cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 69 results. Next

A005473 Primes of form k^2 + 4.

Original entry on oeis.org

5, 13, 29, 53, 173, 229, 293, 733, 1093, 1229, 1373, 2029, 2213, 3253, 4229, 4493, 5333, 7229, 7573, 9029, 9413, 10613, 13229, 13693, 15629, 18229, 18773, 21613, 24029, 26573, 27893, 31333, 33493, 37253, 41213, 42853, 46229, 47093, 54293
Offset: 1

Views

Author

Keywords

Comments

a(n) mod 24 = 5 or 13 and if a(n) mod 24 =13 then a(n) mod 72 = 13.
From Artur Jasinski, Oct 30 2008: (Start)
Primes p such that the continued fraction of (1+sqrt(p))/2 has period 1.
Primes in A078370 = primes of the form 4*k^2 + 4*k + 5 = (2*k+1)^2 + 4.
(End)
Starting at a(3) all the primes in this sequence can be expressed as the following sum: ((2*k+1)*(2*k+3)+(2*k+3)*(2*k+5)+(2*k+5)+(2*k+7)+(2*k+7)*(2*k+9))/4 for some values (not all!) of k>=0. Thus for a(5)=173 the sum is (9*11 + 11*13 + 13*15 + 15*17)/4=173. - J. M. Bergot, Nov 03 2014

Examples

			a(2)=29 since 29=5^2+4 is prime.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A185086.
a(n)-4 is contained in A016754. (a(n)-5)/8 is contained in A000217. Either (a(n)-5)/24 is contained in A001318 (if a(n) mod 24=5) or (a(n)-13)/72 is contained in A000217 (if a(n) mod 24=13). Floor[a(n)/24] is contained in A001840.

Programs

  • Haskell
    a005473 n = a005473_list !! (n-1)
    a005473_list = filter ((== 1) . a010051') $ map (+ 4) a000290_list
    -- Reinhard Zumkeller, Mar 12 2012
  • Magma
    [a: n in [0..300] | IsPrime(a) where a is n^2+4]; // Vincenzo Librandi, Nov 30 2011
    
  • Maple
    select(isprime,[seq(4*k^2 + 4*k + 5, k=0..1000)]); # Robert Israel, Nov 02 2014
  • Mathematica
    Intersection[Table[n^2+4,{n,0,10^2}],Prime[Range[9*10^3]]] ...or... For[i=4,i<=4,a={};Do[If[PrimeQ[n^2+i],AppendTo[a,n^2+i]],{n,0,100}];Print["n^2+",i,",",a];i++ ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    aa = {}; Do[If[PrimeQ[4 k^2 + 4 k + 5], AppendTo[aa, 4 k^2 + 4 k + 5]], {k, 0, 200}]; aa (* Artur Jasinski, Oct 30 2008 *)
    Select[Table[n^2+4,{n,0,7000}],PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)
  • PARI
    for(n=1,1e3,if(isprime(t=n^2+4),print1(t","))) \\ Charles R Greathouse IV, Jul 05 2011
    

Formula

a(n) = 24*A056904(n)+m, where m=13 if A056904(n) is three times a triangular number (and n>0) and m=5 if A056904(n) is not three times a triangular number (or n=0).
For n>=2, a(n) = A098062(n-1). - Zak Seidov, Apr 12 2007

Extensions

More terms and additional comments from Henry Bottomley, Jul 06 2000

A156040 Number of compositions (ordered partitions) of n into 3 parts (some of which may be zero), where the first is at least as great as each of the others.

Original entry on oeis.org

1, 1, 3, 4, 6, 8, 11, 13, 17, 20, 24, 28, 33, 37, 43, 48, 54, 60, 67, 73, 81, 88, 96, 104, 113, 121, 131, 140, 150, 160, 171, 181, 193, 204, 216, 228, 241, 253, 267, 280, 294, 308, 323, 337, 353, 368, 384, 400, 417, 433, 451, 468, 486, 504, 523, 541, 561, 580, 600
Offset: 0

