cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A290326 Triangle read by rows: T(n,k) is the number of c-nets with n+1 faces and k+1 vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 3, 24, 33, 13, 0, 0, 0, 0, 33, 188, 338, 252, 68, 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399, 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530, 0, 0, 0, 0, 0, 68, 3740, 39525, 180670, 452865, 685419, 646415, 373175, 121095, 16965, 0, 0, 0, 0, 0, 0, 1938, 51300, 452865, 2020120, 5354832, 9095856, 10215450, 7580040, 3585270, 981708, 118668
Offset: 1

Views

Author

Gheorghe Coserea, Jul 27 2017

Keywords

Comments

Row n >= 3 contains 2*n-3 terms.
c-nets are 3-connected rooted planar maps. This array also counts simple triangulations.
Table in Mullin & Schellenberg has incorrect values T(14,14) = 43494961412, T(15,13) = 21697730849, T(15,14) = 131631305614, T(15,15) = 556461655783. - Sean A. Irvine, Sep 28 2015

Examples

			A(x;t) = t^3*x^3 + (4*t^4 + 3*t^5)*x^4 + (3*t^4 + 24*t^5 + 33*t^6 + 13*t^7)*x^5 + ...
Triangle starts:
n\k  [1] [2] [3] [4] [5] [6]  [7]   [8]    [9]    [10]   [11]   [12]   [13]
[1]  0;
[2]  0,  0;
[3]  0,  0,  1;
[4]  0,  0,  0,  4,  3;
[5]  0,  0,  0,  3,  24, 33,  13;
[6]  0,  0,  0,  0,  33, 188, 338,  252,   68;
[7]  0,  0,  0,  0,  13, 338, 1705, 3580,  3740,  1938,  399;
[8]  0,  0,  0,  0,  0,  252, 3580, 16980, 39525, 51300, 38076, 15180, 2530;
[9]  ...
		

Crossrefs

Rows/Columns sum give A106651 (enumeration of c-nets by the number of vertices).
Antidiagonals sum give A000287 (enumeration of c-nets by the number of edges).

Programs

  • PARI
    T(n,k) = {
      if (n < 3 || k < 3, return(0));
      sum(i=0, k-1, sum(j=0, n-1,
         (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
         (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
          4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
    };
    N=10; concat(concat([0,0,0], apply(n->vector(2*n-3, k, T(n,k)), [3..N])))
    \\ test 1: N=100; y=x*Ser(vector(N, n, sum(i=1+(n+2)\3, (2*n)\3-1, T(i,n-i)))); 0 == x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6
    /*
    \\ test 2:
    x='x; t='t; N=44; y=Ser(apply(n->Polrev(vector(2*n-3, k, T(n, k)), 't), [3..N+2]), 'x) * t*x^3;
    0 == (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1)
    */

Formula

T(n,k) = Sum_{i=0..k-1} Sum_{j=0..n-1} (-1)^(i+j+1) * ((i+j+2)!/(2!*i!*j!)) * (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) - 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2)) for all n >= 3, k >= 3.
A106651(n+1) = Sum_{k=1..2*n-3} T(n,k) for n >= 3.
A000287(n) = Sum_{i=1+floor((n+2)/3)..floor(2*n/3)-1} T(i,n-i).
A001506(n) = T(n,n), A001507(n) = T(n+1,n), A001508(n) = T(n+2,n).
A000260(n-2) = T(n, 2*n-3) for n>=3.
G.f. y = A(x;t) satisfies: 0 = (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1). - Gheorghe Coserea, Sep 29 2018

A000309 Number of rooted planar bridgeless cubic maps with 2n nodes.

Original entry on oeis.org

1, 1, 4, 24, 176, 1456, 13056, 124032, 1230592, 12629760, 133186560, 1436098560, 15774990336, 176028860416, 1990947110912, 22783499599872, 263411369705472, 3073132646563840, 36143187370967040, 428157758086840320, 5105072641718353920, 61228492804372561920
Offset: 0

