Original entry on oeis.org
1, 2, 6, 23, 103, 512, 2740, 15485, 91245, 555662, 3475090, 22214707, 144640291, 956560748, 6411521056, 43478151737, 297864793993, 2059159989914, 14350039389022, 100726680316559, 711630547589023, 5057282786190872, 36132861123763276, 259423620328055093, 1870954187618001253
Offset: 0
A064062
Generalized Catalan numbers C(2; n).
Original entry on oeis.org
1, 1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011) # 11.2.6, example section 3.
- Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
- J. Bloom and S. Elizalde, Pattern avoidance in matchings and partitions, arXiv:1211.3442 [math.CO] (2012) Theorem 6.1.
- N. Bonichon, C. Gavoille and N. Hanusse, Canonical Decomposition of Outerplanar Maps and Application to Enumeration, Coding and Generation, In Proceedings of WG'03, volume 2880 of LNCS, pp. 81-92, 2003.
- Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006.
- Xiang-Ke Chang, X.-B. Hu, H. Lei and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017).
- Simone Fioravanti, Steve Hanneke, Shay Moran, Hilla Schefler, and Iska Tsubari, Ramsey Theorems for Trees and a General 'Private Learning Implies Online Learning' Theorem, arXiv:2407.07765 [cs.LG], 2024. See p. 44.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- N. J. A. Sloane, Transforms
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011-2012.
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (3 - Sqrt(1-8*x))/(2*(1+x)) )); // G. C. Greubel, Sep 27 2024
-
1, seq(simplify(hypergeom([1-n,n],[-n],2)), n=1..100); # Robert Israel, Nov 30 2014
-
a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + Sum[(a[k] + a[k-1])a[n-k],{k,n-1}]; Table[a[n],{n,0,10}] (* David Callan, Aug 27 2009 *)
a[n_] := 2*Sum[ (-1)^j*2^(n-j-1)*Binomial[2*(n-j-1), n-j-1]/(n-j), {j, 0, n-1}] + (-1)^n; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 03 2013 *)
-
{a(n)=polcoeff((3-sqrt(1-8*x+x*O(x^n)))/(2+2*x),n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^2+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 24 2013
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=polcoeff(1/(1 - serreverse(x-2*x^2 +x^2*O(x^n))),n)}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 30 2014
-
def a(n):
if n==0: return 1
return hypergeometric([1-n, n], [-n], 2).simplify()
[a(n) for n in range(22)] # Peter Luschny, Dec 01 2014
A007054
Super ballot numbers: 6(2n)!/(n!(n+2)!).
Original entry on oeis.org
3, 2, 3, 6, 14, 36, 99, 286, 858, 2652, 8398, 27132, 89148, 297160, 1002915, 3421710, 11785890, 40940460, 143291610, 504932340, 1790214660, 6382504440, 22870640910, 82334307276, 297670187844, 1080432533656, 3935861372604, 14386251913656, 52749590350072
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Emily Allen and Irina Gheorghiciuc, A Weighted Interpretation for the Super Catalan Numbers, J. Int. Seq. 17 (2014) # 14.10.7.
- David Callan, A combinatorial interpretation for a super-Catalan recurrence, arXiv:math/0408117 [math.CO], 2004.
- David Callan, A Combinatorial Interpretation for a Super-Catalan Recurrence, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.8.
- David Callan, A variant of Touchard's Catalan number identity, arXiv preprint arXiv:1204.5704 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 10 2012
- Ira M. Gessel, Letter to N. J. A. Sloane, Jul. 1992
- Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194
- Ira M. Gessel, Rational Functions With Nonnegative Integer Coefficients, 50th Séminaire Lotharingien de Combinatoire, 2003.
- Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of the Numbers 6(2n)!/n!(n+2)!, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3.
- Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of The Numbers 6(2n)! /n! (n+2)!, arXiv:math/0401300v2 [math.CO], 2004.
- Nicholas Pippenger and Kristin Schleich, Topological characteristics of random triangulated surfaces (section 7), Random Structures Algorithms 28 (2006) 247-288; arXiv:gr-qc/0306049, 2003.
- G. Schaeffer, A combinatorial interpretation of super-Catalan numbers of order two, (2001).
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 96.