Views

Author

Jack W Grahl, Feb 02 2009, Feb 11 2009

Keywords

Comments

For n = 1, 2 these are just the triangular numbers. a(n) is always at least 1/3 of the corresponding triangular number, since each partition of this type gives up to three ordered partitions with the same cyclical order.
An alternative definition, which avoids using parts of size 0: a(n) is the third diagonal of A184957. - N. J. A. Sloane, Feb 27 2011
Diagonal sums of the triangle formed by rows T(2, k) k = 0, 1, ..., 2m of ascending m-nomial triangles (see A004737):
1
1 2 1
1 2 3 2 1
1 2 3 4 3 2 1
1 2 3 4 5 4 3 2 1
1 2 3 4 5 6 5 4 3 2 1
- Bob Selcoe, Feb 07 2014
Arrange A004396 in rows successively shifted to the right two spaces and sum the columns:
1 1 2 3 3 4 5 5 6 ...
1 1 2 3 3 4 5 ...
1 1 2 3 3 ...
1 1 2 ...
1 ...
------------------------------
1 1 3 4 6 8 11 13 17 ... - L. Edson Jeffery, Jul 30 2014
a(n) is the dimension of three-dimensional (2n + 2)-homogeneous polynomial vector fields with full tetrahedral symmetry (for a given orthogonal representation), and which are solenoidal. - Giedrius Alkauskas, Sep 30 2017
Also the number of compositions of n + 3 into three parts, the first at least as great as each of the other two. Also the number of compositions of n + 4 into three parts, the first strictly greater than each of the other two. - Gus Wiseman, Oct 09 2020

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 11*x^6 + 13*x^7 + 17*x^8 + 20*x^9 + ...
The a(4) = 6 compositions of 4 are: (4 0 0), (3 1 0), (3 0 1), (2 2 0), (2 1 1), (2 0 2).
From _Gus Wiseman_, Oct 05 2020: (Start)
The a(0) = 1 through a(7) = 13 triples of nonnegative integers summing to n where the first is at least as great as each of the other two are:
  (000)  (100)  (101)  (111)  (202)  (212)  (222)  (313)
                (110)  (201)  (211)  (221)  (303)  (322)
                (200)  (210)  (220)  (302)  (312)  (331)
                       (300)  (301)  (311)  (321)  (403)
                              (310)  (320)  (330)  (412)
                              (400)  (401)  (402)  (421)
                                     (410)  (411)  (430)
                                     (500)  (420)  (502)
                                            (501)  (511)
                                            (510)  (520)
                                            (600)  (601)
                                                   (610)
                                                   (700)
(End)
		

Crossrefs

For compositions into 4 summands see A156039; also see A156041 and A156042.
Cf. A184957, A071619 (bisection).
A001399(n-2)*2 is the strict case.
A001840(n-2) is the version with opposite relations.
A001840(n-1) is the version with strict opposite relations.
A069905 is the case with strict relations.
A014311 ranks 3-part compositions, with strict case A337453.
A014612 ranks 3-part partitions, with strict case A007304.

Programs

  • Maple
    a:= proc(n) local m, r; m := iquo(n, 6, 'r'); (4 +6*m +2*r) *m + [1, 1, 3, 4, 6, 8][r+1] end: seq(a(n), n=0..60); # Alois P. Heinz, Jun 14 2009
  • Mathematica
    nn = 58; CoefficientList[Series[x^3/(1 - x^2)^2/(1 - x^3) + 1/(1 - x^2)^2/(1 - x), {x, 0, nn}], x] (* Geoffrey Critzer, Jul 14 2013 *)
    CoefficientList[Series[(1 + x^2)/((1 + x) * (1 + x + x^2) * (1 - x)^3), {x, 0, 58}], x] (* L. Edson Jeffery, Jul 29 2014 *)
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 1, 3, 4, 6, 8}, 60] (* Harvey P. Dale, May 28 2015 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+3,{3}],#[[1]]>=#[[2]]&&#[[1]]>=#[[3]]&]],{n,0,15}] (* Gus Wiseman, Oct 05 2020*)
  • PARI
    {a(n) = n*(n+4)\6 + 1}; /* Michael Somos, Mar 26 2017 */

