cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 51 results. Next

A005990 a(n) = (n-1)*(n+1)!/6.

Original entry on oeis.org

0, 1, 8, 60, 480, 4200, 40320, 423360, 4838400, 59875200, 798336000, 11416204800, 174356582400, 2833294464000, 48819843072000, 889218570240000, 17072996548608000, 344661117825024000, 7298706024529920000, 161787983543746560000
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Gandhi polynomials.
a(n) = Sum_{pi in Symm(n)} Sum_{i=1..n} max(pi(i)-i,0), i.e., the total positive displacement of all letters in all permutations on n letters. - Franklin T. Adams-Watters, Oct 25 2006
a(n) is also the sum of the excedances of all permutations of [n]. An excedance of a permutation p of [n] is an i (1 <= i <= n-1) such that p(i) > i. Proof: i is an excedance if p(i) = i+1, i+2, ..., n (n-i possibilities), with the remaining values of p forming any permutation of [n]\{p(i)} in the positions [n]\{i} ((n-1)! possibilities). Summation of i(n-i)(n-1)! over i from 1 to n-1 completes the proof. Example: a(3)=8 because the permutations 123, 132, 213, 231, 312, 321 have excedances NONE, {2}, {1}, {1,2}, {1}, {1}, respectively. - Emeric Deutsch, Oct 26 2008
a(n) is also the number of doubledescents in all permutations of {1,2,...,n-1}. We say that i is a doubledescent of a permutation p if p(i) > p(i+1) > p(i+2). Example: a(3)=8 because each of the permutations 1432, 4312, 4213, 2431, 3214, 3421 has one doubledescent, the permutation 4321 has two doubledescents and the remaining 17 permutations of {1,2,3,4} have no doubledescents. - Emeric Deutsch, Jul 26 2009
Equals the second right hand column of A167568 divided by 2. - Johannes W. Meijer, Nov 12 2009
Half of sum of abs(p(i+1) - p(i)) over all permutations on n, e.g., 42531 = 2 + 3 + 2 + 2 = 9, and the total over all permutations on {1,2,3,4,5} is 960. - Jon Perry, May 24 2013
a(n) gives the number of non-occupied corners in tree-like tableaux of size n+1 (see Gao et al. link). - Michel Marcus, Nov 18 2015
a(n) is the number of sequences of n+2 balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence. - Jeremy Dover, Sep 26 2017
a(n) is the number of triangles (3-cycles) in the (n+1)-alternating group graph. - Eric W. Weisstein, Jun 09 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(n-1)*Factorial(n+1)/6: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
    
  • Maple
    [ seq((n-1)*(n+1)!/6,n=1..40) ];
    a:=n->sum(sum(sum(n!/6, j=1..n),k=-1..n),m=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, May 11 2007
    seq(sum(mul(j,j=3..n), k=3..n)/3, n=2..21); # Zerinvary Lajos, Jun 01 2007
    restart: G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/3!,n=2..21); # Zerinvary Lajos, Apr 01 2009
  • Mathematica
    Table[Sum[n!/6, {i, 3, n}], {n, 2, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
    Table[(n - 1) (n + 1)!/6, {n, 20}] (* Harvey P. Dale, Apr 07 2019 *)
    Table[(n - 1) Pochhammer[4, n - 2], {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
    Table[(n - 1) Gamma[n + 2]/6, {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
    Range[0, 20]! CoefficientList[Series[x/(1 - x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Jun 09 2019 *)
  • PARI
    a(n)=(n-1)*(n+1)!/6 \\ Charles R Greathouse IV, May 24 2013

