cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 149 results. Next

A100257 Triangle of expansions of 2^(k-1)*x^k in terms of T(n,x), in descending degrees n of T, with T the Chebyshev polynomials.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 0, 3, 1, 0, 5, 0, 10, 0, 1, 0, 6, 0, 15, 0, 10, 1, 0, 7, 0, 21, 0, 35, 0, 1, 0, 8, 0, 28, 0, 56, 0, 35, 1, 0, 9, 0, 36, 0, 84, 0, 126, 0, 1, 0, 10, 0, 45, 0, 120, 0, 210, 0, 126, 1, 0, 11, 0, 55, 0, 165, 0, 330, 0, 462, 0, 1, 0, 12, 0, 66, 0, 220, 0
Offset: 0

Views

Author

Ralf Stephan, Nov 13 2004

Keywords

Examples

			x^0 = T(0,x)
x^1 = T(1,x) + 0T(0,x)
2x^2 = T(2,x) + 0T(1,x) + 1T(0,x)
4x^3 = T(3,x) + 0T(2,x) + 3T(1,x) + 0T(0,x)
8x^4 = T(4,x) + 0T(3,x) + 4T(2,x) + 0T(1,x) + 3T(0,x)
16x^5 = T(5,x) + 0T(4,x) + 5T(3,x) + 0T(2,x) + 10T(1,x) + 0T(0,x)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.

Crossrefs

Without zeros: A008311. Row sums are A011782. Cf. A092392.
Diagonals are (with interleaved zeros) twice A001700, A001791, A002054, A002694, A003516, A002696, A030053, A004310, A030054, A004311, A030055, A004312, A030056, A004313.

Programs

  • Mathematica
    a[k_, n_] := If[k == 1, 1, If[EvenQ[n] || k < 0 || n > k, 0, If[n >= k - 1, Binomial[2*Floor[k/2], Floor[k/2]]/2, Binomial[k - 1, Floor[n/2]]]]];
    Table[a[k, n], {k, 1, 13}, {n, 1, k}] // Flatten (* Jean-François Alcover, May 04 2017, translated from PARI *)
  • PARI
    a(k,n)=if(k==1,1,if(n%2==0||k<0||n>k,0,if(n>=k-1,binomial(2*floor(k/2),floor(k/2))/2,binomial(k-1,floor(n/2)))))

A002544 a(n) = binomial(2*n+1,n)*(n+1)^2.

Original entry on oeis.org

1, 12, 90, 560, 3150, 16632, 84084, 411840, 1969110, 9237800, 42678636, 194699232, 878850700, 3931426800, 17450721000, 76938289920, 337206098790, 1470171918600, 6379820115900, 27569305764000, 118685861314020, 509191949220240, 2177742427450200, 9287309860732800
Offset: 0

Views

Author

Keywords

Comments

Coefficients for numerical differentiation.
Take the first n integers 1,2,3..n and find all combinations with repetitions allowed for the first n of them. Find the sum of each of these combinations to get this sequence. Example for 1 and 2: 1,2,1+1,1+2,2+2 gives sum of 12=a(2). - J. M. Bergot, Mar 08 2016
Let cos(x) = 1 -x^2/2 +x^4/4!-x^6/6!.. = Sum_i (-1)^i x^(2i)/(2i)! be the standard power series of the cosine, and y = 2*(1-cos(x)) = 4*sin^2(x/2) = x^2 -x^4/12 +x^6/360 ...= Sum_i 2*(-1)^(i+1) x^(2i)/(2i)! be a closely related series. Then this sequence represents the reversion x^2 = Sum_i 1/a(i) *y^(i+1). - R. J. Mathar, May 03 2022

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A002736/2.
A diagonal of A331430.