Formula

G.f.: (x^2+1) / (1-x-x^2+x^4+x^5-x^6). - Alois P. Heinz, Jun 14 2009
Slightly nicer g.f.: (1+x^2)/((1-x)*(1-x^2)*(1-x^3)). - N. J. A. Sloane, Apr 29 2011
a(n) = A007590(n+2) - A000212(n+2). - Richard R. Forberg, Dec 08 2013
a(2*n) = A071619(n+1). - L. Edson Jeffery, Jul 29 2014
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6), with a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 4, a(4) = 6, a(5) = 8. - Harvey P. Dale, May 28 2015
a(n) = (n^2 + 4*n + 3)/6 + IF(MOD(n, 2) = 0, 1/2) + IF(MOD(n, 3) = 1, -1/3). - Heinrich Ludwig, Mar 21 2017
a(n) = 1 + floor((n^2 + 4*n)/6). - Giovanni Resta, Mar 21 2017
Euler transform of length 4 sequence [1, 2, 1, -1]. - Michael Somos, Mar 26 2017
a(n) = a(-4 - n) for all n in Z. - Michael Somos, Mar 26 2017
0 = a(n)*(-1 + a(n) - 2*a(n+1) - 2*a(n+2) + 2*a(n+3)) + a(n+1)*(+1 + a(n+1) + 2*a(n+2) - 2*a(n+3)) + a(n+2)*(+1 + a(n+2) - 2*a(n+3)) + a(n+3)*(-1 + a(n+3)) for all n in Z. - Michael Somos, Mar 26 2017
a(n) = round((n+1)*(n+3)/6). - Bill McEachen, Feb 16 2021
Sum_{n>=0} 1/a(n) = 3/2 + Pi^2/36 + (tan(c1)-1)*c1 + 3*c2*sinh(c2)/(1+2*cosh(c2)), where c1 = Pi/(2*sqrt(3)) and c2 = Pi*sqrt(2)/3. - Amiram Eldar, Dec 10 2022
E.g.f.: ((16 + 15*x + 3*x^2)*cosh(x) + 2*exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)) + (7 + 15*x + 3*x^2)*sinh(x))/18. - Stefano Spezia, Apr 05 2023

Extensions

More terms from Alois P. Heinz, Jun 14 2009

A007980 Expansion of (1+x^2)/((1-x)^2*(1-x^3)).

Original entry on oeis.org

1, 2, 4, 7, 10, 14, 19, 24, 30, 37, 44, 52, 61, 70, 80, 91, 102, 114, 127, 140, 154, 169, 184, 200, 217, 234, 252, 271, 290, 310, 331, 352, 374, 397, 420, 444, 469, 494, 520, 547, 574, 602, 631, 660, 690, 721, 752, 784, 817, 850, 884, 919, 954, 990, 1027, 1064
Offset: 0

Views

Author

Keywords

Comments

Molien series for ternary self-dual codes over GF(3) of length 12n containing 11...1.
(1+x)*(1+x^2) / ((1-x)*(1-x^2)*(1-x^3)) is the Poincaré series [or Poincare series] (or Molien series) for H^*(O_3(q); F_2).
a(n) is the position of the n-th triangular number in the running sum of the (pseudo-Orloj) sequence 1,2,1,2,1,2,1...., cf. A028355. - Wouter Meeussen, Mar 10 2002
a(n) = [a(n-1) + (number of even terms so far in the sequence)]. Example: 14 is [10 + 4 even terms so far in the sequence (they are 0,2,4,10)]. See A096777 for the same construction with odd integers. - Eric Angelini, Aug 05 2007
The number of partitions of 2*n into at most 3 parts. - Colin Barker, Mar 31 2015
Also a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of a trigonal Rotational Energy Surface. An optimal basis for the expansion follows either decomposition: g1(x) = (1+x)(1+x^2)g2(x) or g1(x) = (1+x^2)x^(-1)g3(x), where g1(x), g2(x), g3(x) are the generating functions for sequences A007980, A001399, A001840. - Bradley Klee, Aug 06 2015
Also a(n) equals the number of linearly-independent terms at 4n-th order in the power series expansion of the symmetrized weight enumerator of a self-dual code of length n over Z4 that contains a vector (+/-)1^n and has all norms divisible by 8. An optimal basis for the expansion follows the decomposition: g1(x) = (1+x)(1+x^2)g2(x) where g1(x), g2(x) are the generating functions for sequences A007980, A001399. (Cf. Calderbank and Sloane, Corollary 5.) - Bradley Klee, Aug 06 2015
Also, a(n) is equal to the number of partitions of 2n+3 of length 3. Letting n=4, there are a(4)=10 partitions of 2n+3=11 of length 3: (9,1,1), (8,2,1), (7,3,1), (7,2,2), (6,4,1), (6,3,2), (5,5,1), (5,4,2), (5,3,3), (4,4,3). - John M. Campbell, Jan 30 2016
a(n) is the number of partitions of n into parts 1 (of two kinds), part 2 (occurring at most once), and parts 3. - Joerg Arndt, Oct 12 2020
Conjecture: a(n) is the maximum number of pieces a triangle can be cut into by n cevians. - Anton Zakharov, Apr 04 2017
Also, a(n) is the number of graphs which are double-triangle descendants of K_5 with n+6 triangles and 3 more vertices than triangles. See Laradji/Mishna/Yeats reference, proposition 3.6 for details. - Karen A. Yeats, Feb 21 2020

