A005990
a(n) = (n-1)*(n+1)!/6.
Original entry on oeis.org
0, 1, 8, 60, 480, 4200, 40320, 423360, 4838400, 59875200, 798336000, 11416204800, 174356582400, 2833294464000, 48819843072000, 889218570240000, 17072996548608000, 344661117825024000, 7298706024529920000, 161787983543746560000
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- D. Dumont, Interpretations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
- Alice L. L. Gao, Emily X. L. Gao, and Brian Y. Sun, Zubieta's Conjecture on the Enumeration of Corners in Tree-like Tableaux, arXiv:1511.05434 [math.CO], 2015. The second version of this paper has a different title and different authors: A. L. L. Gao, E. X. L. Gao, P. Laborde-Zubieta, and B. Y. Sun, Enumeration of Corners in Tree-like Tableaux and a Conjectural (a,b)-analogue, arXiv preprint arXiv:1511.05434v2, 2015.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Eric Weisstein's World of Mathematics, Alternating Group Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
-
[(n-1)*Factorial(n+1)/6: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
-
[ seq((n-1)*(n+1)!/6,n=1..40) ];
a:=n->sum(sum(sum(n!/6, j=1..n),k=-1..n),m=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, May 11 2007
seq(sum(mul(j,j=3..n), k=3..n)/3, n=2..21); # Zerinvary Lajos, Jun 01 2007
restart: G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/3!,n=2..21); # Zerinvary Lajos, Apr 01 2009
-
Table[Sum[n!/6, {i, 3, n}], {n, 2, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
Table[(n - 1) (n + 1)!/6, {n, 20}] (* Harvey P. Dale, Apr 07 2019 *)
Table[(n - 1) Pochhammer[4, n - 2], {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
Table[(n - 1) Gamma[n + 2]/6, {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
Range[0, 20]! CoefficientList[Series[x/(1 - x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Jun 09 2019 *)
-
a(n)=(n-1)*(n+1)!/6 \\ Charles R Greathouse IV, May 24 2013
Better definition from Robert Newstedt
A049389
a(n) = (n+8)!/8!.
Original entry on oeis.org
1, 9, 90, 990, 11880, 154440, 2162160, 32432400, 518918400, 8821612800, 158789030400, 3016991577600, 60339831552000, 1267136462592000, 27877002177024000, 641171050071552000, 15388105201717248000, 384702630042931200000, 10002268381116211200000
Offset: 0
-
a049389 = (flip div 40320) . a000142 . (+ 8)
-- Reinhard Zumkeller, Aug 31 2014
-
[Factorial(n+8)/40320: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
-
a[n_] := (n + 8)!/8!; Array[a, 20, 0] (* Amiram Eldar, Jan 15 2023 *)
-
a(n) = (n+8)!/8!;
A049398
a(n) = (n+9)!/9!.
Original entry on oeis.org
1, 10, 110, 1320, 17160, 240240, 3603600, 57657600, 980179200, 17643225600, 335221286400, 6704425728000, 140792940288000, 3097444686336000, 71241227785728000, 1709789466857472000, 42744736671436800000, 1111363153457356800000, 30006805143348633600000
Offset: 0
-
a049398 = (flip div 362880) . a000142 . (+ 9)
-- Reinhard Zumkeller, Aug 31 2014
-
[Factorial(n+9)/362880: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
-
a[n_] := (n + 9)!/9!; Array[a, 20, 0] (* Amiram Eldar, Jan 15 2023 *)
-
a(n) = (n+9)!/9!
A062137
Coefficient triangle of generalized Laguerre polynomials n!*L(n,3,x) (rising powers of x).
Original entry on oeis.org
1, 4, -1, 20, -10, 1, 120, -90, 18, -1, 840, -840, 252, -28, 1, 6720, -8400, 3360, -560, 40, -1, 60480, -90720, 45360, -10080, 1080, -54, 1, 604800, -1058400, 635040, -176400, 25200, -1890, 70, -1, 6652800, -13305600, 9313920
Offset: 0
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 ...
0: 1
1: 4 -1
2: 20 -10 1
3: 120 -90 18 -1
4: 840 -840 252 -28 1
5: 6720 -8400 3360 -560 40 -1
... Formatted by _Wolfdieter Lang_, Jul 07 2014
For more rows see the link.
n = 2: 2!*L(2,3,x) = 20 - 10*x + x^2.
- A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.