Programs

  • Maple
    seq((n+1)^2*(binomial(2*n+2, n+1))/2, n=0..29); # Zerinvary Lajos, May 31 2006
  • Mathematica
    Table[Binomial[2n+1,n](n+1)^2,{n,0,20}] (* Harvey P. Dale, Mar 23 2011 *)
  • PARI
    a(n)=binomial(2*n+1,n)*(n+1)^2
    
  • PARI
    x='x+O('x^99); Vec((1+2*x)/(1-4*x)^(5/2)) \\ Altug Alkan, Jul 09 2016
    
  • Python
    from sympy import binomial
    def a(n): return binomial(2*n + 1, n)*(n + 1)**2 # Indranil Ghosh, Apr 18 2017

Formula

G.f.: (1 + 2x)/(1 - 4x)^(5/2).
a(n-1) = sum(i_1 + i_2 + ... + i_n) where the sum is over 0 <= i_1 <= i_2 <= ... <= i_n <= n; a(n) = (n+1)^2 C(2n+1, n). - David Callan, Nov 20 2003
a(n) = (n+1)^2 * binomial(2*n+2,n+1)/2. - Zerinvary Lajos, May 31 2006
Asymptotics: a(n)-> (1/64) * (128*n^2+176*n+41) * 4^n * n^(-1/2)/(sqrt(Pi)), for n->infinity. - Karol A. Penson, Aug 05 2013
G.f.: 2F1(3/2,2;1;4x). - R. J. Mathar, Aug 09 2015
a(n) = A002457(n)*(n+1). - R. J. Mathar, Aug 09 2015
a(n) = A000217(n)*A000984(n). - J. M. Bergot, Mar 10 2016
a(n-1) = A001791(n)*n*(n+1)/2. - Anton Zakharov, Jul 04 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
E.g.f.: ((1 + 2*x)*(1 + 8*x)*BesselI(0,2*x) + 2*x*(3 + 8*x)*BesselI(1,2*x))*exp(2*x).
Sum_{n>=0} 1/a(n) = Pi^2/9 = A100044. (End)
From Peter Bala, Apr 18 2017: (Start)
With x = y^2/(1 + y) we have log^2(1 + y) = Sum_{n >= 0} (-1)^n*x^(n+1)/a(n). See Shenton and Kemp.
Series reversion ( Sum_{n >= 0} (-1)^n*x^(n+1)/a(n) ) = Sum_{n >= 1} 2*x^n/(2*n)! = Sum_{n >= 1} x^n/A002674(n). (End)
D-finite with recurrence n^2*a(n) -2*(n+1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)^2 = A202543^2. - Amiram Eldar, May 14 2022

A162551 a(n) = 2 * C(2*n,n-1).

Original entry on oeis.org

0, 2, 8, 30, 112, 420, 1584, 6006, 22880, 87516, 335920, 1293292, 4992288, 19315400, 74884320, 290845350, 1131445440, 4407922860, 17194993200, 67156001220, 262564816800, 1027583214840, 4025232800160, 15780742227900, 61915399071552
Offset: 0

Views

Author

Keywords

Comments

Total length of all Dyck paths of length 2n.
a(n) equals the diagonal element A(n,n) of matrix A whose element A(i,j) = A(i-1,j) + A(i,j-1). - Carmine Suriano, May 10 2010
a(n) is also the number of solid (3 dimensions) standard Young tableaux of shape [[n,n],[1]]. - Thotsaporn Thanatipanonda, Feb 27 2012
With offset = 1, a(n) is the total number of nodes over all binary trees with one child internal and one child external. - Geoffrey Critzer, Feb 23 2013
Central terms of the triangle in A051601. - Reinhard Zumkeller, Aug 05 2013
a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that bounce off the diagonal y = x an odd number of times. Details can be found in Section 4.2 in Pan and Remmel's link. - Ran Pan, Feb 01 2016
a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that cross the diagonal y = x an odd number of times. Details can be found in Section 4.3 in Pan and Remmel's link. - Ran Pan, Feb 01 2016

References

  • R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley 1996, page 141.

Crossrefs

Programs

Formula

a(n) = 2*A001791(n). - R. J. Mathar, Jul 15 2009
E.g.f.: exp(2*x)*2*(BesselI(1,2*x)). - Peter Luschny, Aug 26 2012
O.g.f.: ((1 - 2*x)/(1 - 4*x)^(1/2) - 1)/x - Geoffrey Critzer, Feb 23 2013
E.g.f.: 2*Q(0) - 2, where Q(k) = 1 - 2*x/(k + 1 - (k + 1)*(2*k + 3)/(2*k + 3 - (k + 2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013
a(n) = binomial(2*n+2, n+1) - A028329(n). - Ran Pan, Feb 01 2016

A002696 Binomial coefficients C(2n,n-3).