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 10*x^4 + 14*x^5 + 19*x^6 + 24*x^7 + ...
		

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 233.

Crossrefs

Programs

  • Maple
    with (combinat):seq(count(Partition((2*n+1)), size=3), n=1..56); # Zerinvary Lajos, Mar 28 2008
  • Mathematica
    Table[Ceiling[n (n+1)/3], {n, 56}]
    CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^3)),{x,0,60}],x] (* Vincenzo Librandi, Feb 25 2012 *)
    a[ n_] := Quotient[ n^2, 3] + n + 1; (* Michael Somos, Aug 23 2015 *)
    LinearRecurrence[{2,-1,1,-2,1},{1,2,4,7,10},60] (* Harvey P. Dale, Aug 24 2016 *)
  • PARI
    {a(n) = if( n<-1, a(-3-n), polcoeff( (1 + x^2) / ( (1 - x)^2 * (1 - x^3)) + x*O(x^n), n))}; /* Michael Somos, Jun 07 2003 */
    
  • PARI
    {a(n) = n^2\3 + n+1}; /* Michael Somos, Aug 23 2015 */
    
  • PARI
    a(n) = #partitions(2*n, ,[1,3]); \\ Michel Marcus, Feb 12 2016
    
  • PARI
    a(n) = #partitions(2*n+3, ,[3,3]); \\ Michel Marcus, Feb 12 2016

Formula

G.f.: (1 + x^2) / ((1 - x)^2 * (1 - x^3)). - Michael Somos, Jun 07 2003
a(n) = a(n-1) + a(n-3) -a(n-4) + 2 = a(-3-n) for all n in Z. - Michael Somos, Jun 07 2003
a(n) = ceiling((n+1)*(n+2)/3). - Paul Boddington, Jan 26 2004
a(n) = A192736(n+1) / (n+1). - Reinhard Zumkeller, Jul 08 2011
From Bruno Berselli, Oct 22 2010: (Start)
a(n) = ((n+1)*(n+2)+(2*cos(2*Pi*n/3)+1)/3)/3 = Sum_{i=1..n+1} A004396(i).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4.
a(n) = A002378(n+1)/3 if 3 divides A002378(n+1), a(n) = (A002378(n)+1)/3 otherwise. (End)
a(n) = A001840(n+1) + A001840(n-1). - R. J. Mathar, Aug 23 2015
From Michael Somos, Aug 23 2015: (Start)
Euler transform of length 4 sequence [2, 1, 1, -1].
a(n) = A001399(2*n) = A008796(2*n) = A008796(2*n + 3) = A069905(2*n + 3) = A211540(2*n + 5).
a(2*n) = A238705(n+1).
a(3*n - 1) = A049451(n).
a(3*n) = A003215(n).
a(3*n + 1) = A049450(n+1).
2*a(3*n - 1) = A005449(n).
2*a(3*n + 1) = A000326(n+1).
a(n+1) - a(n) = A004396(n+2). (End)
a(n) = floor((n^2+3*n+3)/3). - Giacomo Guglieri, May 01 2019
a(n) = A000212(n) + n+1. - Yuchun Ji, Oct 12 2020
Sum_{n>=0} 1/a(n) = (tanh(Pi/(2*sqrt(3)))-1)*Pi/sqrt(3) + 3. - Amiram Eldar, May 20 2023

