A053979
Triangle T(n,k) giving number of rooted maps regardless of genus with n edges and k nodes (n >= 0, k = 1..n+1).
Original entry on oeis.org
1, 1, 1, 3, 5, 2, 15, 32, 22, 5, 105, 260, 234, 93, 14, 945, 2589, 2750, 1450, 386, 42, 10395, 30669, 36500, 22950, 8178, 1586, 132, 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429, 2027025, 6633360, 9163236, 7123780, 3463634, 1092560, 220708, 26333, 1430
Offset: 0
A(x;t) = t + (t + t^2)*x + (3*t + 5*t^2 + 2*t^3)*x^2 + (15*t + 32*t^2 + 22*t^3 + 5*t^4)*x^3 + ...
Triangle begins :
n\k [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 1, 1;
[2] 3, 5, 2;
[3] 15, 32, 22, 5;
[4] 105, 260, 234, 93, 14;
[5] 945, 2589, 2750, 1450, 386, 42;
[6] 10395, 30669, 36500, 22950, 8178, 1586, 132;
[7] 135135, 422232, 546476, 388136, 166110, 43400, 6476, 429;
[8] ...
- Gheorghe Coserea, Rows n=0..100, flattened
- D. Arques and J.-F. Beraud, Rooted maps on orientable surfaces, Riccati's equation and continued fractions, Discrete Math., 215 (2000), 1-12.
- R. Cori, Indecomposable permutations, hypermaps and labeled Dyck paths, arXiv:0812.0440v1 [math.CO], 2008.
- R. Cori, Indecomposable permutations, hypermaps and labeled Dyck paths, Journal of Combinatorial Theory, Series A 116 (2009) 1326-1343.
- J. Courtiel, K. Yeats, Connected chord diagrams and bridgeless maps, arXiv:1611.04611, eq. (18)
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. I, J. Comb. Theory B 13 (1972), 192-218, eq. (5).
-
G:=t/(1-(t+1)*z/(1-(t+2)*z/(1-(t+3)*z/(1-(t+4)*z/(1-(t+5)*z/(1-(t+6)*z/(1-(t+7)*z/(1-(t+8)*z/(1-(t+9)*z/(1-(t+10)*z/(1-(t+11)*z/(1-(t+12)*z)))))))))))):Gser:=simplify(series(G,z=0,10)):P[0]:=t:for n from 1 to 9 do P[n]:=sort(expand(coeff(Gser,z^n))) od:seq(seq(coeff(P[n],t^k),k=1..n+1),n=0..9); # Emeric Deutsch, Apr 01 2005
-
g = t/Fold[1-((t+#2)*z)/#1&, 1, Range[12, 1, -1]]; T[n_, k_] := SeriesCoefficient[g, {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
-
A053979_ser(N,t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++, y1 = (1 + t*x*y0^2 + 2*x^2*y0')/(1-x);
if (y1 == y0, break()); y0 = y1); y0;
};
concat(apply(p->Vecrev(p), Vec(A053979_ser(10))))
\\ test: y=A053979_ser(50); 2*x^2*deriv(y,x) == -t*x*y^2 + (1-x)*y - 1
\\ Gheorghe Coserea, May 31 2017
-
A053979_seq(N) = {
my(t='t, R=vector(N), S=vector(N)); R[1]=S[1]=t;
for (n=2, N,
R[n] = t*subst(S[n-1],t,t+1);
S[n] = R[n] + sum(k=1, n-1, R[k]*S[n-k]));
apply(p->Vecrev(p), R/t);
};
concat(A053979_seq(10))
\\ test: y=t*Ser(apply(p->Polrev(p,'t), A053979_seq(50)),'x); y == t + x*y^2 + x*y + 2*x^2*deriv(y,x) && y == t + x*y*subst(y,t,t+1) \\ Riccati eq && Dyck eq
\\ Gheorghe Coserea, May 31 2017
A049235
Sum of balls on the lawn for the s=3 tennis ball problem.
Original entry on oeis.org
0, 6, 75, 708, 5991, 47868, 369315, 2783448, 20631126, 151026498, 1094965524, 7878119760, 56330252412, 400703095284, 2838060684483, 20027058300144, 140874026880204, 988194254587242, 6915098239841331, 48285969880645908, 336521149274459979
Offset: 0
The four sequences T_n, Y_n, A_n, S_n for s=2 are
A000108,
A000302,
A000346,
A031970, for s=3,
A001764,
A006256,
A075045, this sequence, for s=4,
A002293,
A078995,
A078999,
A078516.
