cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000389 Binomial coefficients C(n,5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398
Offset: 0

Views

Author

Keywords

Comments

a(n+4) is the number of inequivalent ways of coloring the vertices of a regular 4-dimensional simplex with n colors, under the full symmetric group S_5 of order 120, with cycle index (x1^5 + 10*x1^3*x2 + 20*x1^2*x3 + 15*x1*x2^2 + 30*x1*x4 + 20*x2*x3 + 24*x5)/120.
Figurate numbers based on 5-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 10 of these 5-simplex(n) numbers (compared with g=3 for triangular numbers, g=5 for tetrahedral numbers and g=8 for pentatope numbers). - Jonathan Vos Post, Nov 28 2004
The convolution of the nonnegative integers (A001477) with the tetrahedral numbers (A000292), which are the convolution of the nonnegative integers with themselves (making appropriate allowances for offsets of all sequences). - Graeme McRae, Jun 07 2006
a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6)^n. - Sergio Falcon, Feb 12 2007
Product of five consecutive numbers divided by 120. - Artur Jasinski, Dec 02 2007
Equals binomial transform of [1, 5, 10, 10, 5, 1, 0, 0, 0, ...]. - Gary W. Adamson, Feb 02 2009
Equals INVERTi transform of A099242 (1, 7, 34, 153, 686, 3088, ...). - Gary W. Adamson, Feb 02 2009
For a team with n basketball players (n>=5), this sequence is the number of possible starting lineups of 5 players, without regard to the positions (center, forward, guard) of the players. - Mohammad K. Azarian, Sep 10 2009
a(n) is the number of different patterns, regardless of order, when throwing (n-5) 6-sided dice. For example, one die can display the 6 numbers 1, 2, ..., 6; two dice can display the 21 digit-pairs 11, 12, ..., 56, 66. - Ian Duff, Nov 16 2009
Sum of the first n pentatope numbers (1, 5, 15, 35, 70, 126, 210, ...), see A000332. - Paul Muljadi, Dec 16 2009
Sum_{n>=0} a(n)/n! = e/120. Sum_{n>=4} a(n)/(n-4)! = 501*e/120. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 4 elements, which is 3*C(n+1,5) (for n>=4), hence a(n) = 3*C(n+1,5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
a(n) = fallfac(n,5)/5! is also the number of independent components of an antisymmetric tensor of rank 5 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+1 into exactly 6 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-5 into exactly 6 parts. - Juergen Will, Jan 02 2016
a(n+3) could be the general number of all geodetic graphs of diameter n>=2 homeomorphic to the Petersen Graph. - Carlos Enrique Frasser, May 24 2018
From Robert A. Russell, Dec 24 2020: (Start)
a(n) is the number of chiral pairs of colorings of the 5 tetrahedral facets (or vertices) of the regular 4-D simplex (5-cell, pentachoron, Schläfli symbol {3,3,3}) using subsets of a set of n colors. Each member of a chiral pair is a reflection but not a rotation of the other.
a(n+4) is the number of unoriented colorings of the 5 tetrahedral facets of the regular 4-D simplex (5-cell, pentachoron) using subsets of a set of n colors. Each chiral pair is counted as one when enumerating unoriented arrangements. (End)
For integer m and positive integer r >= 4, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (4 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

Examples

			G.f. = x^5 + 6*x^6 + 21*x^7 + 56*x^8 + 126*x^9 + 252*x^10 + 462*x^11 + ...
For A={1,2,3,4}, the only subset with 4 elements is {1,2,3,4}; sum of 2 minimum elements of this subset: a(4) = 1+2 = 3 = 3*C(4+1,5).
For A={1,2,3,4,5}, the subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}; sum of 2 smallest elements of each subset: a(5) = (1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 18 = 3*C(5+1,5). - _Serhat Bulut_, Mar 11 2015
a(6) = 6 from the six independent components of an antisymmetric tensor A of rank 5 and dimension 6: A(1,2,3,4,5), A(1,2,3,4,6), A(1,2,3,5,6), A(1,2,4,5,6), A(1,3,4,5,6), A(2,3,4,5,6). See the Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • Gupta, Hansraj; Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A099242. - Gary W. Adamson, Feb 02 2009
Cf. A242023. A104712 (fourth column, k=5).
5-cell colorings: A337895 (oriented), A132366(n-1) (achiral).
Unoriented colorings: A063843 (5-cell edges, faces), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell), A338965 (600-cell vertices, 120-cell facets).
Chiral colorings: A331352 (5-cell edges, faces), A337954 (8-cell vertices, 16-cell facets), A234249 (16-cell vertices, 8-cell facets), A338950 (24-cell), A338966 (600-cell vertices, 120-cell facets).