A258708 Triangle read by rows: T(i,j) = integer part of binomial(i+j, i-j)/(2*j+1) for i >= 1 and j = 0..i-1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 7, 4, 1, 1, 7, 14, 12, 5, 1, 1, 9, 25, 30, 18, 6, 1, 1, 12, 42, 66, 55, 26, 7, 1, 1, 15, 66, 132, 143, 91, 35, 8, 1, 1, 18, 99, 245, 334, 273, 140, 45, 9, 1, 1, 22, 143, 429, 715, 728, 476, 204, 57, 10, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 12 2015

Keywords

Comments

In the Loh-Shannon-Horadam paper, Table 3 contains a typo (see Extensions lines).
T(n,k) = round(A258993(n,k)/(2*k+1)). - Reinhard Zumkeller, Jun 22 2015
From Reinhard Zumkeller, Jun 23 2015: (Start)
(using tables 4 and 5 of the Loh-Shannon-Horadam paper, p. 8f).
T(n, n-1) = 1;
T(n, n-2) = n for n > 1;
T(n, n-3) = A000969(n-3) for n > 2;
T(n, n-4) = A000330(n-3) for n > 3;
T(n, n-5) = T(2*n-7, 2) = A000970(n) for n > 4;
T(n, n-6) = A000971(n) for n > 5;
T(n, n-7) = A000972(n) for n > 6;
T(n, n-8) = A000973(n) for n > 7;
T(n, 1) = A001840(n-1) for n > 1;
T(2*n, n) = A001764(n);
T(3*n-1, 1) = A000326(n);
T(3*n, 2*n) = A002294(n);
T(4*n, 3*n) = A002296(n). (End)

Examples

			Triangle T(i, j) (with rows i >= 1 and columns j >= 0) begins as follows:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,   1;
  1,  5,  7,   4,   1;
  1,  7, 14,  12,   5,   1;
  1,  9, 25,  30,  18,   6,   1;
  1, 12, 42,  66,  55,  26,   7,  1;
  1, 15, 66, 132, 143,  91,  35,  8, 1;
  1, 18, 99, 245, 334, 273, 140, 45, 9, 1;
  ...
		

Crossrefs

Programs

  • Haskell
    a258708 n k = a258708_tabl !! (n-1) !! k
    a258708_row n = a258708_tabl !! (n-1)
    a258708_tabl = zipWith (zipWith ((round .) . ((/) `on` fromIntegral)))
                           a258993_tabl a158405_tabl
    -- Reinhard Zumkeller, Jun 22 2015, Jun 16 2015

Extensions

Corrected T(8,5) = 26 from Reinhard Zumkeller, Jun 13 2015

A337599 Number of unordered triples of positive integers summing to n, any two of which have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 9, 5, 10, 0, 16, 2, 14, 7, 17, 0, 27, 1, 21, 11, 24, 6, 36, 1, 30, 15, 37, 2, 51, 1, 41, 25, 44, 2, 64, 5, 58, 25, 57, 2, 81, 13, 69, 31, 70, 3, 108, 5, 80, 43, 85, 17, 123, 5, 97, 46, 120, 6, 144, 6
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A082024 at a(31) = 1, A082024(31) = 0.
The first relatively prime triple is (15,10,6), counted under a(31).

Examples

			The a(6) = 1 through a(16) = 5 partitions are (empty columns indicated by dots, A..G = 10..16):
  222  .  422  333  442  .  444  .  644  555  664  .  666  .  866
                    622     633     662  663  844     864     884
                            642     842  933  862     882     A55
                            822     A22       A42     963     A64
                                              C22     A44     A82
                                                      A62     C44
                                                      C33     C62
                                                      C42     E42
                                                      E22     G22
		

Crossrefs

A014612 intersected with A337694 ranks these partitions.
A200976 and A328673 count these partitions of any length.
A284825 is the case that is also relatively prime.
A307719 is the pairwise coprime instead of non-coprime version.
A335402 gives the positions of zeros.
A337604 is the ordered version.
A337605 is the strict case.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts strict pairwise coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Table[Length[Select[IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}]

