A177888
P_n(k) with P_0(z) = z+1 and P_n(z) = z + P_(n-1)(z)*(P_(n-1)(z)-z) for n>1; square array P_n(k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 5, 7, 1, 5, 7, 17, 43, 1, 6, 9, 31, 257, 1807, 1, 7, 11, 49, 871, 65537, 3263443, 1, 8, 13, 71, 2209, 756031, 4294967297, 10650056950807, 1, 9, 15, 97, 4691, 4870849, 571580604871, 18446744073709551617, 113423713055421844361000443, 1
Offset: 0
Square array P_n(k) begins:
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 5, 7, 9, 11, 13, 15, ...
1, 7, 17, 31, 49, 71, 97, 127, ...
1, 43, 257, 871, 2209, 4691, 8833, 15247, ...
1, 1807, 65537, 756031, 4870849, ...
1, 3263443, 4294967297, ...
1, 10650056950807, ...
- Alois P. Heinz, Antidiagonals n = 0..13, flattened
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Columns k=0-10 give:
A000012,
A000058(n+1),
A000215,
A000289(n+1),
A000324(n+1),
A001543(n+1),
A001544(n+1),
A067686,
A110360(n+1),
A110368(n+1),
A110383(n+1).
Coefficients of P_n(z) give:
A177701.
-
p:= proc(n) option remember;
z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))
end:
seq(seq(p(n)(d-n), n=0..d), d=0..8);
-
p[n_] := p[n] = Function[z, z + If [n == 0, 1, p[n-1][z]*(p[n-1][z]-z)] ]; Table [Table[p[n][d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
A003096
a(n) = a(n-1)^2 - 1, a(0) = 2.
Original entry on oeis.org
2, 3, 8, 63, 3968, 15745023, 247905749270528, 61457260521381894004129398783, 3776994870793005510047522464634252677140721938309041881088
Offset: 0
- R. K. Guy, How to factor a number, Proc. 5th Manitoba Conf. Numerical Math., Congress. Num. 16 (1975), 49-89.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Mensa, self-test indicative for high IQ
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
-
[n le 1 select 2 else Self(n-1)^2 -1: n in [1..12]]; // G. C. Greubel, Oct 27 2022
-
a := proc(n) local k, v: v := 2: for k from 1 to n do v := v^2-1: od: v: end:
seq(a(n), n = 0 .. 8); # Lorenzo Sauras Altuzarra, Feb 01 2023
-
NestList[#^2-1&,2,10] (* Harvey P. Dale, Nov 06 2011 *)
-
a(n)=if(n<1,2*(n==0),a(n-1)^2-1)
-
def A003096(n): return 2 if (n==0) else A003096(n-1)^2 -1
[A003096(n) for n in range(12)] # G. C. Greubel, Oct 27 2022
A005267
a(n) = -1 + a(0)*a(1)*...*a(n-1) with a(0) = 3.
Original entry on oeis.org
3, 2, 5, 29, 869, 756029, 571580604869, 326704387862983487112029, 106735757048926752040856495274871386126283608869, 11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068029
Offset: 0
- R. K. Guy and R. Nowakowski, "Discovering primes with Euclid," Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
- T. Koshy, "Intriguing Properties Of Three Related Number Sequences", in Journal of Recreational Mathematics, Vol. 32(3) pp. 210-213, 2003-2004 Baywood NY.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a(n)=if(n<2,3*(n>=0)-(n>0),a(n-1)^2+a(n-1)-1)
-
def a(n):
if n == 0: return 2
t = a(n-1)
l = t+1
u = t
return l * u - 1
print([a(n) for n in range(0, 8)]) # Darío Clavijo, Aug 24 2024
A004168
a(n+1) = a(n)*(a(n)+1).
Original entry on oeis.org
3, 12, 156, 24492, 599882556, 359859081592975692, 129498558604939936868397356895854556, 16769876680757063368089314196389622249367851612542961252860614401811692
Offset: 0
-
[n eq 1 select 3 else Self(n-1)*(Self(n-1)+1): n in [1..10]]; // Vincenzo Librandi, Feb 23 2016
-
A004168 := proc(n) option remember; if n=0 then 3 else A004168(n-1)*(A004168(n-1)+1); fi; end;
-
a = {3}; Do[AppendTo[a, a[[n - 1]] (a[[n - 1]] + 1)], {n, 2, 8}]; a (* Michael De Vlieger, Feb 23 2016 *)
NestList[#(#+1)&,3,7] (* Harvey P. Dale, Jul 02 2021 *)
A051070
a(n) is the n-th term in sequence A_n, respecting the offset, or a(n) = -1 if A_n has fewer than n terms.
Original entry on oeis.org
1, 2, 1, 0, 2, 3, 0, 7, 8, 4, 63, 1, 316, 78, 16, 2048, 7652, 26627, 8, 24000, 232919, 1145406, 3498690007594650042368, 2058537, 58, 26, 27, 59, 9272780, 3, 69273668, 4870847, 2387010102192469724605148123694256128, 1, 1, -53, 43, 0, -4696, 173, 44583, 111111111111111111111111111111111111111111, 30402457, 668803781, 1134903170, 382443020332
Offset: 1
a(19) = 8 because A000019(19) = 8.
a(20) = 24000 because A000020(20) = 24000.
