}, these are the denominators of the elements of the 3x+1 semigroup, the numerators being A005408 prepended with {2}. See Applegate and Lagarias link for more information. - Paolo Xausa, Nov 20 2021
This is also the maximum number of moves starting with n + 1 dots in the game of Sprouts. - Douglas Boffey, Aug 01 2022 [See the Wikipedia link. - Wolfdieter Lang, Sep 29 2022]
a(n-2) is the maximum sum of the span (or L(2,1)-labeling number) of a graph of order n and its complement. The extremal graphs are stars and their complements. For example, K_{1,2} has span 3, and K_2 has span 2. Thus a(3-1) = 5. - Allan Bickle, Apr 20 2023

Examples

			G.f. = 2 + 5*x + 8*x^2 + 11*x^3 + 14*x^4 + 17*x^5 + 20*x^6 + ... - _Michael Somos_, May 27 2019
		

References

  • K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 149.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269

Crossrefs

First differences of A005449.
Cf. A087370.
Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

G.f.: (2+x)/(1-x)^2.
a(n) = 3 + a(n-1).
a(n) = 1 + A016777(n).
a(n) = A124388(n)/9.
a(n) = A125199(n+1,1). - Reinhard Zumkeller, Nov 24 2006
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) - log(2)). - Benoit Cloitre, Apr 05 2002
1/2 - 1/5 + 1/8 - 1/11 + ... = (1/3)*(Pi/sqrt(3) - log 2). [Jolley] - Gary W. Adamson, Dec 16 2006
Sum_{n>=0} 1/(a(2*n)*a(2*n+1)) = (Pi/sqrt(3) - log 2)/9 = 0.12451569... (see A196548). [Jolley p. 48 eq (263)]
a(n) = 2*a(n-1) - a(n-2); a(0)=2, a(1)=5. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) + 1 with a(0)=2. - Vincenzo Librandi, Aug 25 2010
Conjecture: a(n) = n XOR A005351(n+1) XOR A005352(n+1). - Gilian Breysens, Jul 21 2017
E.g.f.: (2 + 3*x)*exp(x). - G. C. Greubel, Nov 02 2018
a(n) = A005449(n+1) - A005449(n). - Jinyuan Wang, Feb 03 2019
a(n) = -A016777(-1-n) for all n in Z. - Michael Somos, May 27 2019
a(n) = A007310(n+1) + (1 - n mod 2). - Walt Rorie-Baety, Sep 13 2021
a(n) = A000096(n+1) - A000217(n-1). See Capped Triangular Frames illustration. - Leo Tavares, Oct 05 2021

A006566 Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2.

Original entry on oeis.org

0, 1, 20, 84, 220, 455, 816, 1330, 2024, 2925, 4060, 5456, 7140, 9139, 11480, 14190, 17296, 20825, 24804, 29260, 34220, 39711, 45760, 52394, 59640, 67525, 76076, 85320, 95284, 105995, 117480, 129766, 142880, 156849, 171700, 187460, 204156
Offset: 0

Views

Author

Keywords

Comments

Schlaefli symbol for this polyhedron: {5,3}.
A093485 = first differences; A124388 = second differences; third differences = 27. - Reinhard Zumkeller, Oct 30 2006
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
From Peter Bala, Sep 09 2013: (Start)
a(n) = binomial(3*n,3). Two related sequences are binomial(3*n+1,3) (A228887) and binomial(3*n+2,3) (A228888). The o.g.f.'s for these three sequences are rational functions whose numerator polynomials are obtained from the fourth row [1, 4, 10, 16, 19, 16, 10, 4, 1] of the triangle of trinomial coefficients A027907 by taking every third term:
Sum_{n >= 1} binomial(3*n,3)*x^n = (x + 16*x^2 + 10*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+1,3)*x^n = (4*x + 19*x^2 + 4*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+2,3)*x^n = (10*x + 16*x^2 + x^3)/(1-x)^4. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 (tetrahedral numbers), A000578 (cubes), A005900 (octahedral numbers), A006564 (icosahedral numbers).

Programs

  • Haskell
    a006566 n = n * (3 * n - 1) * (3 * n - 2) `div` 2
    a006566_list = scanl (+) 0 a093485_list  -- Reinhard Zumkeller, Jun 16 2013
    
  • Magma
    [n*(3*n-1)*(3*n-2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    A006566:=(1+16*z+10*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[n(3n-1)(3n-2)/2,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,20,84},40] (* Harvey P. Dale, Jul 24 2013 *)
    CoefficientList[Series[x (1 + 16 x + 10 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2015 *)
  • PARI
    a(n)=n*(3*n-1)*(3*n-2)/2
    

