cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 693 results. Next

A057468 Numbers k such that 3^k - 2^k is prime.

Original entry on oeis.org

2, 3, 5, 17, 29, 31, 53, 59, 101, 277, 647, 1061, 2381, 2833, 3613, 3853, 3929, 5297, 7417, 90217, 122219, 173191, 256199, 336353, 485977, 591827, 1059503
Offset: 1

Views

Author

Robert G. Wilson v, Sep 09 2000

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
The 1137- and 1352-digit values associated with the terms 2381 and 2833 have been certified prime with Primo. - Rick L. Shepherd, Nov 12 2002
Or, numbers k such that A001047(k) is prime. - Zak Seidov, Sep 17 2006
3^k - 2^k were proved prime for k = 3613, 3853, 3929, 5297, 7417 with Primo. - David Harrison, Jun 08 2011

Crossrefs

Cf. A058765, A000043 (Mersenne primes), A001047 (3^n-2^n).
Subset of A000040.

Programs

Extensions

a(20) = 90217 found by Mike Oakes, Feb 23 2001
Terms a(21) = 122219, a(22) = 173191, a(23) = 256199 were found by Mike Oakes in 2003-2005. Corresponding numbers of decimal digits are 58314, 82634, 122238.
a(24) = 336353 found by Mike Oakes, Oct 15 2007. It corresponds to a probable prime with 160482 decimal digits.
a(25) = 485977 found by Mike Oakes, Sep 06 2009; it corresponds to a probable prime with 231870 digits. - Mike Oakes, Sep 08 2009
a(26) = 591827 found by Mike Oakes, Aug 25 2009; it corresponds to a probable prime with 282374 digits.
a(27) = 1059503 found by Mike Oakes, Apr 12 2012; it corresponds to a probable prime with 505512 digits. - Mike Oakes, Apr 14 2012

A059801 Numbers k such that 4^k - 3^k is prime.

Original entry on oeis.org

2, 3, 7, 17, 59, 283, 311, 383, 499, 521, 541, 599, 1193, 1993, 2671, 7547, 24019, 46301, 48121, 68597, 91283, 131497, 148663, 184463, 341233
Offset: 1

Views

Author

Mike Oakes, Feb 23 2001

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
The values corresponding to 1193 (719 digits) and 1993 (1200 digits) have been certified prime with Primo. - Rick L. Shepherd, Sep 10 2002
8 more terms found by Jean-Louis Charton during 2004 - 2006. Corresponding numbers of decimal digits are 14461, 27876, 28972, 41300, 54958, 79170, 89505, 111058, 205443. - Alexander Adamchuk, Dec 02 2006

Crossrefs

Programs

A059802 Numbers k such that 5^k - 4^k is prime.

Original entry on oeis.org

3, 43, 59, 191, 223, 349, 563, 709, 743, 1663, 5471, 17707, 19609, 35449, 36697, 45259, 91493, 246497, 265007, 289937
Offset: 1

Views

Author

Mike Oakes, Feb 23 2001

Keywords

Comments

Some of the larger terms may only correspond to probable primes.
5^1663 - 4^1663, a 1163-digit number, has been certified prime with Primo. - Rick L. Shepherd, Nov 13 2002
4 more terms found by Predrag Minovic in 2004: 35449, 36697, 45259, 91493. Corresponding numbers of decimal digits are 24778, 25651, 31635, 63951. - Alexander Adamchuk, Dec 02 2006

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[5^# - 4^#] &] (* Alonso del Arte, Sep 09 2013 *)
  • PARI
    forprime(p=2,1e5,if(ispseudoprime(5^p-4^p),print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011

Extensions

New term 246497 found by Jean-Louis Charton in 2008 corresponding to a probable prime with 172295 digits - Jean-Louis Charton, Sep 02 2009
New term a(19) = 265007 found by Jean-Louis Charton, Feb 19 2013
a(20) = 289937 found by Jean-Louis Charton, Mar 15 2013

A062572 Numbers k such that 6^k - 5^k is prime.