Programs

  • Haskell
    a000389 n = a000389_list !! n
    a000389_list = 0 : 0 : f [] a000217_list where
       f xs (t:ts) = (sum $ zipWith (*) xs a000217_list) : f (t:xs) ts
    -- Reinhard Zumkeller, Mar 03 2015, Apr 13 2012
    
  • Magma
    [Binomial(n, 5): n in [0..40]]; // Vincenzo Librandi, Mar 12 2015
  • Maple
    f:=n->(1/120)*(n^5-10*n^4+35*n^3-50*n^2+24*n): seq(f(n), n=0..60);
    ZL := [S, {S=Prod(B,B,B,B,B,B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n+1), n=0..42); # Zerinvary Lajos, Mar 13 2007
    A000389:=1/(z-1)**6; # Simon Plouffe, 1992 dissertation
  • Mathematica
    Table[Binomial[n, 5], {n, 5, 50}] (* Stefan Steinerberger, Apr 02 2006 *)
    CoefficientList[Series[x^5 / (1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 12 2015 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,0,0,0,0,1},50] (* Harvey P. Dale, Jul 17 2016 *)
  • PARI
    (conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w);
    (t(n)=n*(n+1)/2); u=vector(10,i,t(i)); conv(u,u)
    

Formula

G.f.: x^5/(1-x)^6.
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)/120.
a(n) = (n^5-10*n^4+35*n^3-50*n^2+24*n)/120. (Replace all x_i's in the cycle index with n.)
a(n+2) = Sum_{i+j+k=n} i*j*k. - Benoit Cloitre, Nov 01 2002
Convolution of triangular numbers (A000217) with themselves.
Partial sums of A000332. - Alexander Adamchuk, Dec 19 2004
a(n) = -A110555(n+1,5). - Reinhard Zumkeller, Jul 27 2005
a(n+3) = (1/2!)*(d^2/dx^2)S(n,x)|A049310.%20-%20_Wolfdieter%20Lang">{x=2}, n>=2, one half of second derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - _Wolfdieter Lang, Apr 04 2007
a(n) = A052787(n+5)/120. - Zerinvary Lajos, Apr 26 2007
Sum_{n>=5} 1/a(n) = 5/4. - R. J. Mathar, Jan 27 2009
For n>4, a(n) = 1/(Integral_{x=0..Pi/2} 10*(sin(x))^(2*n-9)*(cos(x))^9). - Francesco Daddi, Aug 02 2011
Sum_{n>=5} (-1)^(n + 1)/a(n) = 80*log(2) - 655/12 = 0.8684411114... - Richard R. Forberg, Aug 11 2014
a(n) = -a(4-n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1) + 4*a(n+2)) + a(n+1)*(-6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Oct 07 2014
a(n) = 3*C(n+1, 5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
From Ilya Gutkovskiy, Jul 23 2016: (Start)
E.g.f.: x^5*exp(x)/120.
Inverse binomial transform of A054849. (End)
From Robert A. Russell, Dec 24 2020: (Start)
a(n) = A337895(n) - a(n+4) = (A337895(n) - A132366(n-1)) / 2 = a(n+4) - A132366(n-1).
a(n+4) = A337895(n) - a(n) = (A337895(n) + A132366(n-1)) / 2 = a(n) + A132366(n-1).
a(n+4) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4) + 1*C(n,5), where the coefficient of C(n,k) is the number of unoriented pentachoron colorings using exactly k colors. (End)

Extensions

Corrected formulas that had been based on other offsets. - R. J. Mathar, Jun 16 2009
I changed the offset to 0. This will require some further adjustments to the formulas. - N. J. A. Sloane, Aug 01 2010

A063843 Number of n-multigraphs on 5 nodes.