Formula

G.f.: x(1 + 16x + 10x^2)/(1 - x)^4.
a(n) = A000292(3n-3) = A054776(n)/6 = n*A060544(n).
a(n) = C(n+2,3) + 16 C(n+1,3) + 10 C(n,3).
a(0)=0, a(1)=1, a(2)=20, a(3)=84, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jul 24 2013
a(n) = binomial(3*n,3). a(-n) = - A228888(n). Sum_{n>=1} 1/a(n) = 1/2*( sqrt(3)*Pi - 3*log(3) ). Sum_{n>=1} (-1)^n/a(n) = 1/3*sqrt(3)*Pi - 4*log(2). - Peter Bala, Sep 09 2013
a(n) = A006564(n) + A035006(n). - Peter M. Chema, May 04 2016
E.g.f.: x*(2 + 18*x + 9*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 04 2016
From Amiram Eldar, Jan 09 2024: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi - 3*log(3))/2 (A295421).
Sum_{n>=1} (-1)^(n+1)/a(n) = (12*log(2) - sqrt(3)*Pi)/3. (End)

Extensions

More terms from Henry Bottomley, Nov 23 2001

A093485 a(n) = (27*n^2 + 9*n + 2)/2.

Original entry on oeis.org

1, 19, 64, 136, 235, 361, 514, 694, 901, 1135, 1396, 1684, 1999, 2341, 2710, 3106, 3529, 3979, 4456, 4960, 5491, 6049, 6634, 7246, 7885, 8551, 9244, 9964, 10711, 11485, 12286, 13114, 13969, 14851, 15760, 16696, 17659, 18649, 19666, 20710, 21781
Offset: 0

Views

Author

Michael Joseph Halm, May 13 2004

Keywords

Comments

Dodecahedral gnomon numbers: first differences of dodecahedral numbers.
The sequence is related to other gnomon numbers of polyhedra, known by other more familiar names: triangular numbers (tetrahedral gnomon numbers), hexagonal numbers (cubic gnomon numbers), square pyramidal numbers (octahedral gnomon numbers).
A124388 = first differences; second differences = 27. - Reinhard Zumkeller, Oct 30 2006
Sums of the triangular numbers from A000217(3*n-1) to A000217(3*n+1), with A000217(-1) = 0. - Bruno Berselli, Sep 04 2018

Examples

			a(1) = 19 because (1+1)*(3*(1+1)-1)*(3*(1+1)-2)/2-1*(3*1-1)*(3*1-2)/2 = 2*(6-1)*(6-2)/2 - 1*(3-1)*(3-2)/2 = 20-1 = 19.
		

Crossrefs

Programs

Formula

a(n) = (n+1)*(3*(n+1)-1)*(3*(n+1)-2)/2-n*(3*n-1)*(3*n-2)/2.
G.f.: (1 + 16*x + 10*x^2)/(1 - x)^3. - Colin Barker, Mar 28 2012

Extensions

New definition from Ralf Stephan, Dec 01 2004
Name corrected and initial term added by Arkadiusz Wesolowski, Aug 15 2011

A174029 a(n) = 3*(3*n+1)*(5 - (-1)^n)/4.

Original entry on oeis.org

3, 18, 21, 45, 39, 72, 57, 99, 75, 126, 93, 153, 111, 180, 129, 207, 147, 234, 165, 261, 183, 288, 201, 315, 219, 342, 237, 369, 255, 396, 273, 423, 291, 450, 309, 477, 327, 504, 345, 531, 363, 558, 381, 585, 399, 612, 417, 639, 435, 666, 453
Offset: 0

Views

Author

Paul Curtz, Mar 06 2010

Keywords

Comments

All entries are multiples of 3.

Programs

  • Magma
    [3*(3*n+1)*(5-(-1)^n)/4: n in [0..50]]; // Vincenzo Librandi, Aug 05 2011
    
  • Mathematica
    LinearRecurrence[{0,2,0,-1},{3,18,21,45},60] (* Harvey P. Dale, Mar 19 2015 *)
  • PARI
    vector(50, n, n--; 3*(3*n+1)*(5-(-1)^n)/4) \\ G. C. Greubel, Nov 02 2018

Formula

a(2n) = 18*n + 3 = 3*A016921(n);
a(2n+1) = 27*n + 18 = A124388(n).
a(n) = A064680(3n) + A064680(3n+1) + A064680(3n+2).
G.f.: ( 3 + 18*x + 15*x^2 + 9*x^3 ) / ( (x-1)^2*(1+x)^2 ). - R. J. Mathar, Jul 02 2011
a(n) = 2*a(n-2) - a(n-4); a(0)=3, a(1)=18, a(2)=21, a(3)=45. - Harvey P. Dale, Mar 19 2015
E.g.f.: (3/4)*(5*(1+3*x)*exp(x) - (1-3*x)*exp(-x)). - G. C. Greubel, Nov 02 2018
Showing 1-4 of 4 results.