A337603 Number of ordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 9, 9, 18, 15, 24, 21, 42, 24, 51, 30, 54, 42, 93, 45, 102, 54, 99, 69, 162, 66, 150, 87, 168, 96, 264, 93, 228, 120, 246, 126, 336, 132, 315, 168, 342, 162, 486, 165, 420, 216, 411, 213, 618, 207, 558, 258, 540, 258, 783, 264, 654, 324, 660
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 18 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (1,2,1)  (1,2,2)  (1,2,3)  (1,3,3)  (1,2,5)
           (2,1,1)  (1,3,1)  (1,3,2)  (1,5,1)  (1,3,4)
                    (2,1,2)  (1,4,1)  (2,2,3)  (1,4,3)
                    (2,2,1)  (2,1,3)  (2,3,2)  (1,5,2)
                    (3,1,1)  (2,3,1)  (3,1,3)  (1,6,1)
                             (3,1,2)  (3,2,2)  (2,1,5)
                             (3,2,1)  (3,3,1)  (2,3,3)
                             (4,1,1)  (5,1,1)  (2,5,1)
                                               (3,1,4)
                                               (3,2,3)
                                               (3,3,2)
                                               (3,4,1)
                                               (4,1,3)
                                               (4,3,1)
                                               (5,1,2)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

A014311 intersected with A333228 ranks these compositions.
A220377*6 is the strict case.
A337461 is the strict case except for any number of 1's.
A337601 is the unordered version.
A337602 considers all singletons to be coprime.
A337665 counts these compositions of any length, ranked by A333228 with complement A335238.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A007318 and A097805 count compositions by length.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A304711 ranks partitions whose distinct parts are pairwise coprime.
A305713 counts strict pairwise coprime partitions.
A327516 counts pairwise coprime partitions, with strict case A305713.
A333227 ranks pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

A011847 Triangle of numbers read by rows: T(n,k) = floor( C(n,k)/(k+1) ), where k=0..n-1 and n >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 7, 8, 7, 3, 1, 1, 4, 9, 14, 14, 9, 4, 1, 1, 4, 12, 21, 25, 21, 12, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 18, 41, 66, 77, 66, 41, 18, 5, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 1, 6, 26, 71, 143, 214, 245, 214, 143, 71, 26, 6, 1
Offset: 1

Views

Author

Keywords

Comments

When k+1 is a prime >= 2, then T(n,k) = floor(C(n,k)/(k+1)) is the number of aperiodic necklaces of n+1 beads of 2 colors such that k+1 of them are black and n-k of them are white. This is not true when k+1 is a composite >= 4. For more details, see the comments for sequences A032168 and A032169. - Petros Hadjicostas, Aug 27 2018
Differs from A245558 from row n = 9, k = 4 on. - M. F. Hasler, Sep 29 2018

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,   1;
  1, 2,  3,   2,   1;
  1, 3,  5,   5,   3,   1;
  1, 3,  7,   8,   7,   3,    1;
  1, 4,  9,  14,  14,   9,    4,    1;
  1, 4, 12,  21,  25,  21,   12,    4,    1;
  1, 5, 15,  30,  42,  42,   30,   15,    5,    1;
  1, 5, 18,  41,  66,  77,   66,   41,   18,    5,   1;
  1, 6, 22,  55,  99, 132,  132,   99,   55,   22,   6,   1;
  1, 6, 26,  71, 143, 214,  245,  214,  143,   71,  26,   6,   1;
  1, 7, 30,  91, 200, 333,  429,  429,  333,  200,  91,  30,   7,  1;
  1, 7, 35, 113, 273, 500,  715,  804,  715,  500, 273, 113,  35,  7, 1;
  1, 8, 40, 140, 364, 728, 1144, 1430, 1430, 1144, 728, 364, 140, 40, 8, 1;
...
More than the usual number of rows are shown in order to distinguish this triangle from A245558, from which it differs in rows 9, 11, 13, ....
From _Petros Hadjicostas_, Aug 27 2018: (Start)
For k+1 = 2 and n >= k+1 = 2, the n-th element of column k=1 above, [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] (i.e., the number A008619(n-2) = floor(n/2)), gives the number of aperiodic necklaces of n+1 beads of 2 colors such that 2 of them are black and n-1 of them are white. (The offset of sequence A008619 is 0.)
For k+1 = 3 and n >= k+1 = 3, the n-th element of column k=2 above, [0, 0, 1, 2, 3, 5, 7, 9, 12, ...] (i.e., the number A001840(n-2) = floor(C(n,2)/3)), gives the number of aperiodic necklaces of n+1 beads of 2 colors such that 3 of them are black and n-2 of them are white. (The offset of sequence A001840 is 0.)
For k+1 = 5 and n >= k+1 = 5, the n-th element of column k=4 above, [0, 0, 0, 0, 1, 3, 7, 14, 25, 42, ... ] (i.e., the number A011795(n) = floor(C(n,4)/5)), gives the number of aperiodic necklaces of n+1 beads of 2 colors such that 5 of them are black and n-4 of them are white. (The offset of sequence A011795 is 0.)
Counterexample for k+1 = 4: It can be proved that, for n >= k+1 = 4, the number of aperiodic necklaces of n+1 beads of 2 colors such that 4 of them are black and n-3 of them are white is (1/4)*Sum_{d|4} mu(d)*I(d|n+1)*C(floor((n+1)/d) - 1, 4/d - 1) = (1/4)*(C(n, 3) - I(2|n+1)*floor((n-1)/2)), where I(a|b) = 1 if integer a divides integer b, and 0 otherwise. For n odd >= 9, the number (1/4)*(C(n, 3) - I(2|n+1)*floor((n-1)/2)) = A006918(n-3) is not equal to floor(C(n,3)/4) = A011842(n).
(End)
		

