cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 235 results. Next

A119800 Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals).

Original entry on oeis.org

4, 8, 6, 12, 18, 8, 16, 38, 32, 10, 20, 66, 88, 50, 12, 24, 102, 192, 170, 72, 14, 28, 146, 360, 450, 292, 98, 16, 32, 198, 608, 1002, 912, 462, 128, 18, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 40, 326, 1408, 3530, 5336, 4942, 2816, 978, 200, 22
Offset: 1

Views

Author

Thomas Wieder, Jul 30 2006, Aug 06 2006

Keywords

Examples

			The second row of the table is: 6, 18, 38, 66, 102, 146, 198, 258, 326, ... = A005899 = number of points on surface of octahedron.
The third column of the table is: 12, 38, 88, 170, 292, 462, 688, 978, 1340, ... = A035597 = number of points of L1 norm 3 in cubic lattice Z^n.
The first rows are: A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420.
The first columns are: A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603.
The main diagonal seems to be A050146.
Square array A(n,k) begins:
   4,   8,   12,   16,    20,    24,     28,     32,      36, ...
   6,  18,   38,   66,   102,   146,    198,    258,     326, ...
   8,  32,   88,  192,   360,   608,    952,   1408,    1992, ...
  10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290, ...
  12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436, ...
  14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598, ...
  16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688, ...
  18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146, ...
  20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(m, n)  option remember;
          `if`(n=0, 1, `if`(m=0, 2, A(m, n-1) +A(m-1, n) +A(m-1, n-1)))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    A[m_, n_] := A[m, n] = If[n == 0, 1, If[m == 0, 2, A[m, n-1] + A[m-1, n] + A[m-1, n-1]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

Formula

A(m,n) = A(m,n-1) + A(m-1,n) + A(m-1,n-1), A(m,0)=1, A(0,0)=1, A(0,n)=2.

Extensions

Offset and typos corrected by Alois P. Heinz, Apr 21 2012

A244630 a(n) = 17*n^2.

Original entry on oeis.org

0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200, 28577, 29988
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Comments

First bisection of A195047. - Bruno Berselli, Jul 03 2014
Norms of purely imaginary numbers in Z[sqrt(-17)] (for example, 3*sqrt(-17) has norm 153). - Alonso del Arte, Jun 23 2018

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), this sequence (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).

Programs

Formula

G.f.: 17*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 17*A000290(n). - Omar E. Pol, Jul 03 2014
a(n) = a(-n). - Muniru A Asiru, Jun 29 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 17*x*(1 + x)*exp(x).
a(n) = n*A008599(n) = A195047(2*n). (End)

A129194 a(n) = (n/2)^2*(3 - (-1)^n).

Original entry on oeis.org

0, 1, 2, 9, 8, 25, 18, 49, 32, 81, 50, 121, 72, 169, 98, 225, 128, 289, 162, 361, 200, 441, 242, 529, 288, 625, 338, 729, 392, 841, 450, 961, 512, 1089, 578, 1225, 648, 1369, 722, 1521, 800, 1681, 882, 1849, 968, 2025, 1058, 2209, 1152, 2401, 1250, 2601, 1352
Offset: 0

Views

Author

Paul Barry, Apr 02 2007

Keywords

Comments

The numerator of the integral is 2,1,2,1,2,1,...; the moments of the integral are 2/(n+1)^2. See 2nd formula.
The sequence alternates between twice a square and an odd square, A001105(n) and A016754(n).
Partial sums of the positive elements give the absolute values of A122576. - Omar E. Pol, Aug 22 2011
Partial sums of the positive elements give A212760. - Omar E. Pol, Dec 28 2013
Conjecture: denominator of 4/n - 2/n^2. - Wesley Ivan Hurt, Jul 11 2016
Multiplicative because both A000290 and A040001 are. - Andrew Howroyd, Jul 25 2018

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 1, Sect. 7, Problem 73.