-
[6*Factorial(2*n)/(Factorial(n)*Factorial(n+2)): n in [0..30]]; // Vincenzo Librandi, Aug 20 2011
-
seq(3*(2*n)!/(n!)^2/binomial(n+2,n), n=0..22); # Zerinvary Lajos, Jun 28 2007
A007054 := n -> 6*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(3+n)):
seq(A007054(n),n=0..28); # Peter Luschny, Dec 14 2015
-
Table[6(2n)!/(n!(n+2)!),{n,0,30}] (* or *) CoefficientList[Series[ (-1+Sqrt[1-4*x]+(6-4*Sqrt[1-4*x])*x)/(2*x^2),{x,0,30}],x] (* Harvey P. Dale, Oct 05 2011 *)
-
a(n)=6*(2*n)!/(n!*(n+2)!); /* Joerg Arndt, Sep 01 2012 */
-
def A007054(n): return (-4)^(2 + n)*binomial(3/2, 2 + n)/2
print([A007054(n) for n in range(29)]) # Peter Luschny, Nov 04 2021
A002421
Expansion of (1-4*x)^(3/2) in powers of x.
Original entry on oeis.org
1, -6, 6, 4, 6, 12, 28, 72, 198, 572, 1716, 5304, 16796, 54264, 178296, 594320, 2005830, 6843420, 23571780, 81880920, 286583220, 1009864680, 3580429320, 12765008880, 45741281820, 164668614552, 595340375688, 2160865067312, 7871722745208, 28772503827312
Offset: 0
G.f. = 1 - 6*x + 6*x^2 + 4*x^3 + 6*x^4 + 12*x^5 + 28*x^6 + 72*x^7 + 198*x^8 + 572*x^9 + ...
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
Concatenation([1], List([1..40], n-> 12*Factorial(2*n-4) /( Factorial(n)*Factorial(n-2)) )) # G. C. Greubel, Jul 03 2019
-
[1,-6] cat [12*Catalan(n-2)/n: n in [2..30]]; // Vincenzo Librandi, Jun 11 2012
-
A002421 := n -> 3*4^(n-1)*GAMMA(-3/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002421(n), n=0..29); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^(3/2),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
a[n_]:= Binomial[ 3/2, n] (-4)^n; (* Michael Somos, Dec 04 2013 *)
a[n_]:= SeriesCoefficient[(1-4x)^(3/2), {x, 0, n}]; (* Michael Somos, Dec 04 2013 *)
-
{a(n) = binomial( 3/2, n) * (-4)^n}; /* Michael Somos, Dec 04 2013 */
-
{a(n) = if( n<0, 0, polcoeff( (1 - 4*x + x * O(x^n))^(3/2), n))}; /* Michael Somos, Dec 04 2013 */
-
((1-4*x)^(3/2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 03 2019
A090371
Number of unrooted planar 2-constellations with n digons. Also number of n-edge unrooted planar Eulerian maps with bicolored faces.
Original entry on oeis.org
1, 3, 6, 20, 60, 291, 1310, 6975, 37746, 215602, 1262874, 7611156, 46814132, 293447817, 1868710728, 12068905911, 78913940784, 521709872895, 3483289035186, 23464708686960, 159346213738020, 1090073011199451, 7507285094455566, 52021636161126702
Offset: 1
The 3 Eulerian maps with 2 edges are the digon and two figure eight graphs ("8") in which both loops are colored, resp., black or white.
- R. J. Mathar, Table of n, a(n) for n = 1..100
- M. Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. v.24 (2000), 337-368.
- A. Mednykh and R. Nedela, Counting unrooted hypermaps on closed orientable surface, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA).
- A. Mednykh and R. Nedela, Enumeration of unrooted hypermaps of a given genus, Discr. Math., 310 (2010), 518-526. [From _N. J. A. Sloane_, Dec 19 2009]
- A. Mednykh and R. Nedela, Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 2.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
-
A090371 := proc(n)
local s, d;
if n=0 then
1 ;
else
s := -2^n*binomial(2*n, n);
for d in numtheory[divisors](n) do
s := s+ numtheory[phi](n/d)*2^d*binomial(2*d, d)
od;
3/(2*n)*(2^n*binomial(2*n, n)/((n+1)*(n+2))+s/2);
fi;
end proc:
-
h0[n_] := 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)); a[n_] := (h0[n] + DivisorSum[n, If[#>1, EulerPhi[#]*Binomial[n/#+2, 2]*h0[n/#], 0]&])/n; Array[a, 30] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
-
h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
a(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2,2)*h0(n/d)))/n; \\ Michel Marcus, Dec 11 2014
A069727
Number of nonisomorphic unrooted Eulerian planar maps with n edges (Eulerian means that all vertices are of even valency; there is an Eulerian cycle).
