cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 180 results. Next

A063260 Sextinomial (also called hexanomial) coefficient array.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Comments

The sequence of step width of this staircase array is [1,5,5,...], hence the degree sequence for the row polynomials is [0,5,10,15,...]=A008587.
The column sequences (without leading zeros) are for k=0..5 those of the lower triangular array A007318 (Pascal) and for k=6..9: A062989, A063262-4. Row sums give A000400 (powers of 6). Central coefficients give A063419; see also A018901.
This can be used to calculate the number of occurrences of a given roll of n six-sided dice, where k is the index: k=0 being the lowest possible roll (i.e., n) and n*6 being the highest roll.

Examples

			The irregular table T(n, k) begins:
n\k 0 1 2  3  4  5  6  7  8  9 10 11 12 13 14 15
1:  1
2:  1 1 1  1  1  1
3:  1 2 3  4  5  6  5  4  3  2  1
4:  1 3 6 10 15 21 25 27 27 25 21 15 10  6  3  1
...reformatted - _Wolfdieter Lang_, Oct 31 2015
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.

Crossrefs

The q-nomial arrays for q=2..5 are: A007318 (Pascal), A027907, A008287, A035343 and for q=7: A063265, A171890, A213652, A213651.
Columns for k=0..9 (with some shifts) are: A000012, A000027, A000217, A000292, A000332, A000389, A062989, A063262, A063263, A063264.

Programs

  • Maple
    #Define the r-nomial coefficients for r = 1, 2, 3, ...
    rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)):
    #Display the 6-nomials as a table
    r := 6:  rows := 10:
    for n from 0 to rows do
    seq(rnomial(r,n,k), k = 0..(r-1)*n)
    end do;
    # Peter Bala, Sep 07 2013
  • Mathematica
    Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)
  • PARI
    concat(vector(5,k,Vec(sum(j=0,5,x^j)^k)))  \\ M. F. Hasler, Jun 17 2012

Formula

G.f. for row n: (Sum_{j=0..5} x^j)^n.
G.f. for column k: (x^(ceiling(k/5)))*N6(k, x)/(1-x)^(k+1) with the row polynomials from the staircase array A063261(k, m) and with N6(6,x) = 5 - 10*x + 10*x^2 - 5*x^3 + x^4.
T(n, k) = 0 if n=-1 or k<0 or k >= 5*n + 1; T(0, 0)=1; T(n, k) = Sum_{j=0..5} T(n-1, k-j) else.
T(n, k) = Sum_{i = 0..floor(k/6)} (-1)^i*binomial(n,i)*binomial(n+k-1-6*i,n-1) for n >= 0 and 0 <= k <= 5*n. - Peter Bala, Sep 07 2013
T(n, k) = Sum_{i = max(0,ceiling((k-2*n)/3)).. min(n,k/3)} binomial(n,i)*trinomial(n,k-3*i) for n >= 0 and 0 <= k <= 5*n. - Matthew Monaghan, Sep 30 2015

Extensions

More terms and corrected recurrence from Nicholas M. Makin (NickDMax(AT)yahoo.com), Sep 13 2002

A056273 Word structures of length n using a 6-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4111, 20648, 109299, 601492, 3403127, 19628064, 114700315, 676207628, 4010090463, 23874362200, 142508723651, 852124263684, 5101098232519, 30560194493456, 183176170057707, 1098318779272060, 6586964947803695, 39510014478620232, 237013033135668883
Offset: 0