Crossrefs

Programs

Formula

G.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/(1-x^2)^3.
a(n+1) = denominator((1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*n*t)(-((Pi-t)/i)^2)), i=sqrt(-1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5. - Paul Curtz, Mar 07 2011
a(n) is the numerator of the coefficient of x^4 in the Maclaurin expansion of exp(-n*x^2). - Francesco Daddi, Aug 04 2011
O.g.f. as a Lambert series: x*Sum_{n >= 1} J_2(n)*x^n/(1 + x^n), where J_2(n) denotes the Jordan totient function A007434(n). See Pólya and Szegő. - Peter Bala, Dec 28 2013
From Ilya Gutkovskiy, Jul 11 2016: (Start)
E.g.f.: x*((2*x + 1)*sinh(x) + (x + 2)*cosh(x))/2.
Sum_{n>=1} 1/a(n) = 5*Pi^2/24. [corrected by Amiram Eldar, Sep 11 2022] (End)
a(n) = A000290(n) / A040001(n). - Andrew Howroyd, Jul 25 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 (A222171). - Amiram Eldar, Sep 11 2022
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} (-1)^(1 + gcd(i,j,n)) = Sum_{d | n} (-1)^(d+1) * J_2(n/d), that is, the Dirichlet convolution of the pair of multiplicative functions f(n) = (-1)^(n+1) and the Jordan totient function J_2(n) = A007434(n). Hence this sequence is multiplicative. Cf. A193356 and A309337.
Dirichlet g.f.: (1 - 2/2^s)*zeta(s-2). (End)
a(n) = Sum_{1 <= i, j <= n} (-1)^(n + gcd(i, n)*gcd(j, n)) = Sum_{d|n, e|n} (-1)^(n+e*d) * phi(n/d)*phi(n/e). - Peter Bala, Jan 22 2024

Extensions

More terms from Michel Marcus, Dec 28 2013

A347453 Heinz numbers of odd-length integer partitions with integer alternating (or reverse-alternating) product.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 108, 109, 112, 113, 114, 116, 117, 124, 125, 127, 128, 130
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also numbers whose multiset of prime indices has odd length and integer alternating product, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The terms and their prime indices begin:
      2: {1}         29: {10}            61: {18}
      3: {2}         31: {11}            63: {2,2,4}
      5: {3}         32: {1,1,1,1,1}     67: {19}
      7: {4}         37: {12}            68: {1,1,7}
      8: {1,1,1}     41: {13}            71: {20}
     11: {5}         42: {1,2,4}         72: {1,1,1,2,2}
     12: {1,1,2}     43: {14}            73: {21}
     13: {6}         44: {1,1,5}         75: {2,3,3}
     17: {7}         45: {2,2,3}         76: {1,1,8}
     18: {1,2,2}     47: {15}            78: {1,2,6}
     19: {8}         48: {1,1,1,1,2}     79: {22}
     20: {1,1,3}     50: {1,3,3}         80: {1,1,1,1,3}
     23: {9}         52: {1,1,6}         83: {23}
     27: {2,2,2}     53: {16}            89: {24}
     28: {1,1,4}     59: {17}            92: {1,1,9}
		

Crossrefs

The reciprocal version is A000290.
Allowing any alternating product <= 1 gives A001105.
Allowing any alternating product gives A026424.
Factorizations of this type are counted by A347441.
These partitions are counted by A347444.
Allowing any length gives A347454.
Allowing any alternating product > 1 gives A347465.
A027193 counts odd-length partitions.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A344606 counts alternating permutations of prime indices.
A347446 counts partitions with integer alternating product.
A347457 ranks partitions with integer alt product, complement A347455.
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],OddQ[PrimeOmega[#]]&&IntegerQ[altprod[primeMS[#]]]&]

A033580 Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).

