A290326
Triangle read by rows: T(n,k) is the number of c-nets with n+1 faces and k+1 vertices.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 3, 24, 33, 13, 0, 0, 0, 0, 33, 188, 338, 252, 68, 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399, 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530, 0, 0, 0, 0, 0, 68, 3740, 39525, 180670, 452865, 685419, 646415, 373175, 121095, 16965, 0, 0, 0, 0, 0, 0, 1938, 51300, 452865, 2020120, 5354832, 9095856, 10215450, 7580040, 3585270, 981708, 118668
Offset: 1
A(x;t) = t^3*x^3 + (4*t^4 + 3*t^5)*x^4 + (3*t^4 + 24*t^5 + 33*t^6 + 13*t^7)*x^5 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
[1] 0;
[2] 0, 0;
[3] 0, 0, 1;
[4] 0, 0, 0, 4, 3;
[5] 0, 0, 0, 3, 24, 33, 13;
[6] 0, 0, 0, 0, 33, 188, 338, 252, 68;
[7] 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399;
[8] 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530;
[9] ...
Rows/Columns sum give
A106651 (enumeration of c-nets by the number of vertices).
Antidiagonals sum give
A000287 (enumeration of c-nets by the number of edges).
-
T(n,k) = {
if (n < 3 || k < 3, return(0));
sum(i=0, k-1, sum(j=0, n-1,
(-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
(binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
};
N=10; concat(concat([0,0,0], apply(n->vector(2*n-3, k, T(n,k)), [3..N])))
\\ test 1: N=100; y=x*Ser(vector(N, n, sum(i=1+(n+2)\3, (2*n)\3-1, T(i,n-i)))); 0 == x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6
/*
\\ test 2:
x='x; t='t; N=44; y=Ser(apply(n->Polrev(vector(2*n-3, k, T(n, k)), 't), [3..N+2]), 'x) * t*x^3;
0 == (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1)
*/
A000309
Number of rooted planar bridgeless cubic maps with 2n nodes.
Original entry on oeis.org
1, 1, 4, 24, 176, 1456, 13056, 124032, 1230592, 12629760, 133186560, 1436098560, 15774990336, 176028860416, 1990947110912, 22783499599872, 263411369705472, 3073132646563840, 36143187370967040, 428157758086840320, 5105072641718353920, 61228492804372561920
Offset: 0
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Marie Albenque, Dominique Poulalhon, A Generic Method for Bijections between Blossoming Trees and Planar Maps, Electron. J. Combin., 22 (2015), #P2.38.
- Dario Benedetti, Sylvain Carrozza, Reiko Toriumi, Guillaume Valette, Multiple scaling limits of U(N)^2 X O(D) multi-matrix models, arXiv:2003.02100 [math-ph], 2020.
- Olivier Bernardi, Bijective counting of Kreweras walks and loopless triangulations, Journal of Combinatorial Theory, Series A 114:5 (2007), 931-956.
- Junliang Cai, Yanpei Liu, The enumeration of rooted nonseparable nearly cubic maps, Discrete Math. 207 (1999), no. 1-3, 9--24. MR1710479 (2000g:05074). See (31).
- Robert Cori and Gilles Schaeffer, Description trees and Tutte formulas, Theoretical Computer Science 292:1 (2003), 165-183.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- Hsien-Kuei Hwang, Mihyun Kang, Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- R. C. Mullin, On counting rooted triangular maps, Canad. J. Math., v.17 (1965), 373-382.
- Elena Patyukova, Taylor Rottreau, Robert Evans, Paul D. Topham, Martin J. Greenall, Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment, Macromolecules (2018) Vol. 51, No. 18, 7032-7043. Also arXiv:1805.09878 [math.CA], 2018.
- W. T. Tutte, A census of Hamiltonian polygons, Canad. J. Math., 14 (1962), 402-417.
- W. T. Tutte, On the enumeration of four-colored maps, SIAM J. Appl. Math., 17 (1969), 454-460.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv:1803.10080 [math.LO], March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
-
List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # G. C. Greubel, Nov 29 2018
-
[2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Aug 10 2014
-
a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!);
A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # Peter Luschny, Oct 28 2022
-
f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 21 2004 *)
Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* Harvey P. Dale, May 11 2011 *)
-
a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ Michel Marcus, Aug 09 2014
-
[2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # G. C. Greubel Nov 29 2018
A267827
Number of closed indecomposable linear lambda terms with 2n+1 applications and abstractions.
