cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 189 results. Next

A067687 Expansion of 1/( 1 - x / Product_{n>=1} (1-x^n) ).

Original entry on oeis.org

1, 1, 2, 5, 12, 29, 69, 165, 393, 937, 2233, 5322, 12683, 30227, 72037, 171680, 409151, 975097, 2323870, 5538294, 13198973, 31456058, 74966710, 178662171, 425791279, 1014754341, 2418382956, 5763538903, 13735781840, 32735391558, 78015643589
Offset: 0

Views

Author

Alford Arnold, Feb 05 2002

Keywords

Comments

Previous name was: Invert transform of right-shifted partition function (A000041).
Sums of the antidiagonals of the array formed by sequences A000007, A000041, A000712, A000716, ... or its transpose A000012, A000027, A000096, A006503, A006504, ....
Row sums of triangle A143866 = (1, 2, 5, 12, 29, 69, 165, ...) and right border of A143866 = (1, 1, 2, 5, 12, ...). - Gary W. Adamson, Sep 04 2008
Starting with offset 1 = A137682 / A000041; i.e. (1, 3, 7, 17, 40, 96, ...) / (1, 2, 3, 5, 7, 11, ...). - Gary W. Adamson, May 01 2009
From L. Edson Jeffery, Mar 16 2011: (Start)
Another approach is the following. Let T be the infinite lower triangular matrix with columns C_k (k=0,1,2,...) such that C_0=A000041 and, for k > 0, such that C_k is the sequence giving the number of partitions of n into parts of k+1 kinds (successive self-convolutions of A000041 yielding A000712, A000716, ...) and shifted down by k rows. Then T begins (ignoring trailing zero entries in the rows)
(1, 0, ... )
(1, 1, 0, ... )
(2, 2, 1, 0, ... )
(3, 5, 3, 1, 0, ... )
(5, 10, 9, 4, 1, 0, ...)
etc., and a(n) is the sum of entries in row n of T. (End)

Examples

			The array begins:
  1,  1,  1,   1,   1,  1,  1, 1, ...
  0,  1,  2,   3,   4,  5,  6, 7, ...
  0,  2,  5,   9,  14, 20, 27, ...
  0,  3, 10,  22,  40, 65, ...
  0,  5, 20,  51, 105, ...
  0,  7, 36, 108, ...
  0, 11, 65, ...
		

Crossrefs

Cf. table A060850.
Antidiagonal sums of A144064.

Programs

  • PARI
    N=66; x='x+O('x^N); et=eta(x); Vec( sum(n=0,N, x^n/et^n ) ) \\ Joerg Arndt, May 08 2009

Formula

a(n) = Sum_{k=1..n} A000041(k-1)*a(n-k). - Vladeta Jovovic, Apr 07 2003
O.g.f.: 1/(1-x*P(x)), P(x) - o.g.f. for number of partitions (A000041). - Vladimir Kruchinin, Aug 10 2010
a(n) ~ c / r^n, where r = A347968 = 0.419600352598356478498775753566700025318... is the root of the equation QPochhammer(r) = r and c = 0.3777957165566422058901624844315414446044096308877617181754... = Log[r]/(Log[(1 - r)*r] + QPolyGamma[1, r] - Log[r]*Derivative[0, 1][QPochhammer][r, r]). - Vaclav Kotesovec, Feb 16 2017, updated Mar 31 2018

Extensions

More terms from Vladeta Jovovic, Apr 07 2003
More terms and better definition from Franklin T. Adams-Watters, Mar 14 2006
New name (using g.f. by Vladimir Kruchinin), Joerg Arndt, Feb 19 2014

A002107 Expansion of Product_{k>=1} (1 - x^k)^2.