-
T := (n,s)->binomial(s*n,n)/((s-1)*n+1); Y := (n,s)->add(binomial(s*k,k)*binomial(s*(n-k),n-k),k=0..n); A := (n,s)->Y(n+1,s)/2-(1/2)*((2*s-3)*n+2*s-2)*T(n+1,s); S := (n,s)->(1/2)*(s*n^2+(3*s-1)*n+2*s)*T(n+1,s)-Y(n+1,s)/2;
F := 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3); G := t*(t-1)^2; Ginv := RootOf(G-x,t);
ogf := series(eval(F,t=Ginv), x=0, 20);
-
a[n_] := a[n] = Switch[n, 0, 0, 1, 6, 2, 75, 3, 708, 4, 5991, _, -((1/(8*(2*(n-5)^2 + 25*(n-5) + 78)))*(-(531441*(n-5)^2* a[n-5]) + 196830*(n-5)^2*a[n-4] - 24057*(n-5)^2*a[n-3] + 1809*(n-5)^2*a[n-2] - 232*(n-5)^2*a[n-1] - 1594323*(n-5)*a[n-5] + 747954*(n-5)*a[n-4] - 120285*(n-5)*a[n-3] + 16362*(n-5)*a[n-2] - 2798*(n-5)*a[n-1] - 1180980*a[n-5] + 656100*a[n-4] - 131220*a[n-3] + 36825*a[n-2] - 8352*a[n-1]))];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 02 2023, after Robert Israel *)
A068551
a(n) = 4^n - binomial(2*n,n).
Original entry on oeis.org
0, 2, 10, 44, 186, 772, 3172, 12952, 52666, 213524, 863820, 3488872, 14073060, 56708264, 228318856, 918624304, 3693886906, 14846262964, 59644341436, 239532643144, 961665098956, 3859788636664, 15488087080696, 62135313450064
Offset: 0
- H. W. Gould, Combinatorial Identities, Morgantown, WV, 1972. p. 32.
- Hojoo Lee, Posting to Number Theory List, Feb 18 2002.
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- Vincenzo Librandi, Table of n, a(n) for n = 0..175
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO], 2023.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Marko R. Riedel, Average depth of a leaf in a binary tree, Math.Stackexchange.com.
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36(4) (2006), 364-387.
-
[4^n - Binomial(2*n,n): n in [0..35]]; // Vincenzo Librandi, Jun 07 2011
-
A068551:=n->4^n - binomial(2*n,n): seq(A068551(n), n=0..30); # Wesley Ivan Hurt, Mar 22 2014
-
nn=20;c=(1-(1-4x)^(1/2))/(2x); D[CoefficientList[ Series[ 1/(1-2y x c), {x,0,nn}], x], y]/.y->1 (* Geoffrey Critzer, Jan 30 2012 *)
-
a(n)=if(n<0,0,4^n-binomial(2*n,n))
-
x='x+O('x^100); concat(0, Vec(1/(1-4*x)-1/sqrt(1-4*x))) \\ Altug Alkan, Dec 29 2015
A138158
Triangle read by rows: T(n,k) is the number of ordered trees with n edges and path length k; 0 <= k <= n(n+1)/2.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 3, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1
Offset: 0
T(2,2)=1 because /\ is the only ordered tree with 2 edges and path length 2.
Triangle starts
1,
0, 1,
0, 0, 1, 1,
0, 0, 0, 1, 2, 1, 1,
0, 0, 0, 0, 1, 3, 3, 3, 2, 1, 1,
0, 0, 0, 0, 0, 1, 4, 6, 7, 7, 5, 5, 3, 2, 1, 1,
0, 0, 0, 0, 0, 0, 1, 5, 10, 14, 17, 16, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1,
0, 0, 0, 0, 0, 0, 0, 1, 6, 15, 25, 35, 40, 43, 44, 40, 37, 32, 28, 22, 18, 13, 11, 7, 5, 3, 2, 1, 1,
... [_Joerg Arndt_, Feb 21 2014]
- Seiichi Manyama, Rows n = 0..38, flattened
- Ron M. Adin and Yuval Roichman, On maximal chains in the non-crossing partition lattice, arXiv:1201.4669 [math.CO], 2012-2013.