Original entry on oeis.org

0, 1, 34, 792, 10688, 90005, 533358, 2437848, 9156288, 29522961, 84293770, 217993600, 519341472, 1154658869, 2420188694, 4821091920, 9187076352, 16837177281, 29809183410, 51172613512, 85448030080, 139159855989, 221554769150, 345523218536, 528767663040
Offset: 0

Views

Author

N. J. A. Sloane, Aug 25 2001

Keywords

Comments

Equivalently, number of ways to color edges of complete graph on 5 nodes with n colors, under action of symmetric group S_5, of order 120, with cycle index on edges given by (1/120)*(24*x5^2 + 30*x2*x4^2 + 20*x3^3*x1 + 20*x3*x6*x1 + 15*x1^2*x2^4 + 10*x1^4*x2^3 + x1^10). Setting all x_i = n gives the sequence.
Number of vertex colorings of the Petersen graph. Marko Riedel, Mar 24 2016
Number of unoriented colorings of the 10 triangular edges or triangular faces of a pentachoron, Schläfli symbol {3,3,3}, using n or fewer colors. Also called a 5-cell or 4-simplex. - Robert A. Russell, Oct 17 2020

Crossrefs

Cf. A063842. A row of A063841.
Cf. A331350 (oriented), A331352 (chiral), A331353 (achiral), A000389(n+4) (vertices and facets)
Other polychora: A331359 (8-cell), A331355 (16-cell), A338953 (24-cell), A338965 (120-cell, 600-cell).
Row 4 of A327084 (simplex edges and ridges) and A337884 (simplex faces and peaks).

Programs

  • Maple
    f:=n-> 1/120*(24*n^2+50*n^3+20*n^4+15*n^6+10*n^7+n^10);
  • Mathematica
    Table[(24n^2+50n^3+20n^4+15n^6+10n^7+n^10)/120,{n,0,30}] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,1,34,792,10688,90005,533358,2437848,9156288,29522961,84293770},30] (* Harvey P. Dale, Oct 20 2012 *)
  • PARI
    a(n)=n^2*(n^8+10*n^5+15*n^4+20*n^2+50*n+24)/120 \\ Charles R Greathouse IV, Jan 20 2012

Formula

a(n) = (1/120)*(24*n^2+50*n^3+20*n^4+15*n^6+10*n^7+n^10).
a(n+1) = (1/5!)*(n^10 + 10*n^9 + 45*n^8 + 130*n^7 + 295*n^6 + 552*n^5 + 805*n^4 + 900*n^3 + 774*n^2 + 448*n + 120).
G.f. = (1 + 23*x + 473*x^2 + 3681*x^3 + 10717*x^4 + 11221*x^5 + 3779*x^6 + 339*x^7 + 6*x^8)/(1-x)^11. - M. F. Hasler, Jan 19 2012
a(0)=0, a(1)=1, a(2)=34, a(3)=792, a(4)=10688, a(5)=90005, a(6)=533358, a(7)=2437848, a(8)=9156288, a(9)=29522961, a(10)=84293770, a(n)= 11*a(n-1)- 55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+ 330*a(n-7)- 165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). - Harvey P. Dale, Oct 20 2012
From Robert A. Russell, Oct 17 2020: (Start)
a(n) = A331350(n) - A331352(n) = (A331350(n) + A331353(n)) / 2 = A331352(n) + A331353(n).
a(n) = 1*C(n,1) + 32*C(n,2) + 693*C(n,3) + 7720*C(n,4) + 44150*C(n,5) + 138312*C(n,6) + 247380*C(n,7) + 252000*C(n,8) + 136080*C(n,9) + 30240*C(n,10), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors. (End)