Original entry on oeis.org

1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, 0, 0, 2, 3, -2, 2, 0, 0, -2, -2, 0, 0, -2, -1, 0, 2, 2, -2, 2, 1, 2, 0, 2, -2, -2, 2, 0, -2, 0, -4, 0, 0, 0, 1, -2, 0, 0, 2, 0, 2, 2, 1, -2, 0, 2, 2, 0, 0, -2, 0, -2, 0, -2, 2, 0, -4, 0, 0, -2, -1, 2, 0, 2, 0, 0, 0, -2
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into an even number of distinct parts minus number of partitions of n into an odd number of distinct parts, with 2 types of each part. E.g., for n=4, we consider k and k* to be different versions of k and so we have 4, 4*, 31, 31*, 3*1, 3*1*, 22*, 211*, 2*11*. The even partitions number 5 and the odd partitions number 4, so a(4)=5-4=1. - Jon Perry, Apr 04 2004
Also, number of partitions of n into parts of -2 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 68 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 2*x - x^2 + 2*x^3 + x^4 + 2*x^5 - 2*x^6 - 2*x^8 - 2*x^9 + x^10 + ...
G.f. = q - 2*q^13 - q^25 + 2*q^37 + q^49 + 2*q^61 - 2*q^73 - 2*q^97 - 2*q^109 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000712 (reciprocal of g.f.), A010815, A010816, A258406.
Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A010815 - A010840.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A002107List(len) = DedekindEta(len, 2)
    A002107List(78) |> println # Peter Luschny, Mar 09 2018
  • Magma
    Basis( CuspForms( Gamma1(144), 1), 926) [1]; /* Michael Somos, May 17 2015 */
    
  • Maple
    A010816 := proc (n); if frac(sqrt(8*n+1)) = 0 then (-1)^((1/2)*isqrt(8*n+1)-1/2)*isqrt(8*n+1) else 0 end if; end proc:
    N := 10:
    a := proc (n) option remember; if n < 0 then 0 else A010816(n) + add( (-1)^(k+1)*a(n - (1/2)*k*(3*k-1) ), k = -N..-1) + add( (-1)^(k+1)*a(n - (1/2)*k*(3*k-1) ), k = 1..N) end if; end proc:
    seq(a(n), n = 0..100); # Peter Bala, Apr 06 2022
  • Mathematica
    terms = 78; Clear[s]; s[n_] := s[n] = Product[(1 - x^k)^2, {k, 1, n}] // Expand // CoefficientList[#, x]& // Take[#, terms]&; s[n = 10]; s[n = 2*n]; While[s[n] != s[n - 1], n = 2*n]; A002107 = s[n] (* Jean-François Alcover, Jan 17 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^2, {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
  • PARI
    {a(n) = my(A, p, e, x); if( n<0, 0, n = 12*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%12>1, if( e%2, 0, (-1)^((p%12==5) * e/2)), for( i=1, sqrtint(p\9), if( issquare(p - 9*i^2), x=i; break)); (e + 1) * (-1)^(e*x))))}; /* Michael Somos, Aug 30 2006 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^2, n))}; /* Michael Somos, Aug 30 2006 */
    
  • PARI
    Vec(eta(x)^2) \\ Charles R Greathouse IV, Apr 22 2016
    

Formula

Expansion of q^(-1/12) * eta(q)^2 in powers of q. - Michael Somos, Mar 06 2012
Euler transform of period 1 sequence [ -2, ...]. - Michael Somos, Mar 06 2012
a(n) = b(12*n + 1) where b(n) is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12), b(p^e) = (-1)^(e/2) * (1 + (-1)^e) / 2 if p == 5 (mod 12), b(p^e) = (e + 1) * (-1)^(e*x) if p == 1 (mod 12) where p = x^2 + 9*y^2. - Michael Somos, Sep 16 2006
Convolution inverse of A000712.
a(0) = 1, a(n) = -(2/n)*Sum{k = 0..n-1} a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011
Expansion of f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, May 17 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12 (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, May 17 2015
a(n) = Sum_{k=0..n} A010815(k)*A010815(n-k); self convolution of A010815. - Gevorg Hmayakyan, Sep 18 2016
G.f.: Sum_{m, n in Z, n >= 2*|m|} (-1)^n * x^((3*(2*n + 1)^2 - (6*m + 1)^2)/24). - Seiichi Manyama, Oct 01 2016
G.f.: exp(-2*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
From Peter Bala, Jan 02 2021: (Start)
For prime p congruent to 5, 7 or 11 (mod 12), a(n*p^2 + (p^2 - 1)/12) = e*a(n), where e = 1 if p == 7 or 11 (mod 12) and e = -1 if p == 5 (mod 12).
If n and p are coprime then a(n*p + (p^2 - 1)/12) = 0. See Cooper et al., Theorem 1. (End)
With the convention that a(n) = 0 for n < 0 we have the recurrence a(n) = A010816(n) + Sum_{k a nonzero integer} (-1)^(k+1)*a(n - k*(3*k-1)/2), where A010816(n) = (-1)^m*(2*m+1) if n = m*(m + 1)/2, with m positive, is a triangular number else equals 0. For example, n = 10 = (4*5)/2 is a triangular number, A010816(10) = 9, and so a(10) = 9 + a(9) + a(8) - a(5) - a(3) = 9 - 2 - 2 - 2 - 2 = 1. - Peter Bala, Apr 06 2022

A000990 Number of plane partitions of n with at most two rows.