Views

Author

Keywords

Comments

Also counts rooted planar non-separable triangulations with 3n edges. - Valery A. Liskovets, Dec 01 2003
Equivalently, rooted planar loopless triangulations with 2n triangles. - Noam Zeilberger, Oct 06 2016
Description trees of type (2,2) with n edges. (A description tree of type (a,b) is a rooted plane tree where every internal node is labeled by an integer between a and [b + sum of labels of its children], every leaf is labeled a, and the root is labeled [b + sum of labels of its children]. See Definition 1 and Section 5.2 of Cori and Schaeffer 2003.) - Noam Zeilberger, Oct 08 2017
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • GAP
    List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # G. C. Greubel, Nov 29 2018
  • Magma
    [2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Aug 10 2014
    
  • Maple
    a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!);
    A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # Peter Luschny, Oct 28 2022
  • Mathematica
    f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 21 2004 *)
    Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ Michel Marcus, Aug 09 2014
    
  • Sage
    [2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # G. C. Greubel Nov 29 2018
    

Formula

a(n) = 2^(n-1) * A000139(n) for n > 0.
a(n) = 4*a(n-1)*binomial(3*n, 3) / binomial(2*n+2, 3).
a(n) = 2^n*(3*n)!/ ( (n+1)!*(2*n+1)! ).
G.f.: (1/(6*x)) * (hypergeom([ -2/3, -1/3],[1/2],(27/2)*x)-1). - Mark van Hoeij, Nov 02 2009
a(n) ~ 3^(3*n+1/2)/(sqrt(Pi)*2^(n+2)*n^(5/2)). - Ilya Gutkovskiy, Oct 06 2016
D-finite with recurrence (n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Nov 02 2018
a(n) = -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1). The a(n) are values of the polynomials A358091. - Peter Luschny, Oct 28 2022
From Karol A. Penson, Feb 24 2025: (Start)
G.f.: hypergeom([1/3, 2/3, 1], [3/2, 2], (27*z)/2).
G.f. A(z) satisfies: - 1 + 27*z + (-36*z + 1)*A(z) + 8*z*A(z)^2 + 16*z^2*A(z)^3 = 0.
G.f.: ((4*sqrt(4 - 54*z) + 12*i*sqrt(6)*sqrt(z))^(1/3)*(sqrt(z*(4 - 54*z)) - 9*i*sqrt(6)*z) + (4*sqrt(4 - 54*z) - 12*i*sqrt(6)*sqrt(z))^(1/3)*(9*i*sqrt(6)*z + sqrt(z*(4 - 54*z))) - 8*sqrt(z))/(48*z^(3/2)), where i = sqrt(-1) is the imaginary unit.
a(n) = Integral_{x=0..27/2} x^n*W(x), where W(x) = (6^(1/3)*(9 + sqrt(81 - 6*x))^(2/3)*(9*sqrt(3) - sqrt(27 - 2*x)) - 2^(2/3)*3^(1/6)*(27 + sqrt(81 - 6*x))*x^(1/3))/(48*Pi*(9 + sqrt(81 - 6*x))^(1/3)*x^(2/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem for x on (0, 27/2). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with singularity x^(-2/3), and for x > 0 is monotonically decreasing to zero at x = 27/2. (End)

Extensions

Definition clarified by Michael Albert, Oct 24 2008

A267827 Number of closed indecomposable linear lambda terms with 2n+1 applications and abstractions.

Original entry on oeis.org

1, 2, 20, 352, 8624, 266784, 9896448, 426577920, 20918138624, 1149216540160, 69911382901760, 4665553152081920, 338942971881472000, 26631920159494995968, 2250690001888540950528, 203595258621775065120768, 19629810220331494121865216
Offset: 0

Views

Author

Noam Zeilberger, Jan 21 2016

Keywords

Comments

A linear lambda term is indecomposable if it has no closed proper subterm.
Equivalently, number of closed bridgeless rooted trivalent maps (on compact oriented surfaces of arbitrary genus) with 2n+1 trivalent vertices (and 1 univalent vertex).
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

Examples

			A(x) = 1 + 2*x + 20*x^2 + 352*x^3 + 8624*x^4 + 266784*x^5 + ...
		