Original entry on oeis.org

0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
Sequence found by reading the line from 0, in the direction 0, 8,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A139267 in the same spiral - Omar E. Pol, Sep 09 2011
a(n) is the number of edges of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference. - Emeric Deutsch May 13 2018
The partial sums of this sequence give A035006. - Leo Tavares, Oct 03 2021

Crossrefs

Programs

Formula

a(n) = a(n-1) +12*n -4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: 4*x*(2+x)/(1-x)^3. - Colin Barker, Feb 13 2012
a(-n) = A033579(n). - Michael Somos, Jun 09 2014
E.g.f.: 2*x*(4 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 3/2 - Pi/(4*sqrt(3)) - 3*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = -3/2 + Pi/(2*sqrt(3)) + log(2). (End)
From Leo Tavares, Oct 12 2021: (Start)
a(n) = A003154(n+1) - A016813(n). See Crossed Stars illustration.
a(n) = 4*A005449(n). See Four Quarter Star Crosses illustration.
a(n) = 2*A049451(n).
a(n) = A046092(n-1) + A033996(n). See Triangulated Star Crosses illustration.
a(n) = 4*A000217(n-1) + 8*A000217(n).
a(n) = 4*A000217(n-1) + 4*A002378. See Oblong Star Crosses illustration.
a(n) = A016754(n) + 4*A000217(n). See Crossed Diamond Stars illustration.
a(n) = 2*A001105(n) + 4*A000217(n).
a(n) = A016742(n) + A046092(n).
a(n) = 4*A000290(n) + 4*A000217(n). (End)

A035597 Number of points of L1 norm 3 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 12, 38, 88, 170, 292, 462, 688, 978, 1340, 1782, 2312, 2938, 3668, 4510, 5472, 6562, 7788, 9158, 10680, 12362, 14212, 16238, 18448, 20850, 23452, 26262, 29288, 32538, 36020, 39742, 43712, 47938, 52428, 57190, 62232, 67562
Offset: 0

Views

Author

Keywords

Comments

Sums of the first n terms > 0 of A001105 in palindromic arrangement. a(n) = Sum_{i=1 .. n} A001105(i) + Sum_{i=1 .. n-1} A001105(i), e.g. a(3) = 38 = 2 + 8 + 18 + 8 + 2; a(4) = 88 = 2 + 8 + 18 + 32 + 18 + 8 + 2. - Klaus Purath, Jun 19 2020
Apart from multiples of 3, all divisors of n are also divisors of a(n), i.e. if n is not divisible by 3, a(n) is divisible by n. All divisors d of a(n) for d !== 0 (mod) 3 are also divisors of a(abs(n-d)) and a(n+d). For all n congruent to 0,2,7 (mod 9) a(n) is divisible by 3. If n is divisible by 3^k, a(n) is divisible by 3^(k-1). - Klaus Purath, Jul 24 2020

Crossrefs

Partial sums of A069894.
Column 3 of A035607, A266213, A343599.
Row 3 of A113413, A119800, A122542.

Programs

  • Magma
    [(4*n^3 + 2*n)/3: n in [0..40]]; // Vincenzo Librandi, Sep 19 2011
  • Maple
    f := proc(n,m) local i; sum( 2^i*binomial(n,i)*binomial(m-1,i-1),i=1..min(n,m)); end; # n=dimension, m=norm
  • Mathematica
    Table[(4n^3+2n)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,12,38},41] (* Harvey P. Dale, Sep 18 2011 *)

Formula

a(n) = (4*n^3 + 2*n)/3.
a(n) = 2*A005900(n). - R. J. Mathar, Dec 05 2009
a(0)=0, a(1)=2, a(2)=12, a(3)=38, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: (2*x*(x+1)^2)/(x-1)^4. - Harvey P. Dale, Sep 18 2011
a(n) = -a(-n), a(n+1) = A097869(4n+3) = A084570(2n+1). - Bruno Berselli, Sep 20 2011
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=3. Also, a(n) = A001845(n) - A001844(n). - Shel Kaphan, Feb 26 2023
a(n) = A005899(n)*n/3. - Shel Kaphan, Feb 26 2023
a(n) = A006331(n)+A006331(n-1). - R. J. Mathar, Aug 12 2025

A115359 Matrix (1,x)-(x,x^2) in Riordan array notation.