Extensions

More terms from Vladeta Jovovic, Sep 02 2001

A327085 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 4, 21, 6, 0, 0, 10, 140, 405, 28, 0, 0, 20, 575, 7904, 17154, 252, 0, 0, 35, 1785, 76880, 1415648, 1920375, 4726, 0, 0, 56, 4606, 486522, 41453650, 855834880, 547375212, 150324, 0
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. The chiral colorings of its edges come in pairs, each the reflection of the other.
A(n,k) is also the number of chiral pairs of colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of chiral pairs of colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  0 0   0    0     0      0       0       0        0        0         0 ...
  0 0   1    4    10     20      35      56       84      120       165 ...
  0 1  21  140   575   1785    4606   10416    21330    40425     71995 ...
  0 6 405 7904 76880 486522 2300305 8806336 28725192 82626270 214744629 ...
  ...
For A(2,3) = 1, the chiral pair is ABC-ACB.
		

Crossrefs

Cf. A327083 (oriented), A327084 (unoriented), A327086 (achiral), A327089 (exactly k colors), A325000(n,k-n) (vertices, facets), A337885 (faces, peaks), A337409 (orthotope edges, orthoplex ridges), A337413 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000004, A000292(n-2), A337899, A331352.

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], 1, -1] pc[#] j^Total[CycleX[#]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[If[EvenQ[Total[1-Mod[#,2]]],1,-1] pc[#]k^ex[#] &/@ IntegerPartitions[n+1]]/(n+1)!
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327089(n,j) * binomial(k,j).
A(n,k) = A327083(n,k) - A327084(n,k) = (A327083(n,k) - A327086(n,k)) / 2 = A327084(n,k) - A327086(n,k).

A331360 Number of chiral pairs of colorings of the edges of a tesseract with n available colors.

Original entry on oeis.org

0, 11158298, 4825452718593, 48038354542204960, 60632976384183154375, 20725679827848535509690, 2876113731787568888218778, 206323339833986421110604288, 8941884948181243949620880070
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A tesseract is a regular 4-dimensional orthotope or hypercube with 16 vertices and 32 edges. Its Schläfli symbol is {4,3,3}. The chiral colorings of its edges come in pairs, each the reflection of the other. Also the number of chiral pairs of colorings of the triangular faces of a regular 4-dimensional orthoplex {3,3,4} with n available colors.

Crossrefs

Cf. A331358 (oriented), A331359 (unoriented), A331361 (achiral).
Cf. A331352 (simplex), A331356 (orthoplex), A338954 (24-cell), A338966 (120-cell, 600-cell).

Programs

  • Mathematica
    Table[(48n^4 - 92n^8 + 32n^12 + 3n^16 + 24n^18 - 16n^20 + n^32)/384, {n, 1, 25}]

Formula

a(n) = (48*n^4 - 92*n^8 + 32*n^12 + 3*n^16 + 24*n^18 - 16*n^20 + n^32) / 384.
a(n) = 11158298*C(n,2) + 4825419243699*C(n,3) + 48019052798280376*C(n,4) + 60392832865887732525*C(n,5) + 20362602448352682660450*C(n,6) + 2732305584323178619545720*C(n,7) + 183891356930602707657018720*C(n,8) + 7186781660616776435004792900*C(n,9) + 179941570948806294173832581400*C(n,10) + 3092495918794375534919002047600*C(n,11) + 38355721930663201428803366004000*C(n,12) + 356388702642050543223746618030400*C(n,13) + 2552262270629803579790727658473600*C(n,14) + 14398742619650630430045069333120000*C(n,15) + 65081946248235477116326789514496000*C(n,16) + 238774230958640305192143667115328000*C(n,17) + 718111905257279415879360961204608000*C(n,18) + 1783226074397879200641306482407680000*C(n,19) + 3674025240535453233675992278371840000*C(n,20) + 6297428247692138525542940292326400000*C(n,21) + 8984640042458034573900227275929600000*C(n,22) + 10651431202956156039912718487654400000*C(n,23) + 10448264801973961157855568414105600000*C(n,24) + 8418935641672774875938561280000000000*C(n,25) + 5510766716064148076659382317056000000*C(n,26) + 2882400456553496466714071801856000000*C(n,27) + 1175640370514915165746352603136000000*C(n,28) + 360177463966855890088916582400000000*C(n,29) + 77945658076061560043023564800000000*C(n,30) + 10621166594979816972895518720000000*C(n,31) + 685236554514826901477130240000000*C(n,32), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = A331358(n) - A331359(n) = (A331358(n) - A331361(n)) / 2 = A331359(n) - A331361(n).