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 29, 45, 75, 115, 181, 271, 413, 605, 895, 1291, 1866, 2648, 3760, 5260, 7352, 10160, 14008, 19140, 26085, 35277, 47575, 63753, 85175, 113175, 149938, 197686, 259891, 340225, 444135, 577593, 749131, 968281, 1248320, 1604340, 2056809, 2629357, 3353404
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A147767. - Gary W. Adamson, Nov 11 2008
Also number of partitions of n into parts of 2 kinds except for 1. - Reinhard Zumkeller, Nov 06 2012
Antidiagonal sums of triangle A093010.

References

  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. page 105.
  • L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.7).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242641.
Cf. A147767. - Gary W. Adamson, Nov 11 2008
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Haskell
    a000990 = p $ tail a008619_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 06 2012
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(&*[1-x^j: j in [1..2*m]] )^2 )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(min(i, 2)+j-1, j)*
           b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[Min[i, 2]+j-1, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    Flatten[{1, Differences[Table[Sum[PartitionsP[j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 50}]]}] (* Vaclav Kotesovec, Oct 28 2015 *)
    CoefficientList[(1-q)/QPochhammer[q]^2+O[q]^50, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    a(n)=if(n<0,0,polcoeff((1-x)/prod(k=1,n,1-x^k,1+x*O(x^n))^2,n)) /* Michael Somos, Jan 29 2005 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))*x^m/m)),n)} \\ Paul D. Hanna, Apr 22 2010
    
  • PARI
    x='x+O('x^66); Vec((1-x)/eta(x)^2) \\ Joerg Arndt, May 01 2013
    
  • Sage
    s=((1-x)/prod(1-x^j for j in (1..60))^2).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 06 2018

Formula

G.f.: 1 / ( (1-x) * Product_{m>=2} (1-x^m)^2 ) = (1-x) / Product_{m>=1} (1-x^m)^2.
G.f.: exp( Sum_{n>=1} ((1+x^n)/(1-x^n))*x^n/n ). - Paul D. Hanna, Apr 22 2010
For n>=1, a(n) = A000712(n) - A000712(n-1). - Vaclav Kotesovec, Oct 28 2015
a(n) ~ Pi * exp(2*Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Oct 28 2015
G.f.: exp(Sum_{k>=1} (2*sigma_1(k) - 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018

A239829 Triangular array: T(n,k) = number of partitions of 2n - 1 that have alternating sum 2k - 1.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 7, 5, 2, 1, 12, 10, 5, 2, 1, 19, 19, 10, 5, 2, 1, 30, 33, 20, 10, 5, 2, 1, 45, 57, 36, 20, 10, 5, 2, 1, 67, 92, 64, 36, 20, 10, 5, 2, 1, 97, 147, 107, 65, 36, 20, 10, 5, 2, 1, 139, 227, 177, 110, 65, 36, 20, 10, 5, 2, 1, 195, 345, 282, 184
Offset: 1

Views

Author

Clark Kimberling, Mar 28 2014

Keywords

Comments

Suppose that p, with parts x(1) >= x(2) >= ... >= x(k), is a partition of n. Define AS(p), the alternating sum of p, by x(1) - x(2) + x(3) - ... + ((-1)^(k-1))*x(k); note that AS(p) has the same parity as n. Column 1 is given by T(n,1) = (number of partitions of 2n-1 having AS(p) = 1) = A000070(n) for n >= 1. Columns 2 and 3 are essentially A000098 and A103924, and the limiting column (after deleting initial 0's), A000712. The sum of numbers in row n is A000041(2n-1). The corresponding array for partitions into distinct parts is given by A152157 (defined as the number of partitions of 2n+1 into 2k+1 odd parts).