Original entry on oeis.org

1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 21 2006

Keywords

Examples

			Triangle begins:
n\k|  0   1   2   3   4   5   6   7   8   9
---+-----------------------------------------
0  |  1;
1  | -1,  1;
2  |  0,  0,  1;
3  |  0, -1,  0,  1;
4  |  0,  0,  0,  0,  1;
5  |  0,  0, -1,  0,  0,  1;
6  |  0,  0,  0,  0,  0,  0,  1;
7  |  0,  0,  0, -1,  0,  0,  0,  1;
8  |  0,  0,  0,  0,  0,  0,  0,  0,  1;
9  |  0,  0,  0,  0, -1,  0,  0,  0,  0,  1;
etc. Row and column numbering added by _Antti Karttunen_, Jan 19 2025
		

Crossrefs

Row sums are 1,0,1,0,1,0... (A059841), Diagonal sums are A115360. Inverse is A115361.
Cf. also A115356.

Programs

  • PARI
    tabl(nn) = {T = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); for (n=1, nn, for (k=1, n, print1(T[n, k], ", ");); print(););} \\ Michel Marcus, Mar 28 2015
    
  • PARI
    A115359off1(n) = (ispolygonal(n,3)-(!(n%2) && issquare(n/2))); \\ (This is one-based)
    A115359(n) = A115359off1(1+n); \\ (zero-based) - Antti Karttunen, Jan 19 2025

Formula

Number triangle T(n, k)=if(n=k, 1, 0) OR if(n=2k+1, -1, 0).
a(n) = A010054(n) - A379480(n). [As a flat sequence with starting offset 1] - Antti Karttunen, Jan 19 2025

A237018 Number A(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 39, 14, 0, 1, 5, 32, 132, 212, 42, 0, 1, 6, 50, 314, 1080, 1232, 132, 0, 1, 7, 72, 615, 3440, 9450, 7492, 429, 0, 1, 8, 98, 1065, 8450, 40320, 86544, 47082, 1430, 0, 1, 9, 128, 1694, 17604, 124250, 494736, 819154, 303336, 4862, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 02 2014

Keywords

Comments

The g.f. given below is a generalization of formulas given by Murray R. Bremner and Sara Madariaga in A236339 and A236342. According to them A(n,k) also gives the number of distinct monomials of degree n+1 in the universal algebra with k nonassociative binary products {*1,...,*k} related only by the interchange laws from k-category theory: (a *i b) *j (c *i d) = (a *j c) *i (b *j d) for i,j in {1,...,k} and i
These numbers can be regarded as (one of many possible definitions of) higher-dimensional Catalan numbers. - N. J. A. Sloane, Feb 12 2014

Examples

			A(3,1) = 5:
  [||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||].
  .
A(2,2) = 8:
  ._______.  ._______.  ._______.  ._______.
  | | |   |  |   | | |  |_______|  |       |
  | | |   |  |   | | |  |_______|  |_______|
  | | |   |  |   | | |  |       |  |_______|
  |_|_|___|  |___|_|_|  |_______|  |_______|
  ._______.  ._______.  ._______.  ._______.
  |   |   |  |   |   |  |   |   |  |       |
  |___|   |  |   |___|  |___|___|  |_______|
  |   |   |  |   |   |  |       |  |   |   |
  |___|___|  |___|___|  |_______|  |___|___|.
  .
Square array A(n,k) begins:
  1,   1,    1,     1,      1,       1,       1, ...
  0,   1,    2,     3,      4,       5,       6, ...
  0,   2,    8,    18,     32,      50,      72, ...
  0,   5,   39,   132,    314,     615,    1065, ...
  0,  14,  212,  1080,   3440,    8450,   17604, ...
  0,  42, 1232,  9450,  40320,  124250,  311472, ...
  0, 132, 7492, 86544, 494736, 1912900, 5770692, ...
		

Crossrefs

Columns k=0-10 give: A000007, A000108, A236339(n+1), A236342(n+1), A237019, A237020, A237021, A237022, A237023, A237024, A237025.
Rows n=0-2 give: A000012, A001477, A001105.
Main diagonal gives A237026.
Cf. A255982.