Original entry on oeis.org
1, 1, 2, 4, 12, 34, 154, 675, 3534, 18985, 108070, 632109, 3807254, 23411290, 146734695, 934382820, 6034524474, 39457153432, 260855420489, 1741645762265, 11732357675908, 79673115468562, 545036528857605, 3753642607424647, 26010818244754788, 181266500331748878
Offset: 0
-
a[n_] := (1/(2n)) * (3*2^(n-1) * Binomial[2n, n]/((n+1)*(n+2)) + Sum[ EulerPhi[n/k] * d[n/k] * 2^(k-2) * Binomial[2k, k], {k, Most[ Divisors[n]]}]) + q[n]; a[0] = 1; q[n_?EvenQ] := 2^((n-4)/2)*Binomial[ n, n/2]/(n+2); q[n_?OddQ] := 2^((n-1)/2)*Binomial[(n-1), (n-1)/2]/(n+1); d[n_] := 4-Mod[n, 2]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 19 2011, after Valery A. Liskovets *)
-
a(n) = {if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021
A321710
Triangle read by rows: T(n,k) is the number of rooted hypermaps of genus k with n darts.
Original entry on oeis.org
1, 3, 12, 1, 56, 15, 288, 165, 8, 1584, 1611, 252, 9152, 14805, 4956, 180, 54912, 131307, 77992, 9132, 339456, 1138261, 1074564, 268980, 8064, 2149888, 9713835, 13545216, 6010220, 579744, 13891584, 81968469, 160174960, 112868844, 23235300, 604800, 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880, 608583680, 5702382933, 19588944336, 28540603884, 16497874380, 2936606400, 68428800, 4107939840, 47168678571, 206254571236, 404562365316, 344901105444, 108502598960, 8099018496
Offset: 1
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[1] 1;
[2] 3;
[3] 12, 1;
[4] 56, 15;
[5] 288, 165, 8;
[6] 1584, 1611, 252;
[7] 9152, 14805, 4956, 180;
[8] 54912, 131307, 77992, 9132;
[9] 339456, 1138261, 1074564, 268980, 8064;
[10] 2149888, 9713835, 13545216, 6010220, 579744;
[11] 13891584, 81968469, 160174960, 112868844, 23235300, 604800;
[12] 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880;
[13] ...
- Gheorghe Coserea, Rows n = 1..42, flattened
- Alain Giorgetti and Timothy R. S. Walsh, Enumeration of hypermaps of a given genus, Ars Math. Contemp. 15 (2018) 225-266.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- P. G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544.
- Peter Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, arXiv:1312.2538 [math.CO], 2014.
-
l1[f_,n_] := Sum[(i-1)t[i]D[f,t[i-1]], {i,2,n}];
m1[f_,n_] := Sum[(i-1)t[j]t[i-j]D[f,t[i-1]] + j(i-j)t[i+1]D[f,t[j],t[i-j]], {i,2,n},{j,i-1}];
ff[1] = x^2 t[1];
ff[n_] := ff[n] = Simplify@(2x l1[ff[n-1],n] + m1[ff[n-1],n] + Sum[t[i+1]j(i-j)D[ff[k],t[j]]D[ff[n-1-k],t[i-j]], {i,2,n-1},{j,i-1},{k,n-2}]) / n;
row[n_]:=Reverse[CoefficientList[n ff[n] /. {t[_]->x}, x]][[;;;;2]][[;;Quotient[n+1,2]]];
Table[row[n], {n,14}] (* Andrei Zabolotskii, Jun 27 2025, after the PARI code *)
-
L1(f, N) = sum(i=2, N, (i-1)*t[i]*deriv(f, t[i-1]));
M1(f, N) = {
sum(i=2, N, sum(j=1, i-1, (i-1)*t[j]*t[i-j]*deriv(f, t[i-1]) +
j*(i-j)*t[i+1]*deriv(deriv(f, t[j]), t[i-j])));
};
F(N) = {
my(u='x, v='x, f=vector(N)); t=vector(N+1, n, eval(Str("t", n)));
f[1] = u*v*t[1];
for (n=2, N, f[n] = (u + v)*L1(f[n-1], n) + M1(f[n-1], n) +
sum(i=2, n-1, t[i+1]*sum(j=1, i-1,
j*(i-j)*sum(k=1, n-2, deriv(f[k], t[j])*deriv(f[n-1-k], t[i-j]))));
f[n] /= n);
f;
};
seq(N) = {
my(f=F(N), v=substvec(f, t, vector(#t, n, 'x)),
g=vector(#v, n, Polrev(Vec(n * v[n]))));
apply(p->Vecrev(substpol(p, 'x^2, 'x)), g);
};
concat(seq(14))
A118093
Numbers of rooted hypermaps on the torus with n darts (darts are semi-edges in the particular case of ordinary maps).