Original entry on oeis.org

1, 8, 45, 220, 1001, 4368, 18564, 77520, 319770, 1307504, 5311735, 21474180, 86493225, 347373600, 1391975640, 5567902560, 22239974430, 88732378800, 353697121050, 1408831480056, 5608233007146, 22314239266528, 88749815264600, 352870329957600, 1402659561581460
Offset: 3

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=3. - Herbert Kociemba, May 23 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 7 of triangle A100257.
Column k=1 of A263776.
Cf. A001622.
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002054 (m = 3), A002694 (m = 4), A003516 (m = 5), A030053 - A030056, A004310 - A004318.

Programs

Formula

G.f.: (1-sqrt(1-4*z))^6/(64*z^3*sqrt(1-4*z)). - Emeric Deutsch, Jan 28 2004
a(n) = Sum_{k=0..n} C(n, k)*C(n, k+3). - Hermann Stamm-Wilbrandt, Aug 17 2015
From Robert Israel, Aug 19 2015: (Start)
(n-2)*(n+4)*a(n+1) = (2*n+2)*(2*n+1)*a(n).
E.g.f.: I_3(2*x) * exp(2*x) where I_3 is a modified Bessel function. (End)
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=3} 1/a(n) = 3/4 + 2*Pi/(9*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 444*log(phi)/(5*sqrt(5)) - 1093/60, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([7/2,4],[7],4*x). - Karol A. Penson, Apr 24 2024
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * (x^3 - 6*x^2 + 9*x - 2)/sqrt(x*(4 - x)).
G.f: x^3 * B(x) * C(x)^6, where B(x) = 1/sqrt(1 - 4*x) is the g.f. of the central binomial coefficients A000984 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

Extensions

More terms from Emeric Deutsch, Feb 18 2004

A229892 Number T(n,k) of k up, k down permutations of [n]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 5, 3, 1, 1, 0, 16, 6, 4, 1, 1, 0, 61, 26, 10, 5, 1, 1, 0, 272, 71, 20, 15, 6, 1, 1, 0, 1385, 413, 125, 35, 21, 7, 1, 1, 0, 7936, 1456, 461, 70, 56, 28, 8, 1, 1, 0, 50521, 10576, 1301, 574, 126, 84, 36, 9, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2013

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = T(n,n) = A000012(n) = 1 for k>n.
T(2*n,n) = C(2*n-1,n) = A088218(n) = A001700(n-1) for n>0.
T(2*n+1,n) = C(2*n,n) = A000984(n).
T(2*n+1,n+1) = C(2n,n-1) = A001791(n) for n>0.

Examples

			Triangle T(n,k) begins:
  1;
  1,    1;
  0,    1,   1;
  0,    2,   1,   1;
  0,    5,   3,   1,  1;
  0,   16,   6,   4,  1,  1;
  0,   61,  26,  10,  5,  1, 1;
  0,  272,  71,  20, 15,  6, 1, 1;
  0, 1385, 413, 125, 35, 21, 7, 1, 1;
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1, add(`if`(t=k,
           b(o-j, u+j-1, 1, k), b(u+j-1, o-j, t+1, k)), j=1..o))
        end:
    T:= (n, k)-> `if`(k+1>=n, 1, `if`(k=0, 0, b(0, n, 0, k))):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, Sum[If[t == k, b[o-j, u+j-1, 1, k], b[u+j-1, o-j, t+1, k]], {j, 1, o}]]; t[n_, k_] := If[k+1 >= n, 1, If[k == 0, 0, b[0, n, 0, k]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

Formula

T(7,3) = 20: 1237654, 1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432, 2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421, 4567321.

A004331 Binomial coefficient C(4n,n-1).