Original entry on oeis.org
1, 2, 20, 352, 8624, 266784, 9896448, 426577920, 20918138624, 1149216540160, 69911382901760, 4665553152081920, 338942971881472000, 26631920159494995968, 2250690001888540950528, 203595258621775065120768, 19629810220331494121865216
Offset: 0
A(x) = 1 + 2*x + 20*x^2 + 352*x^3 + 8624*x^4 + 266784*x^5 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 0..303
- Lawrence Dresner, Protection of a test magnet wound with a Ag/BSCCO high-temperature superconductor, Oak Ridge National Lab technical report (ORNL/HTSPC-3), 1992. See Eq. (25).
- Noam Zeilberger, Linear lambda terms as invariants of rooted trivalent maps, arXiv:1512.06751 [cs.LO], 2015.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030, March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Rutgers Experimental Math Seminar, Sep 13 2018. Part 2 is vimeo.com/289910554.
- Noam Zeilberger, From Lambda Calculus to the Four Color Theorem, via Experimental Mathematics (slides), Rutgers Experimental Math Seminar, Jun 18 2020. For the video see http://noamz.org/videos/expmath.2020.06.18.mp4.
- Noam Zeilberger, From Lambda Calculus to the Four Color Theorem, via Experimental Mathematics (slides), Rutgers Experimental Math Seminar, Jun 18 2020. [Local copy]
-
a[0] = 1; a[1] = 2; a[n_] := a[n] = (6n-2) a[n-1] + Sum[(6k+2) a[k] a[n-1-k], {k, 1, n-2}];
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 16 2018, after Gheorghe Coserea *)
-
seq(N) = {
my(a = vector(N)); a[1] = 2;
for(n=2, N,
a[n] = (6*n-2)*a[n-1] + sum(k=1, n-2, (6*k+2)*a[k]*a[n-1-k]));
concat(1,a);
};
seq(16)
\\ test 1: y = x^2*subst(Ser(seq(201)),'x,-'x^6); 0 == x^5*y*y' + y - x^2
\\ test 2: y = Ser(seq(201)); 0 == 6*y*y'*x^2 + 2*y^2*x - y + 1
\\ Gheorghe Coserea, Nov 10 2017
F(N) = {
my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);
while(n++,
F1 = t + x*(F0 - subst(F0,t,0))^2 + x*deriv(F0,t);
if (F1 == F0, break()); F0 = F1;);
F0;
};
seq(N) = my(v=Vec(subst(F(2*N+2),'t,0))); vector((#v+1)\2, n, v[2*n-1]);
seq(16) \\ Gheorghe Coserea, Apr 01 2017
A002005
Number of rooted planar cubic maps with 2n vertices.
Original entry on oeis.org
1, 4, 32, 336, 4096, 54912, 786432, 11824384, 184549376, 2966845440, 48855252992, 820675092480, 14018773254144, 242919827374080, 4261707069259776, 75576645116559360, 1353050213048123392, 24428493151359467520, 444370175232646840320, 8138178004138611179520
Offset: 0
- R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Gheorghe Coserea, Table of n, a(n) for n = 0..1000
- Valentin Bonzom, Guillaume Chapuy, Maciej Dolega, Enumeration of non-oriented maps via integrability, Alg. Combin. 5 (6) (2022) p 1363-1390, A.3
- Mireille Bousquet-Mélou, Counting planar maps, coloured or uncoloured, 23rd British Combinatorial Conference, Jul 2011, Exeter, United Kingdom. 392, pp.1-50, 2011, London Math. Soc. Lecture Note Ser., hal-00653963. See p.13.
- Evgeniy Krasko and Alexander Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics (2019) Vol. 342, Issue 2, 584-599. Also arXiv:1709.03225 [math.CO].