Crossrefs

Sums: A095718 (row), A095719 (diagonal).

Programs

  • Magma
    A011847:= func< n,k | Floor(Binomial(n+1,k+1)/(n+1)) >;
    [A011847(n,k): k in [0..n-1], n in [1..20]]; // G. C. Greubel, Oct 20 2024
    
  • Mathematica
    Table[Floor[Binomial[n,k]/(k+1)],{n,20},{k,0,n-1}]//Flatten (* Harvey P. Dale, Jan 09 2019 *)
  • PARI
    A011847(n,k)=binomial(n,k)\(k+1) \\ M. F. Hasler, Sep 30 2018
    
  • SageMath
    def A011847(n,k): return binomial(n+1,k+1)//(n+1)
    flatten([[A011847(n,k) for k in range(n)] for n in range(1,21)]) # G. C. Greubel, Oct 20 2024

Formula

The rows are palindromic: T(n, k) = T(n, n-k-1) for n >= 1 and 0 <= k <= n-1.
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A095719(n). - G. C. Greubel, Oct 20 2024

A337601 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 7, 10, 7, 11, 11, 17, 12, 19, 12, 19, 17, 29, 16, 28, 19, 31, 23, 46, 23, 42, 25, 45, 27, 59, 31, 57, 34, 61, 37, 84, 38, 75, 42, 74, 47, 107, 45, 98, 51, 96, 56, 135, 54, 115, 63, 117, 67, 174, 65, 139, 75, 144, 75, 194
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A337600 at a(9) = 4, A337600(9) = 5.

Examples

			The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12):
  111  211  221  321  322  332  441  433  443  543  544  554
            311  411  331  431  522  532  533  552  553  743
                      511  521  531  541  551  651  661  752
                           611  711  721  722  732  733  761
                                     811  731  741  751  833
                                          911  831  922  851
                                               921  B11  941
                                               A11       A31
                                                         B21
                                                         C11
		

Crossrefs

A014612 intersected with A304711 ranks these partitions.
A220377 is the strict case.
A304709 counts these partitions of any length.
A307719 is the strict case except for any number of 1's.
A337600 considers singletons to be coprime.
A337603 is the ordered version.
A000217 counts 3-part compositions.
A000837 counts relatively prime partitions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

Formula

For n > 0, a(n) = A337600(n) - A079978(n).

A122196 Fractal sequence: count down by 2's from successive integers.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 5, 3, 1, 6, 4, 2, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 11, 9, 7, 5, 3, 1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 15, 13, 11, 9, 7, 5, 3, 1, 16, 14, 12, 10, 8, 6, 4, 2, 17, 15, 13, 11, 9, 7, 5, 3, 1, 18, 16, 14, 12, 10, 8, 6, 4, 2, 19, 17
Offset: 1