Original entry on oeis.org

1, 8, 66, 560, 4845, 42504, 376740, 3365856, 30260340, 273438880, 2481256778, 22595200368, 206379406870, 1889912732400, 17345898649800, 159518999862720, 1469568786235308, 13559593014190944, 125288932441604200, 1159120046626942400, 10735998891545372445
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Programs

  • Maple
    #A004331
    seq(binomial(4*n - 1,n), n = 0..20);
  • Mathematica
    a[n_] := Binomial[4*n, n - 1]; Array[a, 19] (* Amiram Eldar, May 09 2020 *)
  • PARI
    vector(30, n, binomial(4*n, n-1)) \\ Altug Alkan, Nov 05 2015

Formula

G.f.: (g^2-g)/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
With an offset of 0, the o.g.f. equals f(x)*g(x)^4, where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A052203 (k = 1), A257633 (k = 2) and A224274 (k = 3). - Peter Bala, Nov 04 2015
D-finite with recurrence 3*(n-1)*(3*n-1)*(3*n+1)*a(n) - 8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Mar 19 2025
a(n) ~ 2^(8*n+1/2) / (3^(3*n+3/2) * sqrt(Pi*n)). - Amiram Eldar, Sep 07 2025

A345908 Traces of the matrices (A345197) counting integer compositions by length and alternating sum.

Original entry on oeis.org

1, 1, 0, 1, 3, 3, 6, 15, 24, 43, 92, 171, 315, 629, 1218, 2313, 4523, 8835, 17076, 33299, 65169
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2021

Keywords

Comments

The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. Here, the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. So a(n) is the number of compositions of n of length (n + s)/2, where s is the alternating sum of the composition.

Examples

			The a(0) = 1 through a(7) = 15 compositions of n = 0..7 of length (n + s)/2 where s = alternating sum (empty column indicated by dot):
  ()  (1)  .  (2,1)  (2,2)    (2,3)    (2,4)      (2,5)
                     (1,1,2)  (1,2,2)  (1,3,2)    (1,4,2)
                     (2,1,1)  (2,2,1)  (2,3,1)    (2,4,1)
                                       (1,1,3,1)  (1,1,3,2)
                                       (2,1,2,1)  (1,2,3,1)
                                       (3,1,1,1)  (2,1,2,2)
                                                  (2,2,2,1)
                                                  (3,1,1,2)
                                                  (3,2,1,1)
                                                  (1,1,1,1,3)
                                                  (1,1,2,1,2)
                                                  (1,1,3,1,1)
                                                  (2,1,1,1,2)
                                                  (2,1,2,1,1)
                                                  (3,1,1,1,1)
		

Crossrefs

Traces of the matrices given by A345197.
Diagonals and antidiagonals of the same matrices are A346632 and A345907.
Row sums of A346632.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Other diagonals are A008277 of A318393 and A055884 of A320808.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==(n+ats[#])/2&]],{n,0,15}]

A030053 a(n) = binomial(2n+1,n-3).

Original entry on oeis.org

1, 9, 55, 286, 1365, 6188, 27132, 116280, 490314, 2042975, 8436285, 34597290, 141120525, 573166440, 2319959400, 9364199760, 37711260990, 151584480450, 608359048206, 2438362177020, 9762479679106, 39049918716424, 156077261327400, 623404249591760
Offset: 3

Views

Author

Keywords

Comments

Number of UUUUUU's in all Dyck (n+3)-paths. - David Scambler, May 03 2013

Examples

			G.f. = x^3 + 9*x^4 + 55*x^5 + 286*x^6 + 1365*x^7 + 6188*x68 + ...
		

Crossrefs

Diagonal 8 of triangle A100257.
Cf. A001622, A113187 (unsigned fourth column).
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002054 (m = 3), A002694 (m = 4), A003516 (m = 5), A002696 (m = 6), A030054 - A030056, A004310 - A004318.

Programs

  • Magma
    [Binomial(2*n+1,n-3): n in [3..30]]; // Vincenzo Librandi, Aug 11 2015
  • Mathematica
    Table[Binomial[2*n + 1, n - 3], {n, 3, 20}] (* T. D. Noe, Apr 03 2014 *)
    Rest[Rest[Rest[CoefficientList[Series[128 x^3 / ((1 - Sqrt[1 - 4 x])^7 Sqrt[1 - 4 x]) + (-1 / x^4 + 5 / x^3 - 6 / x^2 + 1 / x), {x, 0, 40}], x]]]] (* Vincenzo Librandi, Aug 11 2015 *)
  • PARI
    a(n) = binomial(2*n+1,n-3); \\ Joerg Arndt, May 08 2013
    