Original entry on oeis.org

2, 5, 11, 13, 23, 61, 83, 421, 1039, 1511, 31237, 60413, 113177, 135647, 258413
Offset: 1

Views

Author

Mike Oakes, May 18 2001, May 19 2001

Keywords

Comments

The 809- and 1176-digit numbers associated with the terms 1039 and 1511 have been certified prime with Primo. - Rick L. Shepherd, Nov 15 2002

Examples

			2 is in the sequence because 6^2 - 5^2 = 36 - 25 = 11, which is prime.
3 is not in the sequence because 6^3 - 5^3 = 216 - 125 = 91 = 7 * 13, which is not prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[6^# - 5^#] &] (* Alonso del Arte, Sep 04 2013 *)
  • PARI
    forprime(p=2,1e4,if(ispseudoprime(6^n-5^n),print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011

Extensions

Edited by T. D. Noe, Oct 30 2008
Two more terms (31237 and 60413) found by Predrag Minovic in 2004 corresponding to probable primes with 24308 and 47011 digits. Jean-Louis Charton, Oct 06 2010
Two more terms (113177 and 135647) found by Jean-Louis Charton in 2009 corresponding to probable primes with 88069 and 105554 digits. Jean-Louis Charton, Oct 13 2010
a(15) from Jean-Louis Charton, Apr 08 2013

A020492 Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203).

Original entry on oeis.org

1, 2, 3, 6, 12, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 270, 357, 418, 420, 570, 594, 616, 630, 714, 744, 812, 840, 910, 1045, 1240, 1254, 1485, 1672, 1848, 2090, 2214, 2376, 2436, 2580, 2730, 2970, 3080, 3135, 3339, 3596, 3720, 3828
Offset: 1

Views

Author

Keywords

Comments

The quotient A020492(n)/A002088(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 or zeta(2)^2 [~2.705808084277845]. - Labos Elemer, Sep 20 2004, corrected by Charles R Greathouse IV, Jun 20 2012
If 2^p-1 is prime (a Mersenne prime) then m = 2^(p-2)*(2^p-1) is in the sequence because when p = 2 we get m = 3 and phi(3) divides sigma(3) and for p > 2, phi(m) = 2^(p-2)*(2^(p-1)-1); sigma(m) = (2^(p-1)-1)*2^p hence sigma(m)/phi(m) = 4 is an integer. So for each n, A133028(n) = 2^(A000043(n)-2)*(2^A000043(n)-1) is in the sequence. - Farideh Firoozbakht, Nov 28 2005
Phi and sigma are both multiplicative functions and for this reason if m and n are coprime and included in this sequence then m*n is also in this sequence. - Enrique Pérez Herrero, Sep 05 2010
The quotients sigma(n)/phi(n) are in A023897. - Bernard Schott, Jun 06 2017
There are 544768 balanced numbers < 10^14. - Jud McCranie, Sep 10 2017
a(975807) = 419998185095132. - Jud McCranie, Nov 28 2017

Examples

			sigma(35) = 1+5+7+35 = 48, phi(35) = 24, hence 35 is a term.
		

References

  • D. Chiang, "N's for which phi(N) divides sigma(N)", Mathematical Buds, Chap. VI pp. 53-70 Vol. 3 Ed. H. D. Ruderman, Mu Alpha Theta 1984.

Crossrefs

Positions of 0's in A063514.

Programs

  • Magma
    [ n: n in [1..3900] | SumOfDivisors(n) mod EulerPhi(n) eq 0 ]; // Klaus Brockhaus, Nov 09 2008
    
  • Mathematica
    Select[ Range[ 4000 ], IntegerQ[ DivisorSigma[ 1, # ]/EulerPhi[ # ] ]& ]
    (* Second program: *)
    Select[Range@ 4000, Divisible[DivisorSigma[1, #], EulerPhi@ #] &] (* Michael De Vlieger, Nov 28 2017 *)
  • PARI
    select(n->sigma(n)%eulerphi(n)==0,vector(10^4,i,i)) \\ Charles R Greathouse IV, Jun 20 2012
    
  • Python
    from sympy import totient, divisor_sigma
    print([n for n in range(1, 4001) if divisor_sigma(n)%totient(n)==0]) # Indranil Ghosh, Jul 06 2017
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A020492_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            f = factorint(m)
            if not prod(p**(e+2)-p for p,e in f.items())%(m*prod((p-1)**2 for p in f)):
                yield m
    A020492_list = list(islice(A020492_gen(),20)) # Chai Wah Wu, Aug 12 2024

Extensions

More terms from Farideh Firoozbakht, Nov 28 2005

A062666 Numbers k such that 100^k - 99^k is prime.