- Luca Ferrari, Unimodality and Dyck paths, arXiv:1207.7295 [math.CO], 2012.
- FindStat - Combinatorial Statistic Finder, The bounce statistic of a Dyck path, The dinv statistic of a Dyck path, The area of a Dyck path.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 185.
-
P[0]:=1: for n to 7 do P[n]:=sort(expand(t*(sum(P[j]*P[n-j-1]*t^(n-j-1),j= 0.. n-1)))) end do: for n from 0 to 7 do seq(coeff(P[n], t, j),j=0..(1/2)*n*(n+1)) end do; # yields sequence in triangular form
-
nmax = 7;
P[0] = 1; P[n_] := P[n] = t*Sum[P[j]*P[n-j-1]*t^(n-j-1), {j, 0, n-1}];
row[n_] := row[n] = CoefficientList[P[n] + O[t]^(n(n+1)/2 + 1), t];
T[n_, k_] := row[n][[k+1]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n(n+1)/2}] // Flatten (* Jean-François Alcover, Jul 11 2018, from Maple *)
nn = 10; f[z_, u_] := Sum[Sum[a[n, k] u^k z^n, {k, 0, Binomial[n, 2]}], {n, 1, nn}]; sol = SolveAlways[Series[0 == f[z, u] - z/(1 - f[u z, u]) , {z, 0, nn}], {z, u}];Level[Table[Table[a[n, k], {k, 0, Binomial[n, 2]}], {n, 1, nn}] /.
sol, {2}] // Grid (* Geoffrey Critzer, Jul 14 2020 *)
A380237
Number of sensed planar maps with n vertices and 2 faces.
Original entry on oeis.org
1, 2, 5, 14, 42, 140, 473, 1670, 5969, 21679, 79419, 293496, 1091006, 4078213, 15312150, 57721030, 218333832, 828408842, 3151769615, 12020870753, 45949957412, 176001205559, 675384194565, 2596119292840, 9994894356158, 38535398284100, 148772774499015, 575079507042663
Offset: 1
-
a(n) = {(binomial(n - 1, (n - 1)\2) + sumdiv(n, d, eulerphi(n/d)*(2^(2*d-1) - binomial(2*d-1, d)))/n)/2}
-
seq(n)={my(c(d)=(1-sqrt(1-4*x^d + O(x*x^(n+d))))/(2*x^d)); Vec(1/(1 - x*c(2)) - 1 - sum(k=1, n, log(2 - c(k))*eulerphi(k)/k))/2}
A018218
Sum(C(j)*(n-j)*4^(n-j-1),j=0..n-1), C = Catalan numbers.
Original entry on oeis.org
0, 1, 9, 58, 325, 1686, 8330, 39796, 185517, 848830, 3827230, 17053356, 75249954, 329353948, 1431575220, 6185613032, 26589395581, 113780713806, 484945025942, 2059546425340, 8719018250838, 36805967321684
Offset: 0
-
[(n+1)*(4^n-Binomial(2*n+1, n))/2: n in [0..25]]; // Vincenzo Librandi, Jun 09 2011
-
Table[Sum[CatalanNumber[j](n-j)4^(n-j-1),{j,-0,n-1}],{n,0,30}] (* Harvey P. Dale, Nov 15 2020 *)
A033504
a(n)/4^n is the expected number of tosses of a coin required to obtain n+1 heads or n+1 tails.
Original entry on oeis.org
1, 10, 66, 372, 1930, 9516, 45332, 210664, 960858, 4319100, 19188796, 84438360, 368603716, 1598231992, 6889682280, 29551095248, 126193235194, 536799072924, 2275560109868, 9616650989560, 40527780684972, 170368957887656, 714556104675736, 2990728476330672
Offset: 0
Michael Ulm (ulm(AT)mathematik.uni-ulm.de)
From _Jeremy Tan_, Mar 13 2018: (Start)
For n=1 the sequences of flips ending at two heads or two tails are:
HH, TT (probability 1/4 each)
HTH, HTT, THH, THT (1/8 each)
The expected number of flips is 2*2*1/4 + 3*4*1/8 = 10/4 = a(1)/4^1. (End)
- M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
-
[(n+1)*(2^(2*n+1)-Binomial(2*n+1,n+1)): n in [0..25]]; // Vincenzo Librandi, Jun 09 2011
-
a[n_]:=(n+1)*(2^(2*n+1)-Binomial[2*n+1,n+1])
a /@ Range[0,50] (* Julien Kluge, Jul 21 2016 *)
A258431
Sum over all peaks of Dyck paths of semilength n of the arithmetic mean of the x and y coordinates.