-
for m from 1 do
url:= sprintf("https://oeis.org/A%06d/b%06d.txt",m,m);
S:= URL:-Get(url);
L:= StringTools[Split](S,"\n");
for t in L do
g:= sscanf(t, "%d %d");
if nops(g) = 2 and g[1] = m then
a[m]:= g[2];
break
fi;
od;
if not assigned(a[m]) then break fi;
od:
seq(a[i],i=1..m-1); # Robert Israel, May 31 2015
a(36) and a(42) corrected and a(43) to a(46) added by
Robert Israel, May 31 2015
A075442
Slowest-growing sequence of primes whose reciprocals sum to 1.
Original entry on oeis.org
2, 3, 7, 43, 1811, 654149, 27082315109, 153694141992520880899, 337110658273917297268061074384231117039, 8424197597064114319193772925959967322398440121059128471513803869133407474043
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, D11.
-
x=1; lst={}; Do[n=Ceiling[1/x]; If[PrimeQ[n], n++ ]; While[ !PrimeQ[n], n++ ]; x=x-1/n; AppendTo[lst, n], {10}]; lst
a[n_] := a[n] = Block[{sm = Sum[1/(a[i]), {i, n - 1}]}, NextPrime[ Max[ a[n - 1], 1/(1 - sm)]]]; a[0] = 1; Array[a, 10] (* Robert G. Wilson v, Oct 28 2010 *)
-
a(n)=if(n<3, return(prime(n))); my(x=1.); for(i=1,n-1,x-=1/a(i)); nextprime(1/x) \\ Charles R Greathouse IV, Apr 29 2015
-
a_vector(N=10)= my(r=1, v=vector(N)); for(i=1, N, v[i]= nextprime(1+1/r); r-= 1/v[i]); v; \\ Ruud H.G. van Tol, Jul 29 2023
A092666
a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), with 0 < x_1 <= ... <= x_k = n.
Original entry on oeis.org
1, 1, 1, 2, 1, 7, 1, 10, 10, 26, 1, 107, 1, 83, 375, 384, 1, 1418, 1, 4781, 7812, 1529, 1, 33665, 9789, 4276, 27787, 168107, 1, 584667, 1, 586340, 1177696, 52334, 5285597, 14746041, 1, 218959, 13092673, 84854683, 1, 279357910, 1, 491060793, 2001103921
Offset: 1
a(4) = 2 since there are two fractions 1=1/2+1/4+1/4 and 1=1/4+1/4+1/4+1/4.
A129871
A variant of Sylvester's sequence: a(0)=1 and for n>0, a(n) = (a(0)*a(1)*...*a(n-1)) + 1.
Original entry on oeis.org
1, 2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807
Offset: 0
- Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, 1997, Exercice 3.3.4 page 284.
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
- Junnosuke Koizumi, Irrationality of the reciprocal sum of doubly exponential sequences, arXiv:2504.05933 [math.NT], 2025.
- Vjekoslav Kovač, On simultaneous rationality of two Ahmes series, arXiv:2406.17593 [math.NT], 2024.
Cf.
A000058 which is the main entry for this sequence.
-
a129871 n = a129871_list !! n
a129871_list = 1 : a000058_list -- Reinhard Zumkeller, Dec 18 2013
-
a[0] = 1; a[n_] := a[n] = Product[a[k], {k, 0, n - 1}] + 1
A091967
a(n) is the n-th term of sequence A_n, ignoring the offset, or -1 if A_n has fewer than n terms.
Original entry on oeis.org
0, 2, 1, 0, 2, 3, 0, 6, 6, 4, 44, 1, 180, 42, 16, 1096, 7652, 13781, 8, 24000, 119779, 458561, 152116956851941670912, 1054535, -53, 26, 27, 59, 4806078, 2, 35792568, 3010349, 2387010102192469724605148123694256128, 2, 0, -53, 43, 0, -4097, 173, 37338, 111111111111111111111111111111111111111111, 30402457, 413927966
Offset: 1
a(1) = 0 since A000001 has offset 0, and begins with A000001(0) = 0.
a(26) = 26 because the 26th term of A000026 = 26.
Cf.
A000001,
A000002,
A000003,
A000004,
A000005,
A000006,
A000007,
A000008,
A000009,
A000010,
A000011,
A000012,
A000013,
A000014,
A000015, etc.
a(26), a(36) and a(42) corrected by
M. F. Hasler, Jan 30 2009
A144743
Recurrence sequence a(n)=a(n-1)^2-a(n-1)-1, a(0)=3.
Original entry on oeis.org
3, 5, 19, 341, 115939, 13441735781, 180680260792773944179, 32645356640144805339284259388335434039861, 1065719310162246533488642668727242229836148490441005113524301742665845135502859459
Offset: 0
-
a = {3}; k = 3; Do[k = k^2 - k - 1; AppendTo[a, k], {n, 1, 10}]; a
-
a(n,s=3)=for(i=1,n,s=s^2-s-1);s \\ M. F. Hasler, Oct 06 2014
Comments