Formula

a(n) = A090672(n)/2.
a(n) = A052571(n+2)/6. - Zerinvary Lajos, May 11 2007
a(n) = Sum_{m=0..n} Sum_{k=-1..n} Sum_{j=1..n} n!/6, n >= 0. - Zerinvary Lajos, May 11 2007
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j)) then a(n+1) = (-1)^(n-1)*f(n,1,-4), (n >= 1). - Milan Janjic, Mar 01 2009
E.g.f.: (-1+3*x)/(3!*(1-x)^3), a(0) = -1/3!. Such e.g.f. computations resulted from e-mail exchange with Gary Detlefs. - Wolfdieter Lang, May 27 2010
a(n) = ((n+3)!/2) * Sum_{j=i..k} (k+1)!/(k+3)!, with offset 0. - Gary Detlefs, Aug 05 2010
a(n) = (n+2)!*Sum_{k=1..n-1} 1/((2*k+4)*(k+3)). - Gary Detlefs, Oct 09 2011
a(n) = (n+2)!*(1 + 3*(H(n+1) - H(n+2)))/6, where H(n) is the n-th harmonic number. - Gary Detlefs, Oct 09 2011
With offset = 0, e.g.f.: x/(1-x)^4. - Geoffrey Critzer, Aug 30 2013
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 3*(Ei(1) - gamma) - 6*e + 27/2, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=2} (-1)^n/a(n) = 3*(gamma - Ei(-1)) - 3/2, where Ei(-1) = -A099285. (End)

Extensions

Better definition from Robert Newstedt

A049389 a(n) = (n+8)!/8!.

Original entry on oeis.org

1, 9, 90, 990, 11880, 154440, 2162160, 32432400, 518918400, 8821612800, 158789030400, 3016991577600, 60339831552000, 1267136462592000, 27877002177024000, 641171050071552000, 15388105201717248000, 384702630042931200000, 10002268381116211200000
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=9) ~ exp(-x)/x*(1 - 9/x + 90/x^2 - 990/x^3 + 11880/x^4 - 154440/x^5 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009

Crossrefs

Programs

  • Haskell
    a049389 = (flip div 40320) . a000142 . (+ 8)
    -- Reinhard Zumkeller, Aug 31 2014
  • Magma
    [Factorial(n+8)/40320: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
    
  • Mathematica
    a[n_] := (n + 8)!/8!; Array[a, 20, 0] (* Amiram Eldar, Jan 15 2023 *)
  • PARI
    a(n) = (n+8)!/8!;
    

Formula

a(n)= A051380(n, 0)*(-1)^n (first unsigned column of triangle).
a(n) = (n+8)!/8!.
E.g.f.: 1/(1-x)^9.
a(n) = A173333(n+8,8). - Reinhard Zumkeller, Feb 19 2010
a(n) = A245334(n+8,n) / 9. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 40320*e - 109600.
Sum_{n>=0} (-1)^n/a(n) = 40320/e - 14832. (End)

A049398 a(n) = (n+9)!/9!.

Original entry on oeis.org

1, 10, 110, 1320, 17160, 240240, 3603600, 57657600, 980179200, 17643225600, 335221286400, 6704425728000, 140792940288000, 3097444686336000, 71241227785728000, 1709789466857472000, 42744736671436800000, 1111363153457356800000, 30006805143348633600000
Offset: 0

Views

Author

Keywords

Comments

The p=9 member of the p-family of sequences {(n+p-1)!/p!}, n >= 1.
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=10) ~ exp(-x)/x*(1 - 10/x + 110/x^2 - 1320/x^3 + 17160/x^4 - 240240/x^5 + 3603600/x^6 - ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009

Crossrefs

Programs

  • Haskell
    a049398 = (flip div 362880) . a000142 . (+ 9)
    -- Reinhard Zumkeller, Aug 31 2014
  • Magma
    [Factorial(n+9)/362880: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
    
  • Mathematica
    a[n_] := (n + 9)!/9!; Array[a, 20, 0] (* Amiram Eldar, Jan 15 2023 *)
  • PARI
    a(n) = (n+9)!/9!
    

Formula

E.g.f.: 1/(1-x)^10.
a(n) = A173333(n+9,9). - Reinhard Zumkeller, Feb 19 2010
a(n) = A245334(n+9,n) / 10. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 362880*e - 986409.
Sum_{n>=0} (-1)^n/a(n) = 133497 - 362880/e. (End)

A062137 Coefficient triangle of generalized Laguerre polynomials n!*L(n,3,x) (rising powers of x).