Views

Author

Keywords

Comments

First differences of A076644. Fractal - deleting the first occurrence of each integer leaves the original sequence. Also, original sequence plus 1. 1's occur at square indices. New values occur at indices m^2+1 and m^2+m+1.
Ordinal transform of A122197.
Row sums give A002620. - Gary W. Adamson, Nov 29 2008
From Gary W. Adamson, Dec 05 2009: (Start)
A122196 considered as an infinite lower triangular matrix * [1,2,3,...] =
A006918 starting (1, 2, 5, 8, 14, 20, 30, 40, ...).
Let A122196 = an infinite lower triangular matrix M; then lim_{n->infinity} M^n = A171238, a left-shifted vector considered as a matrix. (End)
A122196 is the fractal sequence associated with the dispersion A082156; that is, A122196(n) is the number of the row of A082156 that contains n. - Clark Kimberling, Aug 12 2011
From Johannes W. Meijer, Sep 09 2013: (Start)
The alternating row sums lead to A004524(n+2).
The antidiagonal sums equal A001840(n). (End)

Examples

			The first few rows of the sequence a(n) as a triangle T(n, k):
n/k  1   2   3
1    1
2    2
3    3,  1
4    4,  2
5    5,  3,  1
6    6,  4,  2
		

Crossrefs

Programs

  • Haskell
    a122196 n = a122196_list !! (n-1)
    a122196_list = concatMap (\x -> enumFromThenTo x (x - 2) 1) [1..]
    -- Reinhard Zumkeller, Jul 19 2012
  • Maple
    From Johannes W. Meijer, Sep 09 2013: (Start)
    a := proc(n) local t: t:=floor((sqrt(4*n-3)-1)/2): floor(sqrt(4*n-1))-2*((n-1) mod (t+1)) end: seq(a(n), n=1..92); # End first program.
    T := (n, k) -> n-2*k+2: seq(seq(T(n, k), k=1..floor((n+1)/2)), n=1..18); # End second program. (End)
  • Mathematica
    Flatten@Range[Range[10], 1, -2] (* Birkas Gyorgy, Apr 07 2011 *)

Formula

From Boris Putievskiy, Sep 09 2013: (Start)
a(n) = 2*(1-A122197(n)) + A000267(n-1).
a(n) = floor(sqrt(4*n-1)) - 2*((n-1) mod (t+1)), where t = floor((sqrt(4*n-3)-1)/2). (End)
From Johannes W. Meijer, Sep 09 2013: (Start)
T(n, k) = n - 2*k + 2, for n >= 1 and 1 <= k <= floor((n+1)/2).
T(n, k) = A002260(n, n-2*k+2). (End)

A337484 Number of ordered triples of positive integers summing to n that are neither strictly increasing nor strictly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 8, 13, 17, 22, 28, 35, 41, 50, 58, 67, 77, 88, 98, 111, 123, 136, 150, 165, 179, 196, 212, 229, 247, 266, 284, 305, 325, 346, 368, 391, 413, 438, 462, 487, 513, 540, 566, 595, 623, 652, 682, 713, 743, 776, 808, 841, 875, 910, 944, 981, 1017
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2020

Keywords

Examples

			The a(3) = 1 through a(7) = 13 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)
           (1,2,1)  (1,2,2)  (1,3,2)  (1,3,3)
           (2,1,1)  (1,3,1)  (1,4,1)  (1,4,2)
                    (2,1,2)  (2,1,3)  (1,5,1)
                    (2,2,1)  (2,2,2)  (2,1,4)
                    (3,1,1)  (2,3,1)  (2,2,3)
                             (3,1,2)  (2,3,2)
                             (4,1,1)  (2,4,1)
                                      (3,1,3)
                                      (3,2,2)
                                      (3,3,1)
                                      (4,1,2)
                                      (5,1,1)
		

Crossrefs

A140106 is the unordered case.
A242771 allows strictly increasing but not strictly decreasing triples.
A337481 counts these compositions of any length.
A001399(n - 6) counts unordered strict triples.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A069905 counts unordered triples.
A218004 counts strictly increasing or weakly decreasing compositions.
A332745 counts partitions with weakly increasing or weakly decreasing run-lengths.
A332835 counts compositions with weakly increasing or weakly decreasing run-lengths.
A337483 counts triples either weakly increasing or weakly decreasing.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&&!Greater@@#&]],{n,0,15}]

Formula

a(n) = 2*A242771(n - 1) - A000217(n - 1), n > 0.
2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) is the complement.
4*A001399(n - 6) = 4*A069905(n - 3) = 4*A211540(n - 1) is the strict case.
Conjectures from Colin Barker, Sep 13 2020: (Start)
G.f.: x^3*(1 + 2*x + 2*x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6.
(End)
Previous Showing 21-30 of 69 results. Next