Original entry on oeis.org

2, 5, 19, 59, 1013, 2371, 13967, 44683
Offset: 1

Views

Author

Mike Oakes, May 18 2001, May 19 2001

Keywords

Comments

Terms > 10000 correspond to probable primes.
a(9) > 10^5. - Robert Price, Jul 10 2013

Crossrefs

Programs

Extensions

Edited by T. D. Noe, Oct 30 2008
a(7)-a(8) from Robert Price, Jul 10 2013

A019279 Superperfect numbers: numbers k such that sigma(sigma(k)) = 2*k where sigma is the sum-of-divisors function (A000203).

Original entry on oeis.org

2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864
Offset: 1

Views

Author

Keywords

Comments

Let sigma_m(n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives (2,2)-perfect numbers.
Even values of these are 2^(p-1) where 2^p-1 is a Mersenne prime (A000043 and A000668). No odd superperfect numbers are known. Hunsucker and Pomerance checked that there are no odd ones below 7 * 10^24. - Jud McCranie, Jun 01 2000
The number of divisors of a(n) is equal to A000043(n), if there are no odd superperfect numbers. - Omar E. Pol, Feb 29 2008
The sum of divisors of a(n) is the n-th Mersenne prime A000668(n), provided that there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Largest proper divisor of A072868(n) if there are no odd superperfect numbers. - Omar E. Pol, Apr 25 2008
This sequence is a divisibility sequence if there are no odd superperfect numbers. - Charles R Greathouse IV, Mar 14 2012
For n>1, sigma(sigma(a(n))) + phi(phi(a(n))) = (9/4)*a(n). - Farideh Firoozbakht, Mar 02 2015
The term "super perfect number" was coined by Suryanarayana (1969). He and Kanold (1969) gave the general form of even superperfect numbers. - Amiram Eldar, Mar 08 2021

Examples

			sigma(sigma(4))=2*4, so 4 is in the sequence.
		

References

  • Dieter Bode, Über eine Verallgemeinerung der vollkommenen Zahlen, Dissertation, Braunschweig, 1971.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B9, pp. 99-100.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, pp. 110-111.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, pp. 38-42.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Mathematica
    sigma = DivisorSigma[1, #]&;
    For[n = 2, True, n++, If[sigma[sigma[n]] == 2 n, Print[n]]] (* Jean-François Alcover, Sep 11 2018 *)
  • PARI
    is(n)=sigma(sigma(n))==2*n \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from itertools import count, islice
    def A019279_gen(): # generator of terms
        return (n for n in count(1) if divisor_sigma(divisor_sigma(n)) == 2*n)
    A019279_list = list(islice(A019279_gen(),6)) # Chai Wah Wu, Feb 18 2022

Formula

a(n) = (1 + A000668(n))/2, if there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008
Also, if there are no odd superperfect numbers then a(n) = 2^A000043(n)/2 = A072868(n)/2 = A032742(A072868(n)). - Omar E. Pol, Apr 25 2008
a(n) = 2^A090748(n), if there are no odd superperfect numbers. - Ivan N. Ianakiev, Sep 04 2013

Extensions

a(8)-a(9) from Jud McCranie, Jun 01 2000
Corrected by Michel Marcus, Oct 28 2017

A061652 Even superperfect numbers: 2^(p-1) where 2^p-1 is a Mersenne prime (A000668).

Original entry on oeis.org

2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864
Offset: 1

Views

Author

Jason Earls, Jun 16 2001

Keywords

Comments

It is conjectured that there are no odd superperfect numbers, in which case this coincides with A019279.
The number of divisors of a(n) is equal to A000043(n). - Omar E. Pol, Feb 29 2008
The sum of divisors of a(n) is equal to A000668(n), the n-th Mersenne prime. - Omar E. Pol, Mar 11 2008
Largest proper divisor of A072868(n). - Omar E. Pol, Apr 25 2008
Indices of hexagonal numbers (A000384) that are also even perfect numbers. [Omar E. Pol, Aug 26 2008]
Except for the first perfect number 6, this sequence is the greatest common divisor of a perfect number (A000396) and its arithmetic derivative (A003415). - Giorgio Balzarotti, Apr 21 2011
If n is in the sequence then n is a solution to the equation phi(sigma(x)) = 2x-2. It seems that there is no other solution to this equation. - Jahangeer Kholdi, Sep 09 2014
The sum of sums of elements of subsets of divisors of a(n), i.e. A229335(a(n)), is a perfect number (A000396). - Jaroslav Krizek, Nov 02 2017