Original entry on oeis.org

1, 4, -1, 20, -10, 1, 120, -90, 18, -1, 840, -840, 252, -28, 1, 6720, -8400, 3360, -560, 40, -1, 60480, -90720, 45360, -10080, 1080, -54, 1, 604800, -1058400, 635040, -176400, 25200, -1890, 70, -1, 6652800, -13305600, 9313920
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The row polynomials s(n,x) := n!*L(n,3,x) = Sum_{m=0..n} a(n,m)*x^m have e.g.f. exp(-z*x/(1-z))/(1-z)^4. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} |A008297(n,m)|*(-x)^m, n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).
These polynomials appear in the radial part of the l=1 (p-wave) eigen functions for the discrete energy levels of the H-atom. See Messiah reference.
The unsigned version of this triangle is the triangle of unsigned 2-Lah numbers A143497. - Peter Bala, Aug 25 2008
This matrix (unsigned) is embedded in that for n!*L(n,-3,-x). Introduce 0,0,0 to each unsigned row and then add 1,-2,1,4,2,1 to the beginning of the array as the first three rows to generate n!*L(n,-3,-x). - Tom Copeland, Apr 21 2014
From Wolfdieter Lang, Jul 07 2014: (Start)
The standard Rodrigues formula for the monic generalized Laguerre polynomials (also called Laguerre-Sonin polynomials) is Lm(n,alpha,x) := (-1)^n*n!*L(n,3,x) is x^(-alpha)*exp(x)*(d/dx)^n(exp(-x)*x^(n+alpha)).
Another Rodrigues type formula is Lm(n,alpha,x) = exp(x)*x^(-alpha+n+1)*(-x^2*d/dx)^n*(exp(-x)*x^(alpha+1)). This is derivable from the differential - difference relation of Lm(n,alpha,x) which yields first the creation operator formula -(x*d/dx + (-x + alpha + n + 1))*Lm(n,alpha,x) = Lm(n+1,alpha,x) or in the variable q = log(x) the operator -(d/dq + alpha + n + 1 - exp(q)).
The identity (due to Christoph Mayer) (d/dq - (d/dq)W(q))*f(q) = exp(W(q)*d/dq(exp(-W(q)*f(q)) is then iterated with W(q) = W(alpha,n,q) = exp(q) - (alpha + n + 1)*q and a further change of variables leads then to the given result. (End)

Examples

			The triangle a(n,m) begins:
n\m       0        1       2     3    4   5 ...
0:        1
1:        4       -1
2:       20      -10      1
3:      120      -90     18     -1
4:      840     -840    252    -28    1
5:     6720    -8400   3360   -560   40  -1
... Formatted by _Wolfdieter Lang_, Jul 07 2014
For more rows see the link.
n = 2: 2!*L(2,3,x) = 20 - 10*x + x^2.
		

References

  • A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.

Crossrefs

For m=0..5 the (unsigned) columns give A001715, A061206, A062141-A062144. The row sums (signed) give A062146, the row sums (unsigned) give A062147.
Cf. A143497. - Peter Bala, Aug 25 2008
Cf. A062139, A105278. - Wolfdieter Lang, Jul 07 2014

Programs

  • Mathematica
    Flatten[Table[((-1)^m)*n!*Binomial[n+3,n-m]/m!,{n,0,9},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 3)); \\ Michel Marcus, Feb 06 2021

Formula

a(n, m) = ((-1)^m)*n!*binomial(n+3, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^4), m >= 0.