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = (6n-2) a[n-1] + Sum[(6k+2) a[k] a[n-1-k], {k, 1, n-2}];
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 16 2018, after Gheorghe Coserea *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 2;
      for(n=2, N,
        a[n] = (6*n-2)*a[n-1] + sum(k=1, n-2, (6*k+2)*a[k]*a[n-1-k]));
      concat(1,a);
    };
    seq(16)
    \\ test 1: y = x^2*subst(Ser(seq(201)),'x,-'x^6); 0 == x^5*y*y' + y - x^2
    \\ test 2: y = Ser(seq(201)); 0 == 6*y*y'*x^2 + 2*y^2*x - y + 1
    \\ Gheorghe Coserea, Nov 10 2017
    F(N) = {
      my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);
      while(n++,
        F1 = t + x*(F0 - subst(F0,t,0))^2 + x*deriv(F0,t);
        if (F1 == F0, break()); F0 = F1;);
      F0;
    };
    seq(N) = my(v=Vec(subst(F(2*N+2),'t,0))); vector((#v+1)\2, n, v[2*n-1]);
    seq(16) \\ Gheorghe Coserea, Apr 01 2017

Formula

The o.g.f. f(z) = z + 2*z^3 + 20*z^5 + 352*z^7 + ... can be defined using a catalytic variable as f(z) = F(z,0), where F(z,x) satisfies the functional-differential equation F(z,x) = x + z*(F(z,x) - F(z,0))^2 + z*(d/dx)F(z,x).
From Gheorghe Coserea, Nov 10 2017: (Start)
0 = x^5*y*y' + y - x^2, where y(x) = x^2*A(-x^6).
0 = 6*y*y'*x^2 + 2*y^2*x - y + 1, where y(x) = A(x).
a(n) = (6*n-2)*a(n-1) + Sum_{k=1..n-2} (6*k+2)*a(k)*a(n-1-k), for n >= 2.
(End)
a(n) = A291843(3*n+1, 2*n), n >= 1. - Danny Rorabaugh, Nov 10 2017

A002005 Number of rooted planar cubic maps with 2n vertices.

Original entry on oeis.org

1, 4, 32, 336, 4096, 54912, 786432, 11824384, 184549376, 2966845440, 48855252992, 820675092480, 14018773254144, 242919827374080, 4261707069259776, 75576645116559360, 1353050213048123392, 24428493151359467520, 444370175232646840320, 8138178004138611179520
Offset: 0

Views

Author

Keywords

Comments

Equivalently, number of rooted planar triangulations with 2n faces.
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Column k=0 of A266240.

Programs

  • Maple
    seq(2*8^n*binomial(n*3/2, n)/((n + 2)*(n + 1)), n = 0..19); # Peter Luschny, Nov 14 2022
  • Mathematica
    Table[2^(2 n + 1) (3 n)!!/((n + 2)! n!!), {n, 0, 20}] (* Vincenzo Librandi, Dec 28 2015 *)
    CoefficientList[Series[(-1 + 96 z + Hypergeometric2F1[-2/3,-1/3,1/2,432z^2]- 96 z Hypergeometric2F1[-1/6,1/6,3/2,432z^2])/(192 z^2), {z, 0, 10}], z] (* Benedict W. J. Irwin, Aug 07 2016 *)
  • PARI
    factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
    a(n) = 2^(2*n+1)*factorial2(3*n)/((n+2)!*factorial2(n));
    vector(20, i, a(i-1))
    \\ test: y = Ser(vector(201, n, a(n-1))); x*(1-432*x^2)*y' == 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1
    \\ Gheorghe Coserea, Jun 13 2017

Formula

a(n) = 2^(2*n+1)*(3*n)!!/((n+2)!*n!!). - Sean A. Irvine, May 19 2013
a(n) ~ sqrt(6/Pi) * n^(-5/2) * (12*sqrt(3))^n. - Gheorghe Coserea, Feb 25 2016
G.f.: (96*x - 1 + 2F1(-2/3, -1/3; 1/2; 432*x^2) - 96*x*2F1(-1/6, 1/6; 3/2; 432*x^2))/(192*x^2). - Benedict W. J. Irwin, Aug 07 2016
From Gheorghe Coserea, Jun 13 2017: (Start)
G.f. y(x) satisfies:
x*(1-432*x^2)*deriv(y,x) = 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1.
0 = 64*x^3*y^3 + x*(1-96*x)*y^2 + (30*x-1)*y - 27*x + 1.
(End).
D-finite with recurrence (n+2)*(n+1)*a(n) -48*(3*n-2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Feb 08 2021
From Karol A. Penson and Katarzyna Gorska (katarzyna.gorska@ifj.edu.pl), Nov 02 2022: (Start)
a(n) = Integral_{x=0..12*sqrt(3)} x^n*W(x), where
W(x) = (T1(x) + T2(x)) / T3(x), and
T1(x) = -x^(2/3) * (108 + sqrt(3) * sqrt(432 - x^2));
T2(x) = 3^(1/6)*(36+sqrt(3)*sqrt(432-x^2))^(2/3) * (-432+x^2+36*sqrt(3)* sqrt(432-x^2)) / sqrt(432-x^2);
T3(x) = (128*3^(5/6)*Pi*x^(1/3)*(36+sqrt(3)*sqrt(432-x^2))^(1/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 12*sqrt(3). (End)
a(n) = 2^(3*n + 1)*binomial(n*3/2, n)/((n + 1)*(n + 2)) = A358367(n) / A000217(n + 1). - Peter Luschny, Nov 14 2022