- Maxim Krikun, Explicit enumeration of triangulations with multiple boundaries, arXiv:0706.0681 [math.CO], 2007. [Comment from _Gheorghe Coserea_, Dec 26 2015: the formula in the paper for almost trivalent maps is 2 * 4^(k-1) * (3k)!!/ ((k+1)!*(k+2)!!); however, the exponent of 4 should be k not (k-1) i.e. 2 * 4^k * (3k)!! / ((k+1)!*(k+2)!!)]
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030 [math.LO], March 2018 (A revised version of a 2017 conference paper).
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
-
seq(2*8^n*binomial(n*3/2, n)/((n + 2)*(n + 1)), n = 0..19); # Peter Luschny, Nov 14 2022
-
Table[2^(2 n + 1) (3 n)!!/((n + 2)! n!!), {n, 0, 20}] (* Vincenzo Librandi, Dec 28 2015 *)
CoefficientList[Series[(-1 + 96 z + Hypergeometric2F1[-2/3,-1/3,1/2,432z^2]- 96 z Hypergeometric2F1[-1/6,1/6,3/2,432z^2])/(192 z^2), {z, 0, 10}], z] (* Benedict W. J. Irwin, Aug 07 2016 *)
-
factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
a(n) = 2^(2*n+1)*factorial2(3*n)/((n+2)!*factorial2(n));
vector(20, i, a(i-1))
\\ test: y = Ser(vector(201, n, a(n-1))); x*(1-432*x^2)*y' == 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1
\\ Gheorghe Coserea, Jun 13 2017
A342981
Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 7, 5;
0, 1, 16, 37, 14;
0, 1, 30, 150, 176, 42;
0, 1, 50, 449, 1104, 794, 132;
0, 1, 77, 1113, 4795, 7077, 3473, 429;
0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
...
-
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
-
\\ here G(n, y) gives A082680 as g.f.
G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A146305
Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0
The array starts at row n=0 and column m=0 as
.....1......2.......5......14.......42.......132
.....1......5......21......84......330......1287
.....3.....20.....105.....504.....2310.....10296
....13....100.....595....3192....16170.....78936
....68....570....3675...21252...115500....602316
...399...3542...24150..147420...844074...4628052
..2530..23400..166257.1057224..6301680..35939904
.16965.161820.1186680.7791168.47948670.282285432
Antidiagonal sums are
A000260(n+1).
-
A146305 := proc(n,m)
2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ;
end proc:
for d from 0 to 13 do
for m from 0 to d do
printf("%d,", A146305(d-m,m)) ;
end do:
end do:
-
T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
-
T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021
A341856
Array read by antidiagonals: T(n,k) is the number of rooted strong triangulations of a disk with n interior nodes and 3+k nodes on the boundary.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 6, 13, 0, 1, 10, 36, 68, 0, 1, 15, 80, 228, 399, 0, 1, 21, 155, 610, 1518, 2530, 0, 1, 28, 273, 1410, 4625, 10530, 16965, 0, 1, 36, 448, 2933, 12165, 35322, 75516, 118668, 0, 1, 45, 696, 5628, 28707, 102548, 272800, 556512, 857956
Offset: 0
Array begins:
=======================================================
n\k | 0 1 2 3 4 5 6
----+--------------------------------------------------
0 | 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 ...
2 | 3 6 10 15 21 28 36 ...
3 | 13 36 80 155 273 448 696 ...
4 | 68 228 610 1410 2933 5628 10128 ...
5 | 399 1518 4625 12165 28707 62230 125928 ...
6 | 2530 10530 35322 102548 267162 638624 1422204 ...
...
-
T(n,m)=if(m==0, 2*(4*n+1)!/((3*n+2)!*(n+1)!), (3*(m+2)!*(m-1)!/(3*n+3*m+3)!)*sum(j=0, min(m,n-1), (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!)))
A006633
Expansion of hypergeom([3/2, 7/4, 2, 9/4], [7/3, 8/3, 3], (256/27)*x).
Original entry on oeis.org
1, 6, 39, 272, 1995, 15180, 118755, 949344, 7721604, 63698830, 531697881, 4482448656, 38111876530, 326439471960, 2814095259675, 24397023508416, 212579132600076, 1860620845932216, 16351267454243260, 144222309948974400, 1276307560533365955, 11329053395044653180
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
- Simon Plouffe, Approximations of generating functions and a few conjectures, Master's Thesis, arXiv:0911.4975 [math.NT], 2009.
