A074143
a(1) = 1; a(n) = n * Sum_{k=1..n-1} a(k).
Original entry on oeis.org
1, 2, 9, 48, 300, 2160, 17640, 161280, 1632960, 18144000, 219542400, 2874009600, 40475635200, 610248038400, 9807557760000, 167382319104000, 3023343138816000, 57621363351552000, 1155628453883904000, 24329020081766400000, 536454892802949120000
Offset: 1
-
[Numerator(Factorial(n)/2*n): n in [1..30]]; // Vincenzo Librandi, Apr 15 2014
-
seq(sum(mul(j,j=3..n), k=1..n), n=1..19); # Zerinvary Lajos, Jun 01 2007
a := n -> `if`(n=1,1,n!*n/2): seq(a(n), n=1..19); # Peter Luschny, Jan 22 2016
-
A074143[1] = 1; A074143[n_] := A074143[n] = n * Sum[a[k], {k, n - 1}]; Array[A074143, 20] (* T. D. Noe, Apr 05 2011 *)
Table[Numerator[n!/2 n], {n, 21}] (* Vincenzo Librandi, Apr 15 2014 *)
-
def b(n): return 1/2 if (n==1) else n^2*b(n-1)/(n-1)
def A074143(n): return b(n) + int(n==1)/2
[A074143(n) for n in range(1,41)] # G. C. Greubel, Nov 29 2022
A143491
Unsigned 2-Stirling numbers of the first kind.
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 24, 26, 9, 1, 120, 154, 71, 14, 1, 720, 1044, 580, 155, 20, 1, 5040, 8028, 5104, 1665, 295, 27, 1, 40320, 69264, 48860, 18424, 4025, 511, 35, 1, 362880, 663696, 509004, 214676, 54649, 8624, 826, 44, 1, 3628800, 6999840, 5753736, 2655764
Offset: 2
Triangle begins
n\k|.....2.....3.....4.....5.....6.....7
========================================
2..|.....1
3..|.....2.....1
4..|.....6.....5.....1
5..|....24....26.....9.....1
6..|...120...154....71....14.....1
7..|...720..1044...580...155....20.....1
...
T(4,3) = 5. The permutations of {1,2,3,4} with 3 cycles such that 1 and 2 belong to different cycles are: (1)(2)(3 4), (1)(3)(24), (1)(4)(23), (2)(3)(14) and (2)(4)(13). The remaining possibility (3)(4)(12) is not allowed.
From _Aviv Rotbart_, May 05 2011: (Start)
Example of the alternating group permutations numbers:
Triangle begins
n\k|.....0.....1.....2.....3.....4.....5.....6.....7
====================================================
2..|.....1
3..|.....1.....2
4..|.....1.....5.....6
5..|.....1.....9....26....24
6..|.....1....14....71...154...120
7..|.....1....20...155...580..1044..720
A(n,k) = number of permutations in An of length k, with respect to the generators set {(12)(ij)}. For example, A(2,0)=1 (only the identity is there), for A4, the generators are {(12)(13),(12)(14),(12,23),(12)(24),(12)(34)}, thus we have A(4,1)=5 (exactly 5 generators), the permutations of length 2 are:
(12)(13)(12)(13) = (312)
(12)(13)(12)(14) = (41)(23)
(12)(13)(12)(24) = (432)(1)
(12)(13)(12)(34) = (342)(1)
(12)(23)(12)(24) = (13)(24)
(12)(14)(12)(14) = (412)(3)
Namely, A(4,2)=6. Together with the identity [=(12)(12), of length 0. therefore A(4,0)=1] we have 12 permutations, comprising all A4 (4!/2=12). (End)
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Olivier Bodini, Antoine Genitrini, and Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
- Andrei Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984)
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Neuwirth Erich, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001)
- R. Murri, Fatgraph Algorithms and the Homology of the Kontsevich Complex, arXiv:1202.1820 [math.AG], 2012. (see Table 1, p. 3)
- Aviv Rotbart, Generator Sets for the Alternating Group, Séminaire Lotharingien de Combinatoire 65 (2011), Article B65b, 16pp.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- M. Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014.
-
with combinat: T := (n, k) -> (n-2)! * add((n-j-1)*abs(stirling1(j,k-2))/j!,j = k-2..n-2): for n from 2 to 10 do seq(T(n, k), k = 2..n) end do;
-
t[n_, k_] := (n-2)!*Sum[(n-j-1)*Abs[StirlingS1[j, k-2]]/j!, {j, k-2, n-2}]; Table[t[n, k], {n, 2, 11}, {k, 2, n}] // Flatten (* Jean-François Alcover, Apr 16 2013, after Maple *)
A187735
G.f.: Sum_{n>=0} (2*n+1)^n * x^n / (1 + (2*n+1)*x)^n.