Views

Author

Keywords

Comments

Set partitions of the n-set into at most 6 parts; also restricted growth strings (RGS) with six letters s(1),s(2),...,s(6) where the first occurrence of s(j) precedes the first occurrence of s(k) for all j < k. - Joerg Arndt, Jul 06 2011
Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Density of regular language L over {1,2,3,4,5,6}^* (i.e., number of strings of length n in L) described by regular expression with c=6: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*) where Sum stands for union and Product for concatenation. - Nelma Moreira, Oct 10 2004
Word structures of length n using an N-ary alphabet are generated by taking M^n* the vector [(N 1's),0,0,0,...], leftmost column term = a(n+1). In the case of A056273, the vector = [1,1,1,1,1,1,0,0,0,...]. As the vector approaches all 1's, the leftmost column terms approach A000110, the Bell sequence. - Gary W. Adamson, Jun 23 2011
From Gary W. Adamson, Jul 06 2011: (Start)
Construct an infinite array of sequences representing word structures of length n using an N-ary alphabet as follows:
.
1, 1, 1, 1, 1, 1, 1, 1, ...; N=1, A000012
1, 2, 4, 8, 16, 32, 64, 128, ...; N=2, A000079
1, 2, 5, 14, 41, 122, 365, 1094, ...; N=3, A007051
1, 2, 5, 15, 51, 187, 715, 2795, ...; N=4, A007581
1, 2, 5, 15, 52, 202, 855, 3845, ...; N=5, A056272
1, 2, 5, 15, 52, 203, 876, 4111, ...; N=6, A056273
...
The sequences tend to A000110. Finite differences of columns reinterpreted as rows generate A008277 as a triangle: (1; 1,1; 1,3,1; 1,7,6,1; ...). (End)

Examples

			For a(4) = 15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

A row of the array in A278984 and A320955.
Cf. A056325 (unoriented), A320936 (chiral), A305752 (chiral).

Programs

  • GAP
    List([0..25],n->Sum([0..6],k->Stirling2(n,k))); # Muniru A Asiru, Oct 30 2018
    
  • Magma
    [(&+[StirlingSecond(n, i): i in [0..6]]): n in [0..30]]; // Vincenzo Librandi, Nov 07 2018
  • Maple
    egf := (265+264*exp(x)+135*exp(x*2)+40*exp(x*3)+15*exp(x*4)+exp(6*x))/6!:
    ser := series(egf,x,30): seq(n!*coeff(ser,x,n),n=0..22); # Peter Luschny, Nov 06 2018
  • Mathematica
    Table[Sum[StirlingS2[n,k],{k,0,6}],{n,0,30}] (* or *) LinearRecurrence[ {16,-95,260,-324,144},{1,1,2,5,15,52},30] (* Harvey P. Dale, Jun 05 2015 *)
  • PARI
    Vec((1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Nov 07 2018
    

Formula

a(n) = Sum_{k=0..6} Stirling2(n, k).
For n > 0, a(n) = (1/6!)*(6^n + 15*4^n + 40*3^n + 135*2^n + 264). - Vladeta Jovovic, Aug 17 2003
From Nelma Moreira, Oct 10 2004: (Start)
For n > 0 and c = 6:
a(n) = (c^n)/c! + Sum_{k=0..c-2} ((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))).
a(n) = Sum_{k=1..c} (g(k, c)*k^n) where g(1, 1) = 1; g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! if c>1. For 2 <= k <= c: g(k, c) = g(k-1, c-1)/k if c>1. (End)
G.f.: (1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2x)*(1-3x)*(1-4x)*(1-6x)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009 [corrected by R. J. Mathar, Sep 16 2009] [Adapted to offset 0 by Robert A. Russell, Nov 06 2018]
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=6. - Robert A. Russell, Apr 25 2018
E.g.f.: (265 + 264*exp(x) + 135*exp(x*2) + 40*exp(x*3) + 15*exp(x*4) + exp(6*x))/6!. - Peter Luschny, Nov 06 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 06 2018

A072978 Numbers of the form m*2^Omega(m), where m>1 is odd and Omega(m)=A001222(m), the number of prime factors of m.

Original entry on oeis.org

1, 6, 10, 14, 22, 26, 34, 36, 38, 46, 58, 60, 62, 74, 82, 84, 86, 94, 100, 106, 118, 122, 132, 134, 140, 142, 146, 156, 158, 166, 178, 194, 196, 202, 204, 206, 214, 216, 218, 220, 226, 228, 254, 260, 262, 274, 276, 278, 298, 302, 308, 314, 326, 334, 340, 346
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2002

Keywords

Comments

(number of odd prime factors) = (number of even prime factors).
A000400, A011557, A001023, A001024, A009965, A009966 and A009975 are subsequences. - Reinhard Zumkeller, Jan 06 2008
Subsequence of A028260. - Reinhard Zumkeller, Sep 20 2008

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 500, 2], First[#] == Total[Rest[#]] & [FactorInteger[#][[All, 2]]] &]] (* Paolo Xausa, Feb 19 2025 *)
  • PARI
    isok(k) = {my(v = valuation(k, 2)); bigomega(k >> v) == v;} \\ Amiram Eldar, May 15 2025
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A072978(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def h(x,n): return sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,n))
        def f(x): return int(n+x-primepi(x>>1)-sum(h(x>>m,m) for m in range(2,x.bit_length()+1))) if x>1 else 1
        return bisection(f,n,n) # Chai Wah Wu, Apr 10 2025
    

Formula

A007814(a(n)) = A087436(a(n)). - Reinhard Zumkeller, Jan 06 2008

A066002 Sum of digits of 6^n.