A090802 Triangle read by rows: a(n,k) = number of k-length walks in the Hasse diagram of a Boolean algebra of order n.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 8, 12, 12, 6, 16, 32, 48, 48, 24, 32, 80, 160, 240, 240, 120, 64, 192, 480, 960, 1440, 1440, 720, 128, 448, 1344, 3360, 6720, 10080, 10080, 5040, 256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320
Offset: 0

Views

Author

Ross La Haye, Feb 10 2004

Keywords

Comments

Row sums = A010842(n); Row sums from column 1 on = A066534(n) = n*A010842(n-1) = A010842(n) - 2^n.
a(n,k) = n! = k! = A000142(n) for n = k; a(n,n-1) = 2*n! = A052849(n) for n > 1; a(n,n-2) = 2*n! = A052849(n) for n > 2; a(n,n-3) = (4/3)*n! = A082569(n) for n > 3; a(n,n-1)/a(2,1) = n!/2! = A001710(n) for n > 1; a(n,n-2)/ a(3,1) = n!/3! = A001715(n) for n > 2; a(n,n-3)/a(4,1) = n!/4! = A001720(n) for n > 3.
a(2k, k) = A052714(k+1). a(2k-1, k) = A034910(k).
a(n,0) = A000079(n); a(n,1) = A001787(n) = row sums of A003506; a(n,2) = A001815(n) = 2!*A001788(n-1); a(n,3) = A052771(n) = 3!*A001789(n); a(n,4) = A052796(n) = 4!*A003472(n); ceiling[a(n,1) / 2] = A057711(n); a(n,5) = 5!*A054849(n).
In a class of n students, the number of committees (of any size) that contain an ordered k-sized subcommittee is a(n,k). - Ross La Haye, Apr 17 2006
Antidiagonal sums [1,2,5,12,30,76,198,528,1448,4080,...] appear to be binomial transform of A000522 interleaved with itself, i.e., 1,1,2,2,5,5,16,16,65,65,... - Ross La Haye, Sep 09 2006
Let P(A) be the power set of an n-element set A. Then a(n,k) = the number of ways to add k elements of A to each element x of P(A) where the k elements are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
The derivatives of x^n evaluated at x=2. - T. D. Noe, Apr 21 2011

Examples

			{1};
{2, 1};
{4, 4, 2};
{8, 12, 12, 6};
{16, 32, 48, 48, 24};
{32, 80, 160, 240, 240, 120};
{64, 192, 480, 960, 1440, 1440, 720};
{128, 448, 1344, 3360, 6720, 10080, 10080, 5040};
{256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320}
a(5,3) = 240 because P(5,3) = 60, 2^(5-3) = 4 and 60 * 4 = 240.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[n!/(n-k)! * 2^(n-k), {n, 0, 8}, {k, 0, n}]] (* Ross La Haye, Feb 10 2004 *)

Formula

a(n, k) = 0 for n < k. a(n, k) = k!*C(n, k)*2^(n-k) = P(n, k)*2^(n-k) = (2n)!!/((n-k)!*2^k) = k!*A038207(n, k) = A068424*2^(n-k) = Sum[C(n, m)*P(n-m, k), {m, 0, n-k}] = Sum[C(n, n-m)*P(n-m, k), {m, 0, n-k}] = n!*Sum[1/(m!*(n-m-k)!), {m, 0, n-k}] = k!*Sum[C(n, m)*C(n-m, k), {m, 0, n-k}] = k!*Sum[C(n, n-m)*C(n-m, k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, n-m-k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, m), {m, 0, n-k}] for n >= k.
a(n, k) = 0 for n < k. a(n, k) = n*a(n-1, k-1) for n >= k >= 1.
E.g.f. (by columns): exp(2x)*x^k.

Extensions

More terms from Ray Chandler, Feb 26 2004
Entry revised by Ross La Haye, Aug 18 2006

A144828 Partial products of successive terms of A017113; a(0)=1.

Original entry on oeis.org

1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000, 108794268166472120024432640000
Offset: 0

Views

Author

Philippe Deléham, Sep 21 2008

Keywords

Comments

a(n) is the number of signed permutations of length 4n that are equal to their reverse-inverses. Note that the reverse-inverse of a permutation is equivalent to a 90-degree rotation of the permutation's diagram (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011
Define the bar operation as an operation on signed permutation that flips the sign of each entry. Then a(n) is the number of signed permutations of length 2n that are equal to the bar of their inverses and equal to their reverse-complements (see the Hardt and Troyka link). - Justin M. Troyka, Aug 11 2011

Examples

			a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ...
Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses.  These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011
G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ...
		