A331353 Number of achiral colorings of the edges (or triangular faces) of a regular 4-dimensional simplex with n available colors.

Original entry on oeis.org

1, 28, 387, 2784, 13125, 46836, 137543, 349952, 797769, 1667500, 3248971, 5973408, 10459917, 17571204, 28479375, 44742656, 68393873, 102041532, 148984339, 213340000, 300189141, 415735188, 567481047, 764423424
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A 4-dimensional simplex has 5 vertices and 10 edges. Its Schläfli symbol is {3,3,3}. An achiral coloring is identical to its reflection,
There are 60 elements in the automorphism group of the 4-dimensional simplex that are not in its rotation group. Each is an odd permutation of the vertices and can be associated with a partition of 5 based on the conjugacy group of the permutation. The first formula is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
41 30 x_2^1x_4^2
32 20 x_1^1x_3^1x_6^1
2111 10 x_1^4x_2^3

Crossrefs

Cf. A331350 (oriented), A063843 (unoriented), A331352 (chiral).
Other polychora: A331361 (8-cell), A331357 (16-cell), A338955 (24-cell), A338967 (120-cell, 600-cell).
Row 4 of A327086 (simplex edges and ridges) and A337886 (simplex faces and peaks).

Programs

  • Mathematica
    Table[(5 n^3 + n^7)/6, {n, 1, 25}]
  • PARI
    Vec(x*(1 + 20*x + 191*x^2 + 416*x^3 + 191*x^4 + 20*x^5 + x^6) / (1 - x)^8 + O(x^25)) \\ Colin Barker, Jan 15 2020

Formula

a(n) = (5*n^3 + n^7) / 6.
a(n) = C(n,1) + 26*C(n,2) + 306*C(n,3) + 1400*C(n,4) + 2800*C(n,5) + 2520*C(n,6) + 840*C(n,7), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = 2*A063843(n) - A331350(n) = A331350(n) - 2*A331352(n) = A063843(n) - A331352(n).
From Colin Barker, Jan 15 2020: (Start)
G.f.: x*(1 + 20*x + 191*x^2 + 416*x^3 + 191*x^4 + 20*x^5 + x^6) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A331356 Number of chiral pairs of colorings of the edges of a regular 4-dimensional orthoplex with n available colors.

Original entry on oeis.org

0, 40927, 731279799, 732272925320, 155180061396500, 12338466190481025, 498892380429882397, 12297640855782563904, 207723543409061974215, 2604156223742219218875, 25650287482426463967550, 207022761847763612943192
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A regular 4-dimensional orthoplex (also hyperoctahedron or cross polytope) has 8 vertices and 24 edges. Its Schläfli symbol is {3,3,4}. The chiral colorings of its edges come in pairs, each the reflection of the other. Also the number of chiral pairs of colorings of the square faces of a tesseract {4,3,3} with n available colors.

Crossrefs

Cf. A331354 (oriented), A331355 (unoriented), A331357 (achiral).
Other polychora: A331352 (5-cell), A331360 (8-cell), A338954 (24-cell), A338966 (120-cell, 600-cell).
Row 4 of A337413 (orthoplex edges, orthotope ridges) and A337889 (orthotope faces, orthoplex peaks).