Extensions

More terms from Sean A. Irvine, May 19 2013

A342981 Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0

Views

Author

Andrew Howroyd, Apr 02 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.
By duality, also the number of loopless rooted planar maps with n edges and k vertices.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   2;
  0, 1,   7,    5;
  0, 1,  16,   37,    14;
  0, 1,  30,  150,   176,    42;
  0, 1,  50,  449,  1104,   794,   132;
  0, 1,  77, 1113,  4795,  7077,  3473,   429;
  0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
  ...
		

Crossrefs

Columns k=3..4 are A005581, A006468.
Diagonals are A000108, A006419, A006420, A006421.
Row sums are A000260.

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n, y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

G.f. A(x,y) satisfies A(x) = G(x*A(x,y)^2, y) where G(x,y) = 1 + x*y + x*B(x,y) and B(x,y) is the g.f. of A082680.
A027836(n+1) = Sum_{k=1..n+1} k*T(n,k).
A002293(n) = Sum_{k=1..n+1} k*T(n,n+2-k).

A146305 Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0

Views

Author

R. J. Mathar, Oct 29 2008

Keywords

Comments

T(n,m) is the number of rooted nonseparable (2-connected) triangulations of the disk with n internal nodes and 3 + m nodes on the external face. The triangulation has 2*n + m + 1 triangles and 3*(n+1) + 2*m edges. - Andrew Howroyd, Feb 21 2021

Examples

			The array starts at row n=0 and column m=0 as
.....1......2.......5......14.......42.......132
.....1......5......21......84......330......1287
.....3.....20.....105.....504.....2310.....10296
....13....100.....595....3192....16170.....78936
....68....570....3675...21252...115500....602316
...399...3542...24150..147420...844074...4628052
..2530..23400..166257.1057224..6301680..35939904
.16965.161820.1186680.7791168.47948670.282285432
		

Crossrefs

Columns m=0..3 are A000260, A197271(n+1), A341853, A341854.
Rows n=0..2 are A000108(n+1), A002054(n+1) and A000917.
Antidiagonal sums are A000260(n+1).
Cf. A169808 (unrooted), A169809 (achiral), A262586 (oriented).

Programs

  • Maple
    A146305 := proc(n,m)
        2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ;
    end proc:
    for d from 0 to 13 do
        for m from 0 to d do
            printf("%d,", A146305(d-m,m)) ;
        end do:
    end do:
  • Mathematica
    T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
  • PARI
    T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021

A341856 Array read by antidiagonals: T(n,k) is the number of rooted strong triangulations of a disk with n interior nodes and 3+k nodes on the boundary.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 6, 13, 0, 1, 10, 36, 68, 0, 1, 15, 80, 228, 399, 0, 1, 21, 155, 610, 1518, 2530, 0, 1, 28, 273, 1410, 4625, 10530, 16965, 0, 1, 36, 448, 2933, 12165, 35322, 75516, 118668, 0, 1, 45, 696, 5628, 28707, 102548, 272800, 556512, 857956
Offset: 0

Views

Author

Andrew Howroyd, Feb 23 2021

Keywords

Comments

A strong triangulation is one in which no interior edge joins two nodes on the boundary. Except for the single triangle which is enumerated by T(0,0) these are the 3-connected triangulations.