-
Flatten[Table[((-1)^m)*n!*Binomial[n+3,n-m]/m!,{n,0,9},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
-
row(n) = Vecrev(n!*pollaguerre(n, 3)); \\ Michel Marcus, Feb 06 2021
A090802
Triangle read by rows: a(n,k) = number of k-length walks in the Hasse diagram of a Boolean algebra of order n.
Original entry on oeis.org
1, 2, 1, 4, 4, 2, 8, 12, 12, 6, 16, 32, 48, 48, 24, 32, 80, 160, 240, 240, 120, 64, 192, 480, 960, 1440, 1440, 720, 128, 448, 1344, 3360, 6720, 10080, 10080, 5040, 256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320
Offset: 0
{1};
{2, 1};
{4, 4, 2};
{8, 12, 12, 6};
{16, 32, 48, 48, 24};
{32, 80, 160, 240, 240, 120};
{64, 192, 480, 960, 1440, 1440, 720};
{128, 448, 1344, 3360, 6720, 10080, 10080, 5040};
{256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320}
a(5,3) = 240 because P(5,3) = 60, 2^(5-3) = 4 and 60 * 4 = 240.
Cf.
A000142,
A001710,
A001715,
A001720,
A001787,
A001788,
A001789,
A001815,
A003472,
A010842,
A052771,
A052796,
A052849,
A054849,
A057711,
A066534,
A082569.
-
Flatten[Table[n!/(n-k)! * 2^(n-k), {n, 0, 8}, {k, 0, n}]] (* Ross La Haye, Feb 10 2004 *)
A144828
Partial products of successive terms of A017113; a(0)=1.
Original entry on oeis.org
1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000, 108794268166472120024432640000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ...
Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses. These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011
G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ...
-
[2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // Vincenzo Librandi, Aug 11 2011
-
A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # G. C. Greubel, Apr 02 2021
-
Table[4^n (2 n - 1)!!, {n, 0, 15}] (* Vincenzo Librandi, May 14 2015 *)
Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* Harvey P. Dale, Dec 01 2015 *)
-
a(n)=binomial(2*n,n)*n!<Charles R Greathouse IV, Jan 17 2012
-
{a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* Michael Somos, Jan 06 2017 */
-
[2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Apr 02 2021
Original entry on oeis.org
1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, 40907241, 567074925, 8385483393, 131787520101, 2194406578521, 38605941817245, 715814473193073, 13956039627763221, 285509132504621001, 6116719419966460365
Offset: 0
(1/3)*(log(1 + 3*x + 12*x^2 + 60*x^3 + ... + (n+2)!/2!)*x^n + ...)
= x + 5/2*x^2 + 33/3*x^3 + 261/4*x^4 + 2361/5*x^5 + ...
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[3, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Aug 09 2018 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/3)*polcoeff(log(sum(m=0,n,(m+2)!/2!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015
Original entry on oeis.org
1, 1, 6, 46, 416, 4256, 48096, 591536, 7840576, 111226816, 1680157056, 26918720896, 455971214336, 8143926373376, 153013563734016, 3017996904928256, 62369444355076096, 1348096649995841536, 30426167700424728576, 715935203128235401216
Offset: 0
(1/4)*(log(1 + 4*x + 20*x^2 + 120*x^3 + ... + (n+3)!/3!)*x^n + ...)
= x + 6/2*x^2 + 46/3*x^3 + 416/4*x^4 + 4256/5*x^5 + ...
-
T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n-Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
a[n_] := T[4, n];
a /@ Range[0, 19] (* Jean-François Alcover, Oct 01 2019 *)
-
{a(n)=if(n<0,0,if(n==0,1, (n/4)*polcoeff(log(sum(m=0,n,(m+3)!/3!*x^m) +x*O(x^n)),n)))}
for(n=0,20,print1(a(n),", "))
A162990
Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).
Original entry on oeis.org
4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1
The first few rows of the triangle are:
[4]
[36, 9]
[576, 144, 64]
[14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
MN(z;n=1) = 4
MN(z;n=2) = 36 + 9*z
MN(z;n=3) = 576 + 144*z + 64*z^2
MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
- Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.
A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
-
a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
-
Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)
A051431
a(n) = (n+10)!/10!.
Original entry on oeis.org
1, 11, 132, 1716, 24024, 360360, 5765760, 98017920, 1764322560, 33522128640, 670442572800, 14079294028800, 309744468633600, 7124122778572800, 170978946685747200, 4274473667143680000, 111136315345735680000, 3000680514334863360000, 84019054401376174080000
Offset: 0
Comments