Crossrefs

Essentially the same as A052714. - N. J. A. Sloane, Feb 03 2013
Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), A052714 (or this sequence) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).

Programs

  • Magma
    [2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // Vincenzo Librandi, Aug 11 2011
    
  • Maple
    A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # G. C. Greubel, Apr 02 2021
  • Mathematica
    Table[4^n (2 n - 1)!!, {n, 0, 15}] (* Vincenzo Librandi, May 14 2015 *)
    Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* Harvey P. Dale, Dec 01 2015 *)
  • PARI
    a(n)=binomial(2*n,n)*n!<Charles R Greathouse IV, Jan 17 2012
    
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* Michael Somos, Jan 06 2017 */
    
  • Sage
    [2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Apr 02 2021

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*4^k*8^(n-k).
a(n) = A052714(n+1). - R. J. Mathar, Oct 01 2008
a(n) = 2^n *(2*n)! / n!. - Justin M. Troyka, Aug 11 2011
G.f.: 1/(1-4x/(1-8x/(1-12x/(1-16x/(1-20x/(1-24x/(1-28x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-4)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
E.g.f.: 1/sqrt(1-8*x). - Philippe Deléham, May 14 2015
a(n) = 4^n * A001147(n). - Philippe Deléham, May 14 2015
a(n) = 8^n * Gamma(n + 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
0 = a(n)*(8*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) and a(n) = (-1)^n / a(-n) for all n in Z. - Michael Somos, Jan 06 2017
a(n) = 2^n * (n+1)! * Catalan(n). - G. C. Greubel, Apr 02 2021
Sum_{n>=0} 1/a(n) = 1 + e^(1/8)*sqrt(Pi)*erf(1/(2*sqrt(2)))/(2*sqrt(2)), where erf is the error function. - Amiram Eldar, Dec 20 2022

A111530 Row 3 of table A111528.

Original entry on oeis.org

1, 1, 5, 33, 261, 2361, 23805, 263313, 3161781, 40907241, 567074925, 8385483393, 131787520101, 2194406578521, 38605941817245, 715814473193073, 13956039627763221, 285509132504621001, 6116719419966460365
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Examples

			(1/3)*(log(1 + 3*x + 12*x^2 + 60*x^3 + ... + (n+2)!/2!)*x^n + ...)
= x + 5/2*x^2 + 33/3*x^3 + 261/4*x^4 + 2361/5*x^5 + ...
		

Crossrefs

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111531 (row 4), A111532 (row 5), A111533 (row 6), A111534 (diagonal).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n - Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
    a[n_] := T[3, n];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Aug 09 2018 *)
  • PARI
    {a(n)=if(n<0,0,if(n==0,1, (n/3)*polcoeff(log(sum(m=0,n,(m+2)!/2!*x^m) + x*O(x^n)),n)))} \\ fixed by Vaclav Kotesovec, Jul 27 2015

Formula

G.f.: (1/3)*log(Sum_{n>=0} (n+2)!/2!*x^n) = Sum_{n>=1} a(n)*x^n/n.
G.f.: A(x) = 1/(1 + 3*x - 4*x/(1 + 4*x - 5*x/(1 + 5*x - ... (continued fraction).
a(n) = Sum_{k=0..n} 3^(n-k)*A089949(n,k). - Philippe Deléham, Oct 16 2006
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k-1/2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: W(0), where W(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1+R)/( x*(k+1+R) - 1/W(k+1) ))); R=3 is Row R of table A111528 (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ n! * n^3/6 * (1 - 4/n^2 - 15/n^3 - 99/n^4 - 882/n^5 - 9531/n^6 - 119493/n^7 - 1693008/n^8 - 26638245/n^9 - 459682047/n^10). - Vaclav Kotesovec, Jul 27 2015
From Peter Bala, May 24 2017: (Start)
O.g.f. A(x) = ( Sum_{n >= 0} (n+3)!/3!*x^n ) / ( Sum_{n >= 0} (n+2)!/2!*x^n ).
1/(1 - 3*x*A(x)) = Sum_{n >= 0} (n+2)!/2!*x^n. Cf. A001710.
A(x)/(1 - 3*x*A(x)) = Sum_{n >= 0} (n+3)!/3!*x^n. Cf. A001715.
A(x) satisfies the Riccati equation x^2*A'(x) + 3*x*A^2(x) - (1 + 2*x)*A(x) + 1 = 0.
G.f. as an S-fraction: A(x) = 1/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - 6*x/(1 - ... - n*x/(1 - (n+3)*x/(1 - ... ))))))))), by Stokes 1982.
A(x) = 1/(1 + 3*x - 4*x/(1 - x/(1 - 5*x/(1 - 2*x/(1 - 6*x/(1 - 3*x/(1 - ... - (n + 3)*x/(1 - n*x/(1 - ... ))))))))). (End)