Examples

			First nine rows:
1
2 ... 1
4 ... 2 ... 1
7 ... 5 ... 2 ... 1
12 .. 10 .. 5 ... 2 ... 1
19 .. 19 .. 10 .. 5 ... 2 ... 1
30 .. 33 .. 20 .. 10 .. 5 ... 2 ... 1
45 .. 57 .. 36 .. 20 .. 10 .. 5 ... 2 ... 1
67 .. 92 .. 64 .. 36 .. 20 .. 10 .. 5 ... 2 ... 1
The partitions of 5 are 5, 41, 32, 311, 221, 2111, 11111, with respective alternating sums 5, 3, 1, 3, 1, 1, 1, so that row 2 of the array is 4 .. 2 .. 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, x^(1/2), `if`(i<1, 0,
          expand(b(n, i-1, t)+`if`(i>n, 0, b(n-i, i, -t)*x^((t*i)/2)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(2*n-1$2, 1)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Mar 30 2014
  • Mathematica
    z = 15; s[w_] := s[w] = Total[Take[#, ;; ;; 2]] - Total[Take[Rest[#], ;; ;; 2]] &[w]; c[n_] := c[n] = Table[s[IntegerPartitions[n][[k]]], {k, 1, PartitionsP[n]}]; t[n_, k_] := Count[c[2 n - 1], 2 k - 1]; u = Table[t[n, k], {n, 1, z}, {k, 1, n}]
    TableForm[u]  (* A239829, array *)
    Flatten[u]    (* A239829, sequence *)
    (* Peter J. C. Moses, Mar 21 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, x^(1/2), If[i<1, 0, Expand[b[n, i-1, t] + If[i>n, 0, b[n-i, i, -t]*x^((t*i)/2)]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[2n-1, 2n-1, 1]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Aug 27 2016, after Alois P. Heinz *)

A274230 Number of holes in a sheet of paper when you fold it n times and cut off the four corners.

Original entry on oeis.org

0, 0, 1, 3, 9, 21, 49, 105, 225, 465, 961, 1953, 3969, 8001, 16129, 32385, 65025, 130305, 261121, 522753, 1046529, 2094081, 4190209, 8382465, 16769025, 33542145, 67092481, 134193153, 268402689, 536821761, 1073676289, 2147385345
Offset: 0

Views

Author

Philippe Gibone, Jun 15 2016

Keywords

Comments

The folds are always made so the longer side becomes the shorter side.
We could have counted not only the holes but also all the notches: 4, 6, 9, 15, 25, 45, 81, 153, 289, ... which has the formula a(n) = (2^ceiling(n/2) + 1) * (2^floor(n/2) + 1) and appears to match the sequence A183978. - Philippe Gibone, Jul 06 2016
The same sequence (0,0,1,3,9,21,49,...) turns up when you start with an isosceles right triangular piece of paper and repeatedly fold it in half, snipping corners as you go. Is there an easy way to see why the two questions have the same answer? - James Propp, Jul 05 2016
Reply from Tom Karzes, Jul 05 2016: (Start)
This case seems a little more complicated than the rectangular case, since with the triangle you alternate between horizontal/vertical folds vs. diagonal folds, and the resulting fold pattern is more complex, but I think the basic argument is essentially the same.
Note that with the triangle, the first hole doesn't appear until after you've made 3 folds, so if you start counting at zero folds, you have three leading zeros in the sequence: 0,0,0,1,3,9,21,... (End)
Also the number of subsets of {1,2,...,n} that contain both even and odd numbers. For example, a(3)=3 and the 3 subsets are {1,2}, {2,3}, {1,2,3}; a(4)=9 and the 9 subsets are {1,2}, {1,4}, {2,3}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}. (See comments in A052551 for the number of subsets of {1,2,...,n} that contain only odd and even numbers.) - Enrique Navarrete, Mar 26 2018
Also the number of integer compositions of n + 1 with an odd part other than the first or last. The complementary compositions are counted by A052955(n>0) = A027383(n) + 1. - Gus Wiseman, Feb 05 2022
Also the number of unit squares in the (n+1)-st iteration in the version of the dragon curve where the rotation directions alternate, so that any clockwise rotation is followed by a counterclockwise rotation, and vice versa (see image link below). - Talmon Silver, May 09 2023

Crossrefs

See A274626, A274627 for the three- and higher-dimensional analogs.
This is the main diagonal of A274635.
Counting fold lines instead of holes gives A027383.
Bisections are A060867 (even) and A134057 (odd).