Examples

			Array begins:
=======================================================
n\k |    0     1     2      3      4      5       6
----+--------------------------------------------------
  0 |    1     0     0      0      0      0       0 ...
  1 |    1     1     1      1      1      1       1 ...
  2 |    3     6    10     15     21     28      36 ...
  3 |   13    36    80    155    273    448     696 ...
  4 |   68   228   610   1410   2933   5628   10128 ...
  5 |  399  1518  4625  12165  28707  62230  125928 ...
  6 | 2530 10530 35322 102548 267162 638624 1422204 ...
  ...
		

Crossrefs

Columns k=0..3 are A000260, A242136, A341917, A341918.
Antidiagonal sums give A341919.
Cf. A146305 (not necessarily strong triangulations), A210664, A341923, A342053.

Programs

  • PARI
    T(n,m)=if(m==0, 2*(4*n+1)!/((3*n+2)!*(n+1)!), (3*(m+2)!*(m-1)!/(3*n+3*m+3)!)*sum(j=0, min(m,n-1), (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!)))

Formula

T(n,0) = A000260(n) = 2*(4*n+1)!/((3*n+2)!*(n+1)!).
T(n,m) = (3*(m+2)!*(m-1)!/(3*n+3*m+3)!) * Sum_{j=0..min(m,n-1)} (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!) for m > 0.

A006633 Expansion of hypergeom([3/2, 7/4, 2, 9/4], [7/3, 8/3, 3], (256/27)*x).

Original entry on oeis.org

1, 6, 39, 272, 1995, 15180, 118755, 949344, 7721604, 63698830, 531697881, 4482448656, 38111876530, 326439471960, 2814095259675, 24397023508416, 212579132600076, 1860620845932216, 16351267454243260, 144222309948974400, 1276307560533365955, 11329053395044653180
Offset: 0

Views

Author

Keywords

Comments

From generalized Catalan numbers.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    gf := hypergeom([3/2, 7/4, 2, 9/4], [7/3, 8/3, 3], (256/27)*x):
    ser := series(gf, x, 22): seq(coeff(ser, x, n), n = 0..21); # Peter Luschny, Feb 22 2024
  • Mathematica
    A006633[n_] := 2*Binomial[4*n+5, n]/(n+2);
    Array[A006633, 25, 0] (* Paolo Xausa, Feb 25 2024 *)

Formula

O.g.f.: hypergeom_4F3([3/2, 7/4, 2, 9/4], [7/3, 8/3, 3], (256/27)*x). - Simon Plouffe, Master's Thesis, UQAM 1992
a(n) = 2*binomial(4*n + 5, n) / (n+2). - Bruno Berselli, Jan 18 2014
a(n) = (n+1) * A000260(n+1). - F. Chapoton, Feb 22 2024

Extensions

New name by using a formula from the author by Peter Luschny, Feb 24 2024

A344136 Number of linear intervals in the Tamari lattices.

Original entry on oeis.org

1, 3, 12, 49, 198, 792, 3146, 12441, 49062, 193154, 759696, 2986458, 11737820, 46134090, 181350630, 713046345, 2804421510, 11033453970, 43424181240, 170965500030, 673354218420, 2652994345560, 10456457024052, 41227321016394
Offset: 1

Views

Author

F. Chapoton, May 10 2021

Keywords

Comments

The description is conjectural. An interval is linear if it is isomorphic to a total order. The conjecture has been checked up to the term 49062 for n=9.
Apparently odd exactly when n is a power of 2.

Examples

			All 3 intervals in the lattice of cardinality 2 are linear. Among 13 intervals in the pentagon, only one is not linear.
		

Crossrefs

Cf. A000260.

Programs

  • Mathematica
    Array[(3/2) Binomial[2 #, #]*(#^2 - # + 2)/(# + 2)/(# + 1) &, 24] (* Michael De Vlieger, Sep 09 2022 *)
  • Sage
    [3/2*binomial(2*n,n)*(n**2-n+2)/(n+2)/(n+1) for n in range(1,30)]

Formula

a(n) = (3/2)*binomial(2*n, n)*(n^2 - n + 2)/(n + 2)/(n + 1).
a(n) = binomial(2*n, n)/(n + 1) + binomial(2*n-1, n-2) + 2*binomial(2*n-1, n-3).
a(n) ~ (3/2) * 4^n * (1 - 33/(8*n)) / sqrt(n*Pi). - Peter Luschny, May 10 2021
a(n) = a(n-1)*2*(2*n - 1)*(n^2 - n + 2)/((n + 2)*(n^2 - 3*n + 4)) for n > 1. - Chai Wah Wu, May 13 2021

A058860 Number of 2-connected rooted cubic planar maps with n faces.