Original entry on oeis.org
1, 3, 16, 120, 1152, 13440, 184320, 2903040, 51609600, 1021870080, 22295347200, 531372441600, 13733933875200, 382588157952000, 11426632984166400, 364223926370304000, 12340763622899712000, 442896294466289664000, 16783438527143608320000
Offset: 0
G.f.: A(x) = 1 + 3*x + 16*x^2 + 120*x^3 + 1152*x^4 + 13440*x^5 +...
where
A(x) = 1 + 3*x/(1+3*x) + 5^2*x^2/(1+5*x)^2 + 7^3*x^3/(1+7*x)^3 + 9^4*x^4/(1+9*x)^4 + 11^5*x^5/(1+11*x)^5 +...
-
a[n_] := (n + 2)*2^(n - 1)*n!; Array[a, 20, 0] (* Amiram Eldar, Dec 23 2022 *)
-
{a(n)=polcoeff( sum(m=0,n,((2*m+1)*x)^m / (1 + (2*m+1)*x +x*O(x^n))^m),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n) = (n+2)*2^(n-1)*n!}
A215771
Number T(n,k) of undirected labeled graphs on n nodes with exactly k cycle graphs as connected components; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 3, 7, 6, 1, 0, 12, 25, 25, 10, 1, 0, 60, 127, 120, 65, 15, 1, 0, 360, 777, 742, 420, 140, 21, 1, 0, 2520, 5547, 5446, 3157, 1190, 266, 28, 1, 0, 20160, 45216, 45559, 27342, 10857, 2898, 462, 36, 1, 0, 181440, 414144, 427275, 264925, 109935, 31899, 6300, 750, 45, 1
Offset: 0
T(4,1) = 3: .1-2. .1 2. .1-2.
. .| |. .|X|. . X .
. .3-4. .3 4. .3-4.
.
T(4,2) = 7: .1 2. .1-2. .1 2. o1 2. .1 2o .1-2. .1-2.
. .| |. . . . X . . /|. .|\ . . \|. .|/ .
. .3 4. .3-4. .3 4. .3-4. .3-4. o3 4. .3 4o
.
T(4,3) = 6: .1 2o .1-2. o1 2. o1 2o o1 2. .1 2o
. .| . . . . |. . . . / . . \ .
. .3 4o o3 4o o3 4. .3-4. .3 4o o3 4.
.
T(4,4) = 1: o1 2o
. . .
. o3 4o
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 3, 7, 6, 1;
0, 12, 25, 25, 10, 1;
0, 60, 127, 120, 65, 15, 1;
0, 360, 777, 742, 420, 140, 21, 1;
Columns k=0-10 give:
A000007,
A001710(n-1) for n>0,
A215772,
A215763,
A215764,
A215765,
A215766,
A215767,
A215768,
A215769,
A215770.
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1,
add(binomial(n-1, i)*T(n-1-i, k-1)*ceil(i!/2), i=0..n-k)))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
# Alternatively, with the function BellMatrix defined in A264428:
BellMatrix(n -> `if`(n<2, 1, n!/2), 8); # Peter Luschny, Jan 21 2016
-
t[n_, k_] := t[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, Sum[Binomial[n-1, i]*t[n-1-i, k-1]*Ceiling[i!/2], {i, 0, n-k}]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
rows = 10;
t = Table[If[n<2, 1, n!/2], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: factorial(n)//2 if n>=2 else 1, 8)
A306343
Number T(n,k) of defective (binary) heaps on n elements with k defects; triangle T(n,k), n>=0, 0<=k<=max(0,n-1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 2, 3, 9, 9, 3, 8, 28, 48, 28, 8, 20, 90, 250, 250, 90, 20, 80, 360, 1200, 1760, 1200, 360, 80, 210, 1526, 5922, 12502, 12502, 5922, 1526, 210, 896, 7616, 34160, 82880, 111776, 82880, 34160, 7616, 896, 3360, 32460, 185460, 576060, 1017060, 1017060, 576060, 185460, 32460, 3360
Offset: 0
T(4,0) = 3: 4231, 4312, 4321.
T(4,1) = 9: 2413, 3124, 3214, 3241, 3412, 3421, 4123, 4132, 4213.
T(4,2) = 9: 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2431, 3142.
T(4,3) = 3: 1234, 1243, 1324.
(The examples use max-heaps.)
Triangle T(n,k) begins:
1;
1;
1, 1;
2, 2, 2;
3, 9, 9, 3;
8, 28, 48, 28, 8;
20, 90, 250, 250, 90, 20;
80, 360, 1200, 1760, 1200, 360, 80;
210, 1526, 5922, 12502, 12502, 5922, 1526, 210;
896, 7616, 34160, 82880, 111776, 82880, 34160, 7616, 896;
...
Columns k=0-10 give:
A056971,
A323957,
A323958,
A323959,
A323960,
A323961,
A323962,
A323963,
A323964,
A323965,
A323966.