Original entry on oeis.org
1, 15, 165, 1611, 14805, 131307, 1138261, 9713835, 81968469, 685888171, 5702382933, 47168678571, 388580070741, 3190523226795, 26124382262613, 213415462218411, 1740019150443861, 14162920013474475, 115112250539595093, 934419385591442091, 7576722323539318101
Offset: 3
- Vincenzo Librandi, Table of n, a(n) for n = 3..500
- A. Mednykh and R. Nedela, Counting unrooted hypermaps on closed orientable surface, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA).
- A. Mednykh and R. Nedela, Enumeration of unrooted hypermaps of a given genus, Discr. Math., 310 (2010), 518-526. [From _N. J. A. Sloane_, Dec 19 2009]
- Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 3
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- P. G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544.
-
[&+[(2^k*(4^(n-2-k)-1)*Binomial(n+k, k))/3 : k in [0..n-3]]: n in [3..25]]; // Vincenzo Librandi, Sep 16 2018
-
Table[Sum[2^k (4^(n - 2 - k) - 1) Binomial[n+k, k] / 3, {k, 0, n-3}], {n, 3, 25}] (* Vincenzo Librandi, Sep 16 2018 *)
-
a(n) = sum(k=0, n-3, 2^k*(4^(n-2-k)-1)*binomial(n+k, k))/3; \\ Michel Marcus, Dec 11 2014
-
seq(N) = {
my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
Vec((y - 1)^3/(4*(y - 2)^2*(y + 1)));
};
seq(21) \\ Gheorghe Coserea, Nov 06 2018
A214817
Number of genus 2 rooted hypermaps with n darts.
Original entry on oeis.org
0, 0, 0, 0, 8, 252, 4956, 77992, 1074564, 13545216, 160174960, 1805010948, 19588944336, 206254571236, 2118399516180, 21310566266640, 210636265153004, 2050696768165560, 19704531058696008, 187168609978022860, 1759888050471704664, 16398685297890141180, 151570887948878270348
Offset: 1
- Gheorghe Coserea, Table of n, a(n) for n = 1..105 (corrected by _Georg Fischer_, Jan 20 2019)
- Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 4.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- P. G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544.
- Peter Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, arXiv:1312.2538 [math.CO], 2014.
-
DeleteCases[CoefficientList[Series[-# (# - 1)^5*(#^4 - 6 #^3 + 36 #^2 - 50 # + 51)/(4 (# - 2)^7*(# + 1)^5) &[(1 - Sqrt[1 - 8 x])/(4 x)], {x, 0, 23}], x], 0] (* Michael De Vlieger, Nov 26 2018 *)
-
seq(N) = {
my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
Vec(-y*(y - 1)^5*(y^4 - 6*y^3 + 36*y^2 - 50*y + 51)/(4*(y - 2)^7*(y + 1)^5));
};
seq(19) \\ Gheorghe Coserea, Nov 11 2018
A214818
Number of genus 3 rooted hypermaps with n darts.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 180, 9132, 268980, 6010220, 112868844, 1877530740, 28540603884, 404562365316, 5422718644920, 69428442576136, 855504181649448, 10204459810035768, 118364711625485256, 1340006035830921720, 14850353930248138104, 161502853638370415864, 1727146533728893094604
Offset: 1
- Gheorghe Coserea, Table of n, a(n) for n = 1..107 (corrected by _Georg Fischer_, Jan 20 2019)
- Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 5
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- Peter G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544.
- Peter G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, arXiv:1312.2538 [math.CO], 2014.
-
DeleteCases[CoefficientList[Series[# (# - 1)^7*(5 #^9 - 60 #^8 + 675 #^7 - 2947 #^6 + 10005 #^5 - 20235 #^4 + 28297 #^3 - 23937 #^2 + 11418 # - 1781)/(2 (# - 2)^12*(# + 1)^9) &[(1 - Sqrt[1 - 8 x])/(4 x)], {x, 0, 23}], x], 0] (* Michael De Vlieger, Nov 26 2018 *)
-
seq(N) = {
my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
Vec(y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9));
};
seq(18) \\ Gheorghe Coserea, Nov 12 2018
Showing 1-10 of 25 results.
Comments