Programs

  • Mathematica
    Table[(48n^3 - 20n^6 - 60n^7 + 8n^8 + 12n^9 - 3n^12 + 12n^13 + 18n^14 - 12n^15 - 4n^18 + n^24)/384, {n, 1, 25}]

Formula

a(n) = (48*n^3 - 20*n^6 - 60*n^7 + 8*n^8 + 12*n^9 - 3*n^12 + 12*n^13 + 18*n^14 - 12*n^15 - 4*n^18 + n^24) / 384.
a(n) = 40927*C(n,2) + 731157018*C(n,3) + 729348051686*C(n,4) + 151526009158620*C(n,5) + 11418355290999750*C(n,6) + 415756294427389020*C(n,7) + 8643340000393019040*C(n,8) + 113987930725267657695*C(n,9) + 1022999668724320645050*C(n,10) + 6559258733377155798300*C(n,11) + 31097930936416379343000*C(n,12) + 111710735118080165667600*C(n,13) + 309231158315533166512800*C(n,14) + 666846639586795403736000*C(n,15) + 1126625894182469352672000*C(n,16) + 1492173540716221595232000*C(n,17) + 1541987121926231652672000*C(n,18) + 1229356526029003532160000*C(n,19) + 741102367008078915840000*C(n,20) + 326583680209195368960000*C(n,21) + 99234043419574103040000*C(n,22) + 18581137031073576960000*C(n,23) + 1615751046180311040000*C(n,24), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = A331354(n) - A331355(n) = (A331354(n) - A331357(n)) / 2 = A331355(n) - A331357(n).

A331350 Number of oriented colorings of the edges (or triangular faces) of a regular 4-dimensional simplex with n available colors.

Original entry on oeis.org

1, 40, 1197, 18592, 166885, 1019880, 4738153, 17962624, 58248153, 166920040, 432738229, 1032709536, 2298857821, 4822806184, 9613704465, 18329410048, 33605960689, 59516325288, 102196242685, 170682720160, 278019522837
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A 4-dimensional simplex has 5 vertices and 10 edges. Its Schläfli symbol is {3,3,3}. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
There are 60 elements in the rotation group of the 4-dimensional simplex. Each is an even permutation of the vertices and can be associated with a partition of 5 based on the conjugacy group of the permutation. The first formula is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Even Cycle Indices
5 24 x_5^2
311 20 x_1^1x_3^3
221 15 x_1^2x_2^4
11111 1 x_1^10

Crossrefs

Cf. A063843 (unoriented), A331352 (chiral), A331353 (achiral).
Other polychora: A331358 (8-cell), A331354 (16-cell), A338952 (24-cell), A338964 (120-cell, 600-cell).
Row 4 of A327083 (simplex edges and facets) and A337883 (simplex faces and peaks).

Programs

  • Mathematica
    Table[(24n^2 + 20n^4 + 15n^6 + n^10)/60, {n, 1, 25}]

Formula

a(n) = (24*n^2 + 20*n^4 + 15*n^6 + n^10) / 60.
a(n) = C(n,1) + 38*C(n,2) + 1080*C(n,3) + 14040*C(n,4) + 85500*C(n,5) + 274104*C(n,6) + 493920*C(n,7) + 504000*C(n,8) + 272160*C(n,9) + 60480*C(n,10), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = A063843(n) + A331352(n) = 2*A063843(n) - A331353(n) = 2*A331352(n) + A331353(n).

A337885 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the triangular faces of a regular n-dimensional simplex using k or fewer colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 1, 405, 1368, 0, 0, 5, 7904, 4775706, 6711288, 0, 0, 15, 76880, 1522540416, 9923557498416, 1785683627824, 0, 0, 35, 486522, 132342705750, 234239763858347776, 12979826761630383196344, 53302696800142157920, 0
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. An n-simplex has n+1 vertices. For n=2, the figure is a triangle with one triangular face. For n=3, the figure is a tetrahedron with 4 triangular faces. For higher n, the number of triangular faces is C(n+1,3).
Also the number of chiral pairs of colorings of the peaks of a regular n-dimensional simplex. A peak of an n-simplex is an (n-3)-dimensional simplex.

Examples

			Table begins with T(2,1):
 0    0       0          0            0             0               0 ...
 0    0       0          1            5            15              35 ...
 0    6     405       7904        76880        486522         2300305 ...
 0 1368 4775706 1522540416 132342705750 5076500214744 110809322249220 ...
For T(3,4)=1, the chiral pair is ABCD-ABDC.
		