Original entry on oeis.org

1, 6, 9, 9, 18, 27, 27, 36, 36, 36, 36, 45, 45, 36, 54, 63, 54, 72, 72, 63, 72, 81, 63, 72, 90, 90, 99, 99, 90, 135, 117, 99, 126, 126, 135, 135, 126, 135, 135, 162, 171, 126, 153, 153, 153, 162, 180, 162, 153, 162, 171, 216, 171, 216, 171, 162
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2001

Keywords

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), this sequence (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
Cf. A007953.

Programs

  • Mathematica
    Table[Total[IntegerDigits[6^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
  • PARI
    a(n) = sumdigits(6^n); \\ Michel Marcus, Nov 01 2013

Formula

a(n) = A007953(A000400(n)). - Michel Marcus, Nov 01 2013 [corrected by Georg Fischer, Dec 28 2020]

A081136 6th binomial transform of (0,0,1,0,0,0, ...).

Original entry on oeis.org

0, 0, 1, 18, 216, 2160, 19440, 163296, 1306368, 10077696, 75582720, 554273280, 3990767616, 28298170368, 198087192576, 1371372871680, 9403699691520, 63945157902336, 431629815840768, 2894458765049856, 19296391766999040
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, three-fold convolution of A000400 (powers of 6).
Number of n-permutations of 7 objects: p, u, v, w, z, x, y with repetition allowed, containing exactly two u's. - Zerinvary Lajos, May 23 2008

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), this sequence (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [6^n*Binomial(n+2,2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
  • Maple
    seq(binomial(n, 2)*6^(n-2), n=0..19); # Zerinvary Lajos, May 23 2008
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[x^2/2! Exp[6x],{x,0,nn}],x] (* Geoffrey Critzer, Oct 03 2013 *)
    LinearRecurrence[{18,-108,216},{0,0,1},30] (* Harvey P. Dale, Apr 20 2022 *)
  • Sage
    [6^(n-2)*binomial(n,2) for n in range(0, 21)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 18*a(n-1) -108*a(n-2) +216*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 6^(n-2)*C(n, 2).
G.f.: x^2/(1-6*x)^3.
E.g.f.: exp(6*x) * x^2/2. - Geoffrey Critzer, Oct 03 2013
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=2} 1/a(n) = 12 - 60*log(6/5).
Sum_{n>=2} (-1)^n/a(n) = 84*log(7/6) - 12. (End)

A078741 Triangle of generalized Stirling numbers S_{3,3}(n,k) read by rows (n>=1, 3<=k<=3n).

Original entry on oeis.org

1, 6, 18, 9, 1, 36, 540, 1242, 882, 243, 27, 1, 216, 13608, 94284, 186876, 149580, 56808, 11025, 1107, 54, 1, 1296, 330480, 6148872, 28245672, 49658508, 41392620, 18428400, 4691412, 706833, 63375, 3285, 90, 1, 7776, 7954848, 380841264, 3762380016, 13062960720
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Comments

The sequence of row lengths for this array is [1,4,7,10,..]= A016777(n-1), n>=1.
The g.f. for the k-th column, (with leading zeros and k>=3) is G(k,x)= x^ceiling(k/3)*P(k,x)/product(1-fallfac(p,3)*x,p=3..k), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := sum(A089517(k,m)*x^m,m=0..kmax(k)), k>=3, with kmax(k) := A004523(k-3)= floor(2*(k-3)/3)= [0,0,1,2,2,3,4,4,5,...]. For the recurrence of the G(k,x) see A089517. Wolfdieter Lang, Dec 01 2003
For the computation of the k-th column sequence see A090219.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_3 (the disjoint union of n copies of the complete graph K_3). An example is given below. - Peter Bala, Aug 15 2013