A111531 Row 4 of table A111528.

Original entry on oeis.org

1, 1, 6, 46, 416, 4256, 48096, 591536, 7840576, 111226816, 1680157056, 26918720896, 455971214336, 8143926373376, 153013563734016, 3017996904928256, 62369444355076096, 1348096649995841536, 30426167700424728576, 715935203128235401216
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Examples

			(1/4)*(log(1 + 4*x + 20*x^2 + 120*x^3 + ... + (n+3)!/3!)*x^n + ...)
= x + 6/2*x^2 + 46/3*x^3 + 416/4*x^4 + 4256/5*x^5 + ...
		

Crossrefs

Cf: A111528 (table), A003319 (row 1), A111529 (row 2), A111530 (row 3), A111532 (row 5), A111533 (row 6), A111534 (diagonal).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[n<0 || k<0, 0, k==0 || k==1, 1, n==0, k!, True, (T[n-1, k+1]-T[n-1, k])/n-Sum[T[n, j]*T[n-1, k-j], {j, 1, k-1}]];
    a[n_] := T[4, n];
    a /@ Range[0, 19] (* Jean-François Alcover, Oct 01 2019 *)
  • PARI
    {a(n)=if(n<0,0,if(n==0,1, (n/4)*polcoeff(log(sum(m=0,n,(m+3)!/3!*x^m) +x*O(x^n)),n)))}
    for(n=0,20,print1(a(n),", "))

Formula

G.f.: (1/4)*log(Sum_{n>=0} (n+3)!/3!*x^n) = Sum_{n>=1} a(n)*x^n/n.
G.f.: A(x) = 1/(1 + 4*x - 5*x/(1 + 5*x - 6*x/(1 + 6*x - ... (continued fraction).
a(n) = Sum_{k=0..n} 4^(n-k)*A089949(n,k). - Philippe Deléham, Oct 16 2006
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k-1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: W(0)/4 + 3/4, where W(k) = 1 - x*(k+4)/( x*(k+4) - 1/(1 - x*(k+2)/( x*(k+2) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ n! * n^4/24 * (1 + 2/n - 5/n^2 - 30/n^3 - 184/n^4 - 1664/n^5 - 18688/n^6 - 245120/n^7 - 3641280/n^8 - 60090368/n^9 - 1086985152/n^10). - Vaclav Kotesovec, Jul 27 2015
From Peter Bala, May 25 2017: (Start)
O.g.f. A(x) = ( Sum_{n >= 0} (n+4)!/4!*x^n ) / ( Sum_{n >= 0} (n+3)!/3!*x^n ).
1/(1 - 4*x*A(x)) = Sum_{n >= 0} (n+3)!/3!*x^n. Cf. A001715.
A(x)/(1 - 4*x*A(x)) = Sum_{n >= 0} (n+4)!/4!*x^n. Cf. A001720.
A(x) satisfies the Riccati equation x^2*A'(x) + 4*x*A^2(x) - (1 + 3*x)*A(x) + 1 = 0.
G.f. as an S-fraction: A(x) = 1/(1 - x/(1 - 5*x/(1 - 2*x/(1 - 6*x/(1 - 3*x/(1 - 7*x/(1 - ... - n*x/(1 - (n+4)*x/(1 - ... ))))))))), by Stokes 1982.
A(x) = 1/(1 + 4*x - 5*x/(1 - x/(1 - 6*x/(1 - 2*x/(1 - 7*x/(1 - 3*x/(1 - ... - (n + 4)*x/(1 - n*x/(1 - ... ))))))))). (End)

A162990 Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).