Programs

Formula

u(0) = 0; v(0) = 0; u(n+1) = v(n); v(n+1) = 2u(n) + 1; a(n) = u(n)*v(n).
a(n) = (2^ceiling(n/2) - 1)*(2^floor(n/2) - 1).
Proof from Tom Karzes, Jul 05 2016: (Start)
Let r be the number of times you fold along one axis and s be the number of times you fold along the other axis. So r is ceiling(n/2) and s is floor(n/2), where n is the total number of folds.
When unfolded, the resulting paper has been divided into a grid of (2^r) by (2^s) rectangles. The interior grid lines will have diamond-shaped holes where they intersect (assuming diagonal cuts).
There are (2^r-1) internal grid lines along one axis and (2^s-1) along the other. The total number of internal grid line intersections is therefore (2^r-1)*(2^s-1), or (2^ceiling(n/2)-1)*(2^floor(n/2)-1) as claimed. (End)
From Colin Barker, Jun 22 2016, revised by N. J. A. Sloane, Jul 05 2016: (Start)
It follows that:
a(n) = (2^(n/2)-1)^2 for n even, a(n) = 2^n+1-3*2^((n-1)/2) for n odd.
a(n) = 3*a(n-1)-6*a(n-3)+4*a(n-4) for n>3.
G.f.: x^2 / ((1-x)*(1-2*x)*(1-2*x^2)).
a(n) = (1+2^n-2^((n-3)/2)*(3-3*(-1)^n+2*sqrt(2)+2*(-1)^n*sqrt(2))). (End)
a(n) = A000225(n) - 2*A052955(n-2) for n > 1. - Yuchun Ji, Nov 19 2018
a(n) = A079667(2^(n-1)) for n >= 1. - J. M. Bergot, Jan 18 2021
a(n) = 2^(n-1) - A052955(n) = 2^(n-1) - A027383(n) - 1. - Gus Wiseman, Jan 29 2022
E.g.f.: cosh(x) + cosh(2*x) - 2*cosh(sqrt(2)*x) + sinh(x) + sinh(2*x) - 3*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, Apr 06 2022

A301830 Number of factorizations of n into factors (greater than 1) of two kinds.

Original entry on oeis.org

1, 2, 2, 5, 2, 6, 2, 10, 5, 6, 2, 16, 2, 6, 6, 20, 2, 16, 2, 16, 6, 6, 2, 36, 5, 6, 10, 16, 2, 22, 2, 36, 6, 6, 6, 46, 2, 6, 6, 36, 2, 22, 2, 16, 16, 6, 2, 76, 5, 16, 6, 16, 2, 36, 6, 36, 6, 6, 2, 64, 2, 6, 16, 65, 6, 22, 2, 16, 6, 22, 2, 108, 2, 6, 16, 16, 6
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(6) = 6 factorizations: (2*3)*(), (3)*(2), (2)*(3), ()*(2*3), (6)*(), ()*(6).
The a(12) = 16 factorizations:
  ()*(2*2*3), (2)*(2*3), (3)*(2*2), (2*2)*(3), (2*3)*(2), (2*2*3)*(),
  ()*(2*6), (2)*(6), (6)*(2), (2*6)*(), ()*(3*4), (3)*(4), (4)*(3), (3*4)*(),
  ()*(12), (12)*().
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[facs[d]]*Length[facs[n/d]],{d,Divisors[n]}],{n,100}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={MultEulerT(vector(n, i, 2))} \\ Andrew Howroyd, Nov 18 2018

Formula

Dirichlet g.f.: Product_{n > 1} 1/(1 - n^(-s))^2. [corrected by Ilya Gutkovskiy, Dec 14 2020]
a(p^n) = A000712(n) for prime p. - Andrew Howroyd, Nov 18 2018

A301957 Number of distinct subset-products of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 5, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2018

Keywords

Comments

A subset-product of an integer partition y is a product of some submultiset of y. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number of distinct values obtained when A003963 is applied to all divisors of n. - Antti Karttunen, Sep 05 2018