Crossrefs

Cf. A337883 (oriented), A337884 (unoriented), A337886 (achiral), A051168 (binary Lyndon words).
Other elements: A325000(n,k-n) (vertices), A327085 (edges).
Other polytopes: A337889 (orthotope), A337893 (orthoplex).
Rows 2-4 are A000004, A000332, A331352.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a triangular face *)
    lw[n_,k_]:=lw[n, k]=DivisorSum[GCD[n,k],MoebiusMu[#]Binomial[n/#,k/#]&]/n (*A051168*)
    cxx[{a_, b_},{c_, d_}]:={LCM[a, c], GCD[a, c] b d}
    compress[x:{{, } ...}] := (s=Sort[x];For[i=Length[s],i>1,i-=1,If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]]+=s[[i,2]]; s=Delete[s,i], Null]]; s)
    combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1]
    CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
    CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n},m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
    CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#, 2]]],1,-1] pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition using a formula for binary Lyndon words. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337883(n,k) - A337884(n,k) = (A337883(n,k) - A337886(n,k)) / 2 = A337884(n,k) - A337886(n,k).

A338954 Number of chiral pairs of colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.

Original entry on oeis.org

68774446614978208476646592, 5523164445430505077912054084256733211946217, 5448873034189827051926943172520863487560602391778344960, 10956401461402941741829554371669666304159415287557559324930859375
Offset: 2

Views

Author

Robert A. Russell, Nov 17 2020

Keywords

Comments

Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual.

Crossrefs

Cf. A338952 (oriented), A338953 (unoriented), A338955 (achiral), A338958 (exactly n colors), A338950 (vertices, facets), A331352 (5-cell), A331360 (8-cell edges, 16-cell faces), A331356 (16-cell edges, 8-cell faces), A338966 (120-cell, 600-cell).

Programs

  • Mathematica
    Table[(96n^8+144n^12-48n^16-64n^18-192n^20-60n^24+48n^32+32n^36-5n^48+72n^50-12n^52-12n^60+n^96)/1152,{n,2,15}]

Formula

a(n) = (96*n^8 + 144*n^12 - 48*n^16 - 64*n^18 - 192*n^20 - 60*n^24 +
48*n^32 + 32*n^36 - 5*n^48 + 72*n^50 - 12*n^52 - 12*n^60 + n^96) / 1152.
a(n) = Sum_{j=2..Min(n,96)} A338958(n) * binomial(n,j).
a(n) = A338952(n) - A338953(n) = (A338952(n) - A338955(n)) / 2 = A338953(n) - A338955(n).

A338958 Number of chiral pairs of colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.

Original entry on oeis.org

68774446614978208476646592, 5523164445430504871588714239322107782006441, 5448873034167734394145221152621861950913444709790439644, 10956401434158576570935650756489255491646473924447332613392130825
Offset: 2

Views

Author

Robert A. Russell, Nov 17 2020

Keywords

Comments

Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0.

Crossrefs

Cf. A338956 (oriented), A338957 (unoriented), A338959 (achiral), A338954 (up to n colors), A338950 (vertices, facets), A331352 (5-cell), A331360 (8-cell edges, 16-cell faces), A331356 (16-cell edges, 8-cell faces), A338982 (120-cell, 600-cell).

Programs

  • Mathematica
    bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
    Drop[CoefficientList[bp[8]/12+bp[12]/8-bp[16]/24-bp[18]/18-bp[20]/6-5bp[24]/96+bp[32]/24+bp[36]/36-5bp[48]/1152+bp[50]/16-bp[52]/96-bp[60]/96+bp[96]/1152,x],2]

Formula

A338954(n) = Sum_{j=2..Min(n,96)} a(n) * binomial(n,j).
a(n) = A338956(n) - A338957(n) = (A338956(n) - A338959(n)) / 2 = A338957(n) - A338959(n).
Showing 1-10 of 10 results.