Examples

			From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k |   3     4     5      6      7     8     9   10  11  12
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
  1 |   1
  2 |   6    18     9      1
  3 |  36   540  1242    882    243    27     1
  4 | 216 13608 94284 186876 149580 56808 11025 1107  54   1
...
Graph coloring interpretation of T(2,3) = 6:
The graph 2K_3 is 2 copies of K_3, the complete graph on 3 vertices:
    o b      o e
   / \      / \
  o---o    o---o
  a   c    d   f
The six 3-colorings of 2K_3 are ad|be|cf, ad|bf|ce, ae|bd|cf, ae|bf|cd, af|bd|ce, and af|be|cd. (End)
		

Crossrefs

Row sums give A069223. Cf. A078739.
The column sequences (without leading zeros) are A000400 (powers of 6), 18*A089507, 9*A089518, A089519, etc.
A089504, A069223 (row sums), A090212 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := (-1)^k*Sum[(-1)^p*((p-2)*(p-1)*p)^n*Binomial[k, p], {p, 3, k}]/k!; Table[a[n, k], {n, 1, 6}, {k, 3, 3*n}] // Flatten (* Jean-François Alcover, Dec 04 2013 *)

Formula

a(n, k) = (((-1)^k)/k!)*Sum_{p = 3..k} (-1)^p* binomial(k, p)*fallfac(p, 3)^n, with fallfac(p, 3) := A008279(p, 3) = p*(p-1)*(p-2); 3 <= k <= 3*n, n >= 1, else 0. From eq.(19) with r = 3 of the Blasiak et al. reference.
E^n = Sum_{k = 3..3*n} a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^3d^3/dx^3.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k >= 0} (k*(k-1)*(k-2))^n*x^k/k!. - Peter Bala, Aug 15 2013

A275062 Number A(n,k) of permutations p of [n] such that p(i)-i is a multiple of k for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 24, 1, 1, 1, 1, 1, 4, 120, 1, 1, 1, 1, 1, 2, 12, 720, 1, 1, 1, 1, 1, 1, 4, 36, 5040, 1, 1, 1, 1, 1, 1, 2, 8, 144, 40320, 1, 1, 1, 1, 1, 1, 1, 4, 24, 576, 362880, 1, 1, 1, 1, 1, 1, 1, 2, 8, 72, 2880, 3628800, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			A(5,0) = A(5,5) = 1: 12345.
A(5,1) = 5! = 120: all permutations of {1,2,3,4,5}.
A(5,2) = 12: 12345, 12543, 14325, 14523, 32145, 32541, 34125, 34521, 52143, 52341, 54123, 54321.
A(5,3) = 4: 12345, 15342, 42315, 45312.
A(5,4) = 2: 12345, 52341.
A(7,4) = 8: 1234567, 1274563, 1634527, 1674523, 5234167, 5274163, 5634127, 5674123.
Square array A(n,k) begins:
  1,       1,     1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,       1,     1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,       2,     1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,       6,     2,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,      24,     4,   2,   1,  1,  1, 1, 1, 1, 1, ...
  1,     120,    12,   4,   2,  1,  1, 1, 1, 1, 1, ...
  1,     720,    36,   8,   4,  2,  1, 1, 1, 1, 1, ...
  1,    5040,   144,  24,   8,  4,  2, 1, 1, 1, 1, ...
  1,   40320,   576,  72,  16,  8,  4, 2, 1, 1, 1, ...
  1,  362880,  2880, 216,  48, 16,  8, 4, 2, 1, 1, ...
  1, 3628800, 14400, 864, 144, 32, 16, 8, 4, 2, 1, ...
		

Crossrefs

A(k*n,n) for k=1..4 give: A000012, A000079, A000400, A009968.
Cf. A225816.

Programs

  • Maple
    A:= (n, k)-> mul(floor((n+i)/k)!, i=0..k-1):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := Product[Floor[(n+i)/k]!, {i, 0, k-1}];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 26 2019, from Maple *)

Formula

A(n,k) = Product_{i=0..k-1} floor((n+i)/k)!.
A(k*n,k) = (n!)^k = A225816(k,n).
For k > 0, A(n, k) ~ (2*Pi*n)^((k - 1)/2) * n! / k^(n + k/2). - Vaclav Kotesovec, Oct 02 2018

A024062 a(n) = 6^n - 1.