Examples

			The distinct subset-products of (4,2,1,1) are 1, 2, 4, and 8, so a(84) = 4.
The distinct subset-products of (6,3,2) are 1, 2, 3, 6, 12, 18, and 36, so a(195) = 7.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,1,Length[Union[Times@@@Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A003963(n) = { n=factor(n); n[, 1]=apply(primepi, n[, 1]); factorback(n) }; \\ From A003963
    v003963 = vector(up_to,n,A003963(n));
    A301957(n) = { my(m=Map(),s,k=0,c); fordiv(n,d,if(!mapisdefined(m,s = v003963[d],&c), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 05 2018

Extensions

More terms from Antti Karttunen, Sep 05 2018

A210843 Level of the n-th plateau of the column k of the square array A195825, when k -> infinity.

Original entry on oeis.org

1, 4, 13, 35, 86, 194, 415, 844, 1654, 3133, 5773, 10372, 18240, 31449, 53292, 88873, 146095, 236977, 379746, 601656, 943305, 1464501, 2252961, 3436182, 5198644, 7805248, 11634685, 17224795, 25336141, 37038139, 53828275, 77792869
Offset: 1

Views

Author

Omar E. Pol, Jun 19 2012

Keywords

Comments

Also the first (k+1)/2 terms of this sequence are the levels of the (k+1)/2 plateaus of the column k of A195825, whose lengths are k+1, k-1, k-3, k-5,... 2, if k is odd.
Also the first k/2 terms of this sequence are the levels of the k/2 plateaus of the column k of A195825, whose lengths are k+1, k-1, k-3, k-5,... 3, if k is a positive even number.
For the visualization of the plateaus see the graph of the sequences mentioned in crossrefs section (columns k=1..10 of A195825), for example see the graph of A210964.
Also numbers that are repeated in column k of square array A195825, when k -> infinity.
Note that the definition and the comments related to the square array A195825 mentioned above are also valid for the square array A211970, since both arrays contains the same columns, if k >= 1.
Is this the EULER transform of 4, 3, 3, 3, 3, 3, 3...?

Examples

			Column 1 of A195825 is A000041 which starts: [1, 1], 2, 3, 5, 7, 11... The column contains only one plateau: [1, 1] which has level 1 and length 2. So a(1) = 1.
Column 3 of A195825 is A036820 which starts: [1, 1, 1, 1], 2, 3, [4, 4], 5, 7, 10... The column contains only two plateaus: [1, 1, 1, 1], [4, 4], which have levels 1, 4 and lengths 4, 2. So a(1)= 1 and a(2) = 2.
Column 6 of A195825 is A195850 which starts: [1, 1, 1, 1, 1, 1, 1], 2, 3, [4, 4, 4, 4, 4], 5, 7, 10, 12, [13, 13, 13], 14, 16, 21... The column contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13], which have levels 1, 4, 13 and lengths 7, 5, 3. So a(1) = 1, a(2) = 4 and a(3) = 13.
		

Crossrefs

Partial sums of A000716. Column 3 of A210764.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^3,{k,1,50}],{x,0,50}],x] (* Vaclav Kotesovec, Aug 16 2015 *)

Formula

From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ sqrt(2*n)/Pi * A000716(n).
a(n) ~ exp(sqrt(2*n)*Pi) / (8*Pi*n).
(End)

A048574 Self-convolution of 1 2 3 5 7 11 15 22 30 42 56 77 ... (A000041).

Original entry on oeis.org

1, 4, 10, 22, 43, 80, 141, 240, 397, 640, 1011, 1568, 2395, 3604, 5360, 7876, 11460, 16510, 23588, 33418, 47006, 65640, 91085, 125596, 172215, 234820, 318579, 430060, 577920, 773130, 1030007, 1366644, 1806445, 2378892, 3121835, 4082796
Offset: 2

Views

Author

Keywords

Comments

Number of proper partitions of n into parts of two kinds (i.e. both kinds must be present). - Franklin T. Adams-Watters, Feb 08 2006

Examples

			a(4) = 22 because (1,2,3,5)*(5,3,2,1) = 5 + 6 + 6 + 5 = 22
		

Crossrefs

Essentially the same as A052837.
Cf. A122768.
Column k=2 of A060642.