Original entry on oeis.org

4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Comments

The hypergeometric function 3F2([1,n+1,n+1],[n+2,n+2],z) = (n+1)^2*Li2(z)/z^(n+1) - MN(z;n)/(n!^2*z^n) for n >= 1, with Li2(z) the dilogarithm. The polynomial coefficients of MN(z;n) lead to the triangle given above.
We observe that 3F2([1,1,1],[2,2],z) = Li2(z)/z and that 3F2([1,0,0],[1,1],z) = 1.
The generating function for the EG1[3,n] coefficients of the EG1 matrix, see A162005, is GFEG1(z;m=2) = 1/(1-z)*(3*zeta(3)/2-2*z*log(2)* 3F2([1,1,1],[2,2],z) + sum((2^(1-2*n)* factorial(2*n-1)*z^(n+1)*3F2([1,n+1,n+1],[n+2,n+2],z))/(factorial(n+1)^2), n=1..infinity)).
The zeros of the MN(z;n) polynomials for larger values of n get ever closer to the unit circle and resemble the full moon, hence we propose to call the MN(z;n) the moon polynomials.

Examples

			The first few rows of the triangle are:
  [4]
  [36, 9]
  [576, 144, 64]
  [14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
  MN(z;n=1) = 4
  MN(z;n=2) = 36 + 9*z
  MN(z;n=3) = 576 + 144*z + 64*z^2
  MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
		

References

  • Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.

Crossrefs

A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A162991 and A162992 equal the first and second right hand columns.
A001048, A052747, A052759, A052778, A052794 are related to the square root of the first five right hand columns.
A001044, A162993 and A162994 equal the first, second and third left hand columns.
A000142, A001710, A002301, A133799, A129923, A001715 are related to the square root of the first six left hand columns.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
A129202(n)/A129203(n) = (n+1)^2*Li2(z=1)/(Pi^2) = (n+1)^2/6.
Cf. A002378 and A035287.

Programs

  • Maple
    a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
  • Mathematica
    Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)

Formula

a(n,m) = ((n+1)!/m)^2 for n >= 1 and 1 <= m <= n.

A051431 a(n) = (n+10)!/10!.

Original entry on oeis.org

1, 11, 132, 1716, 24024, 360360, 5765760, 98017920, 1764322560, 33522128640, 670442572800, 14079294028800, 309744468633600, 7124122778572800, 170978946685747200, 4274473667143680000, 111136315345735680000, 3000680514334863360000, 84019054401376174080000
Offset: 0

Views

Author

Keywords

Comments

The p=10 member of the p-family of sequences {(n+p-1)!/p!}, n >= 1.
The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=11) ~ exp(-x)/x*(1 - 11/x + 132/x^2 - 1716/x^3 + 24024/x^4 - 360360/x^5 + 5765760/x^6 - ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009

Crossrefs

Programs

  • Haskell
    a051431 = (flip div 3628800) . a000142 . (+ 10)
    -- Reinhard Zumkeller, Aug 31 2014
  • Magma
    [Factorial(n+10)/3628800: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
    
  • Mathematica
    a[n_] := (n + 10)!/10!; Array[a, 20, 0] (* Amiram Eldar, Jan 15 2023 *)

Formula

a(n) = (n+10)!/10!
E.g.f.: 1/(1-x)^11.
a(n) = A173333(n+10,10). - Reinhard Zumkeller, Feb 19 2010
a(n) = A245334(n+10,n) / 11. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 3628800*e - 9864100.
Sum_{n>=0} (-1)^n/a(n) = 3628800/e - 1334960. (End)
Previous Showing 11-20 of 51 results. Next