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Mathematica
    2^(Select[Range[512], PrimeQ[2^# - 1] &] - 1) (* Alonso del Arte, Apr 22 2011 *)
    2^(MersennePrimeExponent[Range[15]]-1) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 20 2021 *)
  • PARI
    forprime(p=2,1e3,if(ispseudoprime(2^p-1),print1(2^(p-1)", "))) \\ Charles R Greathouse IV, Mar 14 2012

Formula

a(n) = 2^(A090748(n)). - Lekraj Beedassy, Dec 07 2007
a(n) = (1 + A000668(n))/2. - Omar E. Pol, Mar 11 2008
a(n) = 2^A000043(n)/2 = A072868(n)/2 = A032742(A072868(n)). - Omar E. Pol, Apr 25 2008

A001203 Simple continued fraction expansion of Pi.

Original entry on oeis.org

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, 1, 2, 1, 1, 12, 1, 1, 1, 3, 1, 1, 8, 1, 1, 2, 1, 6, 1, 1, 5, 2, 2, 3, 1, 2, 4, 4, 16, 1, 161, 45, 1, 22, 1, 2, 2, 1, 4, 1, 2, 24, 1, 2, 1, 3, 1, 2, 1
Offset: 0

Views

Author

Keywords

Comments

The first 5821569425 terms were computed by Eric W. Weisstein on Sep 18 2011.
The first 10672905501 terms were computed by Eric W. Weisstein on Jul 17 2013.
The first 15000000000 terms were computed by Eric W. Weisstein on Jul 27 2013.
The first 30113021586 terms were computed by Syed Fahad on Apr 27 2021.

Examples

			Pi = 3.1415926535897932384...
   = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...))))
   = [a_0; a_1, a_2, a_3, ...] = [3; 7, 15, 1, 292, ...].
		

References

  • P. Beckmann, "A History of Pi".
  • C. Brezinski, History of Continued Fractions and Padé Approximants, Springer-Verlag, 1991; pp. 151-152.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 50.
  • R. S. Lehman, A Study of Regular Continued Fractions. Report 1066, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Feb 1959.
  • G. Lochs, Die ersten 968 Kettenbruchnenner von Pi. Monatsh. Math. 67 1963 311-316.
  • C. D. Olds, Continued Fractions, Random House, NY, 1963; front cover of paperback edition.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 274.

Crossrefs

Cf. A000796 for decimal expansion. See A007541 or A033089, A033090 for records.

Programs

  • Maple
    cfrac (Pi,70,'quotients'); # Zerinvary Lajos, Feb 10 2007
  • Mathematica
    ContinuedFraction[Pi, 98]
  • PARI
    contfrac(Pi) \\ contfracpnqn(%) is also useful!
    
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi); for (n=1, 20000, write("b001203.txt", n, " ", x[n])); } \\ Harry J. Smith, Apr 14 2009
    
  • Python
    import itertools as it; import sympy as sp
    list(it.islice(sp.continued_fraction_iterator(sp.pi),100))
    # Nicholas Stefan Georgescu, Feb 27 2023
  • Sage
    continued_fraction(RealField(333)(pi)) # Peter Luschny, Feb 16 2015
    

Extensions

Word "Simple" added to the title by David Covert, Dec 06 2016

A062589 Numbers k such that 23^k - 22^k is prime, or a strong pseudoprime.

Original entry on oeis.org

229, 241, 673, 5387, 47581
Offset: 1

Views

Author

Mike Oakes, May 18 2001, May 19 2001

Keywords

Comments

Terms greater than 1000 often correspond to "unproven" strong pseudoprimes.
a(6) > 10^5. - Robert Price, Aug 22 2012

Crossrefs

Extensions

a(5) from Robert Price, Aug 22 2012
Edited by M. F. Hasler, Sep 21 2013
Previous Showing 101-110 of 693 results. Next