Original entry on oeis.org

1, 3, 19, 128, 909, 6737, 51683, 407802, 3293497, 27122967, 227095683, 1928656876, 16582719509, 144125955717, 1264625068163, 11190598332502, 99776445196977, 895685185070155, 8090065969366259, 73480719648381240, 670821169614526749
Offset: 4

Views

Author

N. J. A. Sloane, Jan 06 2001; revised Feb 17 2006

Keywords

Examples

			G.f. = x^4 + 3*x^5 + 19*x^6 + 128*x^7 + 909*x^8 + 6737*x^9 + 51683*x^10 + ... - _Michael Somos_, Jul 22 2018
		

Crossrefs

Programs

  • Maple
    eq:=16*x^2*f^3+(8*x^4+24*x^3+72*x^2+8*x)*f^2+(x^6+6*x^5-5*x^4-40*x^3+3*x^2-14*x+1)*f-x^4-3*x^3+13*x^2-x: f:=sum(A[j]*x^j,j=1..35): for n from 1 to 35 do A[n]:=solve(coeff(expand(eq),x^n)=0) od: C2:=x^2*(f-x)*(1-2*x)/(1+x): C2ser:=series(C2,x=0,30): seq(coeff(C2ser,x^n),n=4..26); # Emeric Deutsch, Nov 30 2005
  • PARI
    F = x^2*(z - x)*(1 - 2*x)/(1 + x);
    G = 16*x^4*z^3 + x*(8*x^4 + 24*x^3 + 72*x^2 + 8*x)*z^2 + (x^6 + 6*x^5 -5*x^4 -40*x^3 + 3*x^2 - 14*x + 1)*z - x^3 - 3*x^2 + 13*x - 1;
    Z(N) = {
      my(z0 = 1 + O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1); z0;
    };
    seq(N) = Vec(subst(F, 'z, 'x*Z(N+1)));
    seq(21)
    \\ test: y=Ser(seq(303),'x)*x^4; 0 == 16*y^3 - 8*x*(2*x - 1)*(x^2 + 8*x + 1)*y^2 + x^2*(2*x - 1)^2*(x^4 + 20*x^3 + 50*x^2 - 16*x + 1)*y - x^6*(2*x - 1)^3*(x^2 + 11*x - 1)
    \\ Gheorghe Coserea, Jul 14 2018

Formula

G.f.: x^2*(f-x)*(1-2*x)/(1+x), where f is defined by 16*x^2*f^3 + (8*x^4+24*x^3+72*x^2+8*x)*f^2 + (x^6+6*x^5-5*x^4-40*x^3+3*x^2-14*x+1)*f - x^4-3*x^3+13*x^2-x=0. - Emeric Deutsch, Nov 30 2005
From Gheorghe Coserea, Jul 14 2018: (Start)
G.f. y=A(x) satisfies:
0 = 16*y^3 - 8*x*(2*x - 1)*(x^2 + 8*x + 1)*y^2 + x^2*(2*x - 1)^2*(x^4 + 20*x^3 + 50*x^2 - 16*x + 1)*y - x^6*(2*x - 1)^3*(x^2 + 11*x - 1).
0 = x^3*(2*x - 1)^3*(x - 2)*(4*x - 5)*(2*x^2 + 10*x - 1)*y''' - x^2*(2*x - 1)^2*(96*x^5 + 188*x^4 - 1570*x^3 + 1791*x^2 - 481*x + 35)*y'' + 12*x*(2*x - 1)*(48*x^6 + 104*x^5 - 898*x^4 + 1186*x^3 - 514*x^2 + 95*x - 5)*y' - 6*(256*x^7 + 608*x^6 - 5456*x^5 + 8292*x^4 - 4962*x^3 + 1525*x^2 - 220*x + 10)*y.
(End)

Extensions

More terms from Emeric Deutsch, Nov 30 2005
Previous Showing 11-20 of 48 results. Next