-
b:= proc(u, o) option remember; local n, g, l; n:= u+o;
if n=0 then 1
else g:= 2^ilog2(n); l:= min(g-1, n-g/2); expand(
add(add(binomial(j-1, i)*binomial(n-j, l-i)*
b(i, l-i)*b(j-1-i, n-l-j+i), i=0..min(j-1, l)), j=1..u)+
add(add(binomial(j-1, i)*binomial(n-j, l-i)*
b(l-i, i)*b(n-l-j+i, j-1-i), i=0..min(j-1, l)), j=1..o)*x)
fi
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..10);
-
b[u_, o_] := b[u, o] = Module[{n = u + o, g, l},
If[n == 0, 1, g := 2^Floor@Log[2, n]; l = Min[g-1, n-g/2]; Expand[
Sum[Sum[ Binomial[j-1, i]* Binomial[n-j, l-i]*b[i, l-i]*
b[j-1-i, n-l-j+i], {i, 0, Min[j-1, l]}], {j, 1, u}]+
Sum[Sum[Binomial[j - 1, i]* Binomial[n-j, l-i]*b[l-i, i]*
b[n-l-j+i, j-1-i], {i, 0, Min[j-1, l]}], {j, 1, o}]*x]]];
T[n_] := CoefficientList[b[n, 0], x];
T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Feb 17 2021, after Alois P. Heinz *)
Original entry on oeis.org
1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, 40907241, 567074925, 8385483393, 131787520101, 2194406578521, 38605941817245, 715814473193073, 13956039627763221, 285509132504621001, 6116719419966460365
Offset: 0
(1/3)*(log(1 + 3*x + 12*x^2 + 60*x^3 + ... + (n+2)!/2!)*x^n + ...)
= x + 5/2*x^2 + 33/3*x^3 + 261/4*x^4 + 2361/5*x^5 + ...
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[3, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Aug 09 2018 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/3)*polcoeff(log(sum(m=0,n,(m+2)!/2!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015
A144739
7-factorial numbers A114799(7*n+3): Partial products of A017017(k) = 7*k+3, a(0) = 1.
Original entry on oeis.org
1, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 1990648483200, 131382799891200, 9590944392057600, 767275551364608000, 66752972968720896000, 6274779459059764224000, 633752725365036186624000, 68445294339423908155392000, 7871208849033749437870080000
Offset: 0
a(0)=1, a(1)=3, a(2)=3*10=30, a(3)=3*10*17=510, a(4)=3*10*17*24=12240, ...
Cf.
A114799,
A001710,
A001147,
A032031,
A008545,
A047056,
A011781,
A045754,
A084947,
A144827,
A147585,
A049209,
A051188.
-
List([0..20], n-> Product([0..n-1], k-> 7*k+3) ); # G. C. Greubel, Aug 19 2019
-
[ 1 ] cat [ &*[ (7*k+3): k in [0..n] ]: n in [0..20] ]; // Klaus Brockhaus, Nov 10 2008
-
a:= n-> product(7*j+3, j=0..n-1); seq(a(n), n=0..20); # G. C. Greubel, Aug 19 2019
-
Table[7^n*Pochhammer[3/7, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
-
a(n)=prod(i=1,n,7*i-4) \\ Charles R Greathouse IV, Jul 02 2013
-
[product(7*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
A162990
Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).
Original entry on oeis.org
4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1
The first few rows of the triangle are:
[4]
[36, 9]
[576, 144, 64]
[14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
MN(z;n=1) = 4
MN(z;n=2) = 36 + 9*z
MN(z;n=3) = 576 + 144*z + 64*z^2
MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
- Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.
A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
-
a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
-
Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)
A051431
a(n) = (n+10)!/10!.
Original entry on oeis.org
1, 11, 132, 1716, 24024, 360360, 5765760, 98017920, 1764322560, 33522128640, 670442572800, 14079294028800, 309744468633600, 7124122778572800, 170978946685747200, 4274473667143680000, 111136315345735680000, 3000680514334863360000, 84019054401376174080000
Offset: 0
A051578
a(n) = (2*n+4)!!/4!!, related to A000165 (even double factorials).
Original entry on oeis.org
1, 6, 48, 480, 5760, 80640, 1290240, 23224320, 464486400, 10218700800, 245248819200, 6376469299200, 178541140377600, 5356234211328000, 171399494762496000, 5827582821924864000, 209792981589295104000, 7972133300393213952000, 318885332015728558080000
Offset: 0
Cf.
A052587 (essentially the same).
-
List([0..20], n-> 2^(n-1)*Factorial(n+2) ); # G. C. Greubel, Nov 11 2019
-
[2^(n-1)*Factorial(n+2): n in [0..20]]; // G. C. Greubel, Nov 11 2019
-
a:= proc(n) option remember; `if`(n=0, 1, 2*(n+2)*a(n-1)) end:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 29 2019
seq(2^(n-1)*(n+2)!, n=0..20); # G. C. Greubel, Nov 11 2019
-
Table[2^(n-1)(n+2)!, {n,0,20}] (* Jean-François Alcover, Oct 05 2019 *)
Table[(2n+4)!!/8,{n,0,20}] (* Harvey P. Dale, Apr 06 2023 *)
-
vector(21, n, 2^(n-2)*(n+1)! ) \\ G. C. Greubel, Nov 11 2019
-
apply( {A051578(n)=(n+2)!<<(n-1)}, [0..18]) \\ M. F. Hasler, Nov 10 2024
-
[2^(n-1)*factorial(n+2) for n in (0..20)] # G. C. Greubel, Nov 11 2019
Comments