Original entry on oeis.org
0, 1, 5, 23, 102, 443, 1898, 8054, 33932, 142163, 592962, 2464226, 10209620, 42190558, 173962532, 715908428, 2941192472, 12065310083, 49428043442, 202249741418, 826671597572, 3375609654698, 13771567556012, 56138319705908, 228669994187432, 930803778591278
Offset: 0
-
A258431:= func< n | n eq 0 select 0 else (4^(n-1) + Factorial(2*n-1)/Factorial(n-1)^2)/2 >;
[A258431(n): n in [0..40]]; // G. C. Greubel, Mar 18 2023
-
a:= proc(n) option remember; `if`(n<3, [0, 1, 5][n+1],
((8*n-10)*a(n-1)-(16*n-24)*a(n-2))/(n-1))
end:
seq(a(n), n=0..30);
-
a[0]=0; a[1]=1; a[2]=5;
a[n_]:= a[n]= (2*(4*n-5)*a[n-1] - 8*(2*n-3)*a[n-2])/(n-1);
Table[a[n], {n,0,30}] (* Jean-François Alcover, May 31 2018, from Maple *)
-
def A258431(n): return 0 if (n==0) else (4^(n-1) + factorial(2*n-1)/factorial(n-1)^2)/2
[A258431(n) for n in range(41)] # G. C. Greubel, Mar 18 2023
A270406
Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus g.
Original entry on oeis.org
1, 5, 22, 10, 93, 167, 386, 1720, 483, 1586, 14065, 15018, 6476, 100156, 258972, 56628, 26333, 649950, 3288327, 2668750, 106762, 3944928, 34374186, 66449432, 12317877, 431910, 22764165, 313530000, 1171704435, 792534015, 1744436, 126264820, 2583699888, 16476937840, 26225260226, 4304016990
Offset: 1
Triangle starts:
n\g [0] [1] [2] [3] [4]
[1] 1;
[2] 5;
[3] 22, 10;
[4] 93, 167;
[5] 386, 1720, 483;
[6] 1586, 14065, 15018;
[7] 6476, 100156, 258972, 56628;
[8] 26333, 649950, 3288327, 2668750;
[9] 106762, 3944928, 34374186, 66449432, 12317877;
[10] 431910, 22764165, 313530000, 1171704435, 792534015;
[11] ...
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Table[Q[n, 2, g], {g, 0, (n+1)/2-1}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 10; F = 2; gmax(n) = n\2;
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x + O('x^(F+1)));
concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))))
A346702
The a(n)-th composition in standard order is the odd bisection of the n-th composition in standard order.
Original entry on oeis.org
0, 1, 2, 1, 4, 2, 1, 3, 8, 4, 2, 5, 1, 3, 6, 3, 16, 8, 4, 9, 2, 5, 10, 5, 1, 3, 6, 3, 12, 6, 3, 7, 32, 16, 8, 17, 4, 9, 18, 9, 2, 5, 10, 5, 20, 10, 5, 11, 1, 3, 6, 3, 12, 6, 3, 7, 24, 12, 6, 13, 3, 7, 14, 7, 64, 32, 16, 33, 8, 17, 34, 17, 4, 9, 18, 9, 36, 18
Offset: 0
Composition number 741 in standard order is (2,1,1,3,2,1), with odd bisection (2,1,2), which is composition number 22 in standard order, hence a(741) = 22.
Length of the a(n)-th standard composition is
A000120(n)/2 rounded up.
Positions of 2's (and zero) are
A083575.
Sum of the a(n)-th standard composition is
A209281(n+1).
Positions of first appearances are
A290259.
The version for prime indices is
A346703.
A029837 gives length of binary expansion.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A345197 counts compositions by sum, length, and alternating sum.
-
Table[Total[2^Accumulate[Reverse[First/@Partition[Append[ Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse,0],2]]]]/2,{n,0,100}]
Comments