Formula

G.f.: x^3*128/((1-sqrt(1-4*x))^7*sqrt(1-4*x))+(-1/x^4+5/x^3-6/x^2+1/x). - Vladimir Kruchinin, Aug 11 2015
D-finite with recurrence: -(n+4)*(n-3)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 28 2020
G.f.: x^3* 2F1(4,9/2;8;4x). - R. J. Mathar, Jan 28 2020
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=3} 1/a(n) = 22*Pi/(9*sqrt(3)) - 33/10.
Sum_{n>=3} (-1)^(n+1)/a(n) = 852*log(phi)/(5*sqrt(5)) - 1073/30, where phi is the golden ratio (A001622). (End)
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = (1/(2*Pi)) * sqrt(x)*(x^3 - 7*x^2 + 14*x - 7)/sqrt((4 - x)).
G.f. x^3 * B(x) * C(x)^7, where B(x) = 1/sqrt(1 - 4*x) is the g.f. of the central binomial coefficients A000984 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

A051960 a(n) = C(n)*(3n+2) where C(n) = Catalan numbers = A000108.

Original entry on oeis.org

2, 5, 16, 55, 196, 714, 2640, 9867, 37180, 140998, 537472, 2057510, 7904456, 30458900, 117675360, 455657715, 1767883500, 6871173870, 26747767200, 104268528210, 406975466040, 1590307356300, 6220814327520, 24357232569150, 95452906901976, 374369872911804
Offset: 0

Views

Author

Barry E. Williams, Jan 05 2000

Keywords

Comments

If Y is a fixed 2-subset of a 2n-set X then a(n-1) is the number of n-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
a(n-1) is the number of vertices in the n-dimensional halohedron (or equivalently, n-cycle cubeahedron). - Vincent Pilaud, May 12 2020

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A000108 and A051924.
Cf. A024482 and A097613.
Half A028283.

Programs

  • Magma
    [Catalan(n)*(3*n+2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
  • Maple
    a := n -> 4^n*(2+3*n)*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(2+n)):
    seq(a(n), n=0..25); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[CatalanNumber[n] (3n+2), {n,0,30}] (* Michael De Vlieger, Sep 30 2015 *)
  • Maxima
    a(n):=sum(binomial(n-k+1,k)*2^(n-2*k+1)*binomial(n,k),k,0,(n+1)/2); /* Vladimir Kruchinin, Sep 30 2015 */
    
  • PARI
    a(n) = (3*n+2)*binomial(2*n, n)/(n+1);
    vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
    

Formula

(n+1)*a(n) - 2*(n+2)*a(n-1) - 4*(2*n-3)*a(n-2) = 0. - conjectured by R. J. Mathar, Oct 02 2014, verified by Robert Israel, Sep 30 2015
G.f.: (1 + 2*x)/(2*x*sqrt(1-4*x)) - 1/(2*x). - Vladimir Kruchinin, Sep 30 2015.
a(n) = Sum_{k=0..(n+1)/2} (binomial(n-k+1,k)*2^(n-2*k+1)*binomial(n,k)). - Vladimir Kruchinin, Sep 30 2015.
a(n) = 4^n*(2+3*n)*Gamma(n + 1/2)/(sqrt(Pi)*Gamma(n+2)). - Peter Luschny, Dec 14 2015
a(n - 1) = A051924(n) + A000108(n - 1). - F. Chapoton, Mar 05 2022
Sum_{n>=0} a(n)/8^n = 5*sqrt(2) - 4. - Amiram Eldar, May 06 2023
E.g.f.: exp(2*x)*(2*BesselI(0,2*x) + BesselI(1,2*x)). - Stefano Spezia, May 14 2025
a(n) = 2*binomial(2*n, n) + binomial(2*n, n-1) = 2*A000984(n) + A001791(n). - Peter Bala, Aug 23 2025

A091869 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k peaks at even height.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 9, 16, 12, 4, 1, 21, 45, 40, 20, 5, 1, 51, 126, 135, 80, 30, 6, 1, 127, 357, 441, 315, 140, 42, 7, 1, 323, 1016, 1428, 1176, 630, 224, 56, 8, 1, 835, 2907, 4572, 4284, 2646, 1134, 336, 72, 9, 1, 2188, 8350, 14535, 15240, 10710, 5292, 1890, 480, 90, 10, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 10 2004