Original entry on oeis.org

0, 5, 35, 215, 1295, 7775, 46655, 279935, 1679615, 10077695, 60466175, 362797055, 2176782335, 13060694015, 78364164095, 470184984575, 2821109907455, 16926659444735, 101559956668415, 609359740010495, 3656158440062975, 21936950640377855, 131621703842267135
Offset: 0

Views

Author

Keywords

Comments

In base 6 these are 0, 5, 55, 555, ... - David Rabahy, Dec 12 2016

Crossrefs

Programs

Formula

G.f.: 1/(1 - 6*x) - 1/(1 - x). - Mohammad K. Azarian, Jan 14 2009
E.g.f.: exp(6*x) - exp(x). - Mohammad K. Azarian, Jan 14 2009
a(n+1) = 6*a(n) + 5, with a(0) = 0. - Reinhard Zumkeller, Nov 22 2009
a(n) = Sum_{i = 1..n} 5^i*binomial(n, n - i) for n > 0, a(0) = 0. - Bruno Berselli, Nov 11 2015
Sum_{n>=1} 1/a(n) = A248723. - Amiram Eldar, Nov 13 2020

A324297 Positive integers k that are the product of two integers ending with 6.

Original entry on oeis.org

36, 96, 156, 216, 256, 276, 336, 396, 416, 456, 516, 576, 636, 676, 696, 736, 756, 816, 876, 896, 936, 996, 1056, 1116, 1176, 1196, 1216, 1236, 1296, 1356, 1376, 1416, 1456, 1476, 1536, 1596, 1656, 1696, 1716, 1776, 1836, 1856, 1896, 1956, 1976, 2016, 2076, 2116
Offset: 1

Views

Author

Stefano Spezia, Mar 16 2019

Keywords

Comments

All the terms end with 6 (A017341).

Examples

			36 = 6*6, 96 = 6*16, 216 = 6*36, 256 = 16*16, 276 = 6*46, ...
		

Crossrefs

Cf. A000400, A017341 (supersequence), A324298, A053742 (ending with 5).

Programs

  • Mathematica
    a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[a],AppendTo[a,10*n+6]]]]; a
  • PARI
    isok6(n) = (n%10) == 6; \\ A017341
    isok(n) = {if (isok6(n), my(d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1)));); return (0);} \\ Michel Marcus, Apr 14 2019
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2117)) # Michael S. Branicky, Aug 18 2021

Formula

Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - Stefano Spezia, Aug 18 2021

A222340 T(n,k) = number of n X k 0..6 arrays with no entry increasing mod 7 by 6 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 6, 6, 36, 186, 36, 216, 5766, 5766, 216, 1296, 178746, 923526, 178746, 1296, 7776, 5541126, 147918906, 147918906, 5541126, 7776, 46656, 171774906, 23691810366, 122408393436, 23691810366, 171774906, 46656, 279936, 5325022086
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2013

Keywords

Comments

1/7 the number of 7-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.......1.............6...................36........................216
.......6...........186.................5766.....................178746
......36..........5766...............923526..................147918906
.....216........178746............147918906...............122408393436
....1296.......5541126..........23691810366............101297497221786
....7776.....171774906........3794659477146..........83827445649884946
...46656....5325022086......607781352505806.......69370328359709445996
..279936..165075684666....97346856728146986....57406526220963704077986
.1679616.5117346224646.15591808593304758846.47506035082750189614687546
...
Some solutions for n=3, k=4:
..0..0..2..0....0..2..2..0....0..0..0..0....0..2..0..0....0..2..0..0
..0..5..3..0....0..2..5..0....0..1..5..0....0..5..0..0....0..0..5..0
..3..1..4..5....4..4..2..3....3..6..1..4....2..2..2..2....4..1..3..4
		

Crossrefs

Columns 1-6 are A000400(n-1), A222335, A222336, A222337, A222338, A222339.
Main diagonal is A068257.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A198723 (unlabeled 7 colorings), A222462 (8 colorings).

Formula

T(n, k) = 6 * (120*A198723(n,k) - 60*A198906(n,k) - 40*A198715(n,k) - 15*A207997(n,k) - 4) for n*k > 1. - Andrew Howroyd, Jun 27 2017
Previous Showing 21-30 of 180 results. Next