-
gf := hypergeom([3/2, 7/4, 2, 9/4], [7/3, 8/3, 3], (256/27)*x):
ser := series(gf, x, 22): seq(coeff(ser, x, n), n = 0..21); # Peter Luschny, Feb 22 2024
-
A006633[n_] := 2*Binomial[4*n+5, n]/(n+2);
Array[A006633, 25, 0] (* Paolo Xausa, Feb 25 2024 *)
New name by using a formula from the author by
Peter Luschny, Feb 24 2024
A344136
Number of linear intervals in the Tamari lattices.
Original entry on oeis.org
1, 3, 12, 49, 198, 792, 3146, 12441, 49062, 193154, 759696, 2986458, 11737820, 46134090, 181350630, 713046345, 2804421510, 11033453970, 43424181240, 170965500030, 673354218420, 2652994345560, 10456457024052, 41227321016394
Offset: 1
All 3 intervals in the lattice of cardinality 2 are linear. Among 13 intervals in the pentagon, only one is not linear.
- Michael De Vlieger, Table of n, a(n) for n = 1..1663
- Clément Chenevière, Linear Intervals in the Tamari, Dyck and alt-Tamari Lattices, arXiv:2209.00418 [math.CO], 2022.
- Clément Chenevière, Enumerative study of intervals in lattices of Tamari type, Ph. D. thesis, Univ. Strasbourg (France), Ruhr-Univ. Bochum (Germany), HAL tel-04255439 [math.CO], 2024. See p. 151.
-
Array[(3/2) Binomial[2 #, #]*(#^2 - # + 2)/(# + 2)/(# + 1) &, 24] (* Michael De Vlieger, Sep 09 2022 *)
-
[3/2*binomial(2*n,n)*(n**2-n+2)/(n+2)/(n+1) for n in range(1,30)]
A058860
Number of 2-connected rooted cubic planar maps with n faces.
Original entry on oeis.org
1, 3, 19, 128, 909, 6737, 51683, 407802, 3293497, 27122967, 227095683, 1928656876, 16582719509, 144125955717, 1264625068163, 11190598332502, 99776445196977, 895685185070155, 8090065969366259, 73480719648381240, 670821169614526749
Offset: 4
G.f. = x^4 + 3*x^5 + 19*x^6 + 128*x^7 + 909*x^8 + 6737*x^9 + 51683*x^10 + ... - _Michael Somos_, Jul 22 2018
-
eq:=16*x^2*f^3+(8*x^4+24*x^3+72*x^2+8*x)*f^2+(x^6+6*x^5-5*x^4-40*x^3+3*x^2-14*x+1)*f-x^4-3*x^3+13*x^2-x: f:=sum(A[j]*x^j,j=1..35): for n from 1 to 35 do A[n]:=solve(coeff(expand(eq),x^n)=0) od: C2:=x^2*(f-x)*(1-2*x)/(1+x): C2ser:=series(C2,x=0,30): seq(coeff(C2ser,x^n),n=4..26); # Emeric Deutsch, Nov 30 2005
-
F = x^2*(z - x)*(1 - 2*x)/(1 + x);
G = 16*x^4*z^3 + x*(8*x^4 + 24*x^3 + 72*x^2 + 8*x)*z^2 + (x^6 + 6*x^5 -5*x^4 -40*x^3 + 3*x^2 - 14*x + 1)*z - x^3 - 3*x^2 + 13*x - 1;
Z(N) = {
my(z0 = 1 + O('x^N), z1=0, n=1);
while (n++,
z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
if (z1 == z0, break()); z0 = z1); z0;
};
seq(N) = Vec(subst(F, 'z, 'x*Z(N+1)));
seq(21)
\\ test: y=Ser(seq(303),'x)*x^4; 0 == 16*y^3 - 8*x*(2*x - 1)*(x^2 + 8*x + 1)*y^2 + x^2*(2*x - 1)^2*(x^4 + 20*x^3 + 50*x^2 - 16*x + 1)*y - x^6*(2*x - 1)^3*(x^2 + 11*x - 1)
\\ Gheorghe Coserea, Jul 14 2018
Comments