Programs

  • Maple
    A:= (n, k)-> coeff(series(RootOf(x*(-1)^k=add((-1)^i*
        binomial(k, i)*(G*x)^(2^(k-i)), i=0..k), G), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[ Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)

Formula

G.f. G_k of column k satisfies: (-1)^k*x = Sum_{i=0..k} (-1)^i*C(k,i)*(G_k*x)^(2^(k-i)).
A(n,k) = Sum_{i=0..k} C(k,i) * A255982(n,i). - Alois P. Heinz, Mar 13 2015

A259167 Positive octagonal numbers (A000567) that are squares (A000290) divided by 2.

Original entry on oeis.org

8, 78408, 752875208, 7229107670408, 69413891098384008, 666512175097575576008, 6399849835873029582446408, 61451357457540654953074835208, 590055927907455532986394985222408, 5665716958316030570194709695030728008, 54402213643694597627554069505290065112008
Offset: 1

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000567 and A001105. - Michel Marcus, Jun 20 2015

Examples

			8 is in the sequence because 8 is the 2nd octagonal number, and 2*8 is the 4th square.
		

Crossrefs

Programs

  • Magma
    I:=[8, 78408, 752875208]; [n le 3 select I[n] else 9603*Self(n-1)-9603*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 20 2015
  • Mathematica
    LinearRecurrence[{9603, -9603, 1}, {8, 78408, 752875208}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-8*x*(x^2+198*x+1)/((x-1)*(x^2-9602*x+1)) + O(x^20))
    

Formula

G.f.: -8*x*(x^2+198*x+1) / ((x-1)*(x^2-9602*x+1)).

A368521 Triangular array T, read by rows: T(n,k) = number of sums |x-y| + |y-z| - |x-z| = k, where x,y,z are in {1,2,...,n}.

Original entry on oeis.org

1, 6, 2, 17, 8, 2, 36, 18, 8, 2, 65, 32, 18, 8, 2, 106, 50, 32, 18, 8, 2, 161, 72, 50, 32, 18, 8, 2, 232, 98, 72, 50, 32, 18, 8, 2, 321, 128, 98, 72, 50, 32, 18, 8, 2, 430, 162, 128, 98, 72, 50, 32, 18, 8, 2, 561, 200, 162, 128, 98, 72, 50, 32, 18, 8, 2, 716
Offset: 1

Author

Clark Kimberling, Jan 25 2024

Keywords

Examples

			First eight rows:
   1
   6    2
  17    8    2
  36   18    8    2
  65   32   18    8    2
 106   50   32   18    8    2
 161   72   50   32   18    8    2
 232   98   72   50   32   18    8    2
For n=2, there are 8 triples (x,y,z):
  111:  |x-y| + |y-z| - |x-z| = 0
  112:  |x-y| + |y-z| - |x-z| = 0
  121:  |x-y| + |y-z| - |x-z| = 2
  122:  |x-y| + |y-z| - |x-z| = 0
  211:  |x-y| + |y-z| - |x-z| = 0
  212:  |x-y| + |y-z| - |x-z| = 2
  221:  |x-y| + |y-z| - |x-z| = 0
  222:  |x-y| + |y-z| - |x-z| = 0
so row 2 of the array is (6,2), representing six 0s and two 2s.
		

Crossrefs

Cf. A084990 (column 1), A000578 (row sums), A001105 (limiting reversed row), A368434, A368437, A368515, A368516, A368517, A368518, A368519, A368520, A368522, A368604, A368605, A368606, A368607, A368609.

Programs

  • Mathematica
    t[n_] := t[n] = Tuples[Range[n], 3]
    a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] - Abs[#[[1]] - #[[3]]] ==  k &]
    u = Table[Length[a[n, k]], {n, 1, 15}, {k, 0, 2 n - 2, 2}]
    v = Flatten[u] (* sequence *)
    Column[Table[Length[a[n, k]], {n, 1, 15}, {k, 0, 2 n - 2, 2}]]  (* array *)
Previous Showing 61-70 of 235 results. Next