Keywords

Comments

Number of ordered trees with n edges having k leaves at even height. Row sums are the Catalan numbers (A000108). T(n,0)=A001006(n-1) (the Motzkin numbers). Sum_{k=0..n-1} k*T(n,k) = binomial(2n-2, n-2) = A001791(n-1). Mirror image of A091187.
T(n,k) is the number of Dyck paths of semilength n and having k dud's (here u=(1,1) and d=(1,-1)). Example: T(4,2)=3 because we have uud(du[d)ud], uu(dud)(dud) and uu(du[d)ud]d (the dud's are shown between parentheses).
T(n,k) is the number of Dyck paths of semilength n and containing exactly k double rises whose matching down steps form a doublefall. Example: UUUDUDDD has 2 double rises but only the first has matching Ds - the path's last 2 steps - forming a doublefall. (Travel horizontally east from an up step to encounter its matching down step.) - David Callan, Jul 15 2004
T(n,k) is the number of ordered trees on n edges containing k edges of outdegree 1. (The outdegree of an edge is the outdegree of its child vertex. Thus edges of outdegree 1 correspond to non-root vertices of outdegree 1.) T(3,2)=2 because
/\.../\.
|.....|.
each have one edge of outdegree 1. - David Callan, Oct 25 2004
Exponential Riordan array [exp(x)*Bessel_I(1,2x)/x, x]. - Paul Barry, Mar 09 2010
T(n, k) is the number of Dyck paths of semilength n and having k udu's (here u=(1,1) and d=(1,-1)). Note that reversing a path swaps u and d, thus udu becomes dud and vice versa. - Michael Somos, Feb 26 2020

Examples

			T(4,1)=6 because we have u(ud)dudud, udu(ud)dud, ududu(ud)d, uuudd(ud)d, u(ud)uuddd and uuu(ud)ddd (here u=(1,1), d=(1,-1) and the peaks at even height are shown between parentheses).
Triangle begins:
    1;
    1,    1;
    2,    2,    1;
    4,    6,    3,    1;
    9,   16,   12,    4,    1;
   21,   45,   40,   20,    5,    1;
   51,  126,  135,   80,   30,    6,   1;
  127,  357,  441,  315,  140,   42,   7,  1;
  323, 1016, 1428, 1176,  630,  224,  56,  8, 1;
  835, 2907, 4572, 4284, 2646, 1134, 336, 72, 9, 1;
  ...
		

Crossrefs

Programs

  • Maple
    T := proc(n,k) if k0, b(x-1, y-1, 0)*z^irem(t*y+t, 2), 0)+
          `if`(y (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0$2)):
    seq(T(n), n=1..16);  # Alois P. Heinz, May 12 2017
  • Mathematica
    (* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; t[n_, n_] = 1; t[n_, k_] := m[n - k]*Binomial[n - 1, k - 1]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2013 *)
  • PARI
    {T(n, k) = my(y, c, w); if( k<0 || k>=n, 0, w = vector(n);   forvec(v=vector(2*n, k, [0, 1]), c=y=0; for(k=1, 2*n, if( 0>(y += (-1)^v[k]), break)); if( y, next); for(i=1, 2*n-2, c += ([0, 1, 0] == v[i..i+2])); w[c+1]++); w[k+1])}; /* Michael Somos, Feb 26 2020 */

Formula

T(n, k) = binomial(n-1, k)*(Sum_{j=0..ceiling((n-k)/2)} binomial(n-k, j)*binomial(n-k-j, j-1))/(n-k) for 0 <= k < n; T(n, k)=0 for k >= n.
G.f.: G = G(t, z) satisfies z*G^2 - (1 + z - t*z)*G + 1 + z - t*z = 0.
T(n, k) = M(n-k-1)*binomial(n-1, k), where M(n) = A001006(n) are the Motzkin numbers.
T(n+1, k+1) = n*T(n, k)/(k+1). - David Callan, Dec 09 2004
G.f.: 1/(1-x-xy-x^2/(1-x-xy-x^2/(1-x-xy-x^2/(1-x-xy-x^2/(1-... (continued fraction). - Paul Barry, Aug 03 2009
E.g.f.: exp(x+xy)*Bessel_I(1,2x)/x. - Paul Barry, Mar 10 2010
Previous Showing 41-50 of 149 results. Next