Programs

  • Haskell
    a048574 n = a048574_list !! (n-2)
    a048574_list = f (drop 2 a000041_list) [1] where
    f (p:ps) rs = (sum $ zipWith (*) rs $ tail a000041_list) : f ps (p : rs)
    -- Reinhard Zumkeller, Nov 09 2015
    
  • Maple
    spec := [S,{C=Sequence(Z,1 <= card),B=Set(C,1 <= card),S=Prod(B,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); # Franklin T. Adams-Watters, Feb 08 2006
    # second Maple program:
    a:= n-> (p-> add(p(j)*p(n-j), j=1..n-1))(combinat[numbpart]):
    seq(a(n), n=2..40);  # Alois P. Heinz, May 26 2018
  • Mathematica
    a[n_] := First[ ListConvolve[ pp = Array[ PartitionsP, n], pp]]; Table[ a[n], {n, 1, 36}] (* Jean-François Alcover, Oct 21 2011 *)
    Table[ListConvolve[PartitionsP[Range[n]],PartitionsP[Range[n]]],{n,40}]// Flatten (* Harvey P. Dale, Oct 29 2020 *)
  • PARI
    a(n) = sum(k=1, n-1, numbpart(k)*numbpart(n-k)); \\ Michel Marcus, Dec 11 2016

Formula

From Franklin T. Adams-Watters, Feb 08 2006: (Start)
a(0) = 0, a(n) = A000712(n)-2*A000041(n) for n>0.
a(n) = Sum_{k=1..n-1} A000041(k)*A000041(n-k).
G.f.: ((Product_{k>0} 1/(1-x^k))-1)^2 = (exp(Sum_{k>0} (x^k/(1-x^k)/k))-1)^2. (End)
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*3^(3/4)*n^(5/4)). - Vaclav Kotesovec, Mar 10 2018

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 29 2000

A098123 Number of compositions of n with equal number of even and odd parts.

Original entry on oeis.org

1, 0, 0, 2, 0, 4, 6, 6, 24, 28, 60, 130, 190, 432, 770, 1386, 2856, 5056, 9828, 18918, 34908, 68132, 128502, 244090, 470646, 890628, 1709136, 3271866, 6238986, 11986288, 22925630, 43932906, 84349336, 161625288, 310404768, 596009494
Offset: 0

Views

Author

Vladeta Jovovic, Sep 24 2004

Keywords

Examples

			From _Gus Wiseman_, Jun 26 2022: (Start)
The a(0) = 1 through a(7) = 6 compositions (empty columns indicated by dots):
  ()  .  .  (12)  .  (14)  (1122)  (16)
            (21)     (23)  (1212)  (25)
                     (32)  (1221)  (34)
                     (41)  (2112)  (43)
                           (2121)  (52)
                           (2211)  (61)
(End)
		

Crossrefs

For partitions: A045931, ranked by A325698, strict A239241 (conj A352129).
Column k=0 of A242498.
Without multiplicity: A242821, for partitions A241638 (ranked by A325700).
These compositions are ranked by A355321.
A047993 counts balanced partitions, ranked by A106529.
A108950/A108949 count partitions with more odd/even parts.
A130780/A171966 count partitions with more or as many odd/even parts.
Cf. A025178.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Count[#,?EvenQ]==Count[#,?OddQ]&]],{n,0,15}] (* Gus Wiseman, Jun 26 2022 *)

Formula

a(n) = Sum_{k=floor(n/3)..floor(n/2)} C(2*n-4*k,n-2*k)*C(n-1-k,2*n-4*k-1).
Recurrence: n*(2*n-7)*a(n) = 2*(n-2)*(2*n-5)*a(n-2) + 2*(2*n-7)*(2*n-3)*a(n-3) - (n-4)*(2*n-3)*a(n-4). - Vaclav Kotesovec, May 01 2014
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 1.94696532812840456026081823863... is the root of the equation 1-4*d-2*d^2+d^4 = 0, c = 0.225563290820392765554898545739... is the root of the equation 43*c^4-18*c^2+8*c-1=0. - Vaclav Kotesovec, May 01 2014
G.f.: 1/sqrt(1 - 4*x^3/(1-x^2)^2). - Seiichi Manyama, May 01 2025
Previous Showing 31-40 of 189 results. Next