cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 67 results. Next

A045445 Number of nonisomorphic systems of catafusenes for the unsymmetrical schemes (group C_s) with two appendages (see references for precise definition).

Original entry on oeis.org

0, 1, 6, 29, 132, 590, 2628, 11732, 52608, 237129, 1074510, 4893801, 22395420, 102943815, 475139070, 2201301575, 10234016880, 47731093715, 223273611810, 1047265325255, 4924606035900, 23211459517120, 109642275853176, 518959629394294, 2460993383491632, 11691102386417575
Offset: 1

Views

Author

Keywords

Comments

Number of 3-Motzkin paths of length n (i.e., lattice paths from (0,0) to (n,0) that do not go below the line y = 0 and consist of steps U = (1,1), D = (1,-1) and three types of steps H = (1,0)) that start with a U step. Example: a(4) = 29 because we have UDUD, UUDD, 9 UDHH paths, 9 UHDH paths and 9 UHHD paths. - Emeric Deutsch, Mar 26 2004
Here, n is the total number of hexagons in the system, which is usually denoted by h in most of the references below. In Cyvin, Brunvoll, and Cyvin (1992), Table 1, p. 28, it seems that the rooted hexagon is "distinguished", and the sequence is shifted by 1. - Petros Hadjicostas, May 26 2019

Crossrefs

Cf. A002212, A045829 (auto-convolution), A002057.

Programs

  • Maple
    a := n -> binomial(2*n+2,n+1)/(n+2) + add(binomial(2*k,k)*binomial(n-1,k-1)*(3*k-2*n-3)/(n-k+1)/(k+1),k=1..n): 0,seq(a(n),n=2..23);
    # Alternative:
    a := n -> (2*(n - 1)/(n + 2))*(binomial(2*n, n) / (n + 1))*hypergeom([-n-2, -n+2], [-n + 1/2], -1/4): seq(simplify(a(n)), n = 1..26); # Peter Luschny, Oct 23 2022
  • Mathematica
    a[n_] = Binomial[2n+2, n+1]/(n+2) + Sum[Binomial[2k, k]*Binomial[n-1, k-1]*(3k-2n-3)/(n-k+1)/(k+1), {k, 1, n}];
    a /@ Range[23] (* Jean-François Alcover, Jul 13 2011, after Maple *)
    Table[SeriesCoefficient[(1/2)*(7*x^2-6*x+1+(3*x-1)*Sqrt[5*x^2-6*x+1])/x^2,{x,0,n}],{n,1,23}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); concat([0],Vec((1/2)*(7*x^2-6*x+1+(3*x-1)*sqrt(5*x^2-6*x+1))/x^2)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: (1/2)*(7*x^2 - 6*x + 1 + (3*x-1)*sqrt(5*x^2-6*x+1))/x^2. - Vladeta Jovovic, Jul 19 2001
a(n) = A002212(n+1) - 3*A002212(n). Convolution of A002212 without the first term with itself. - Emeric Deutsch, Jul 24 2002
a(n) = binomial(2n+2, n+1)/(n+2) + Sum_{k=1..n} binomial(2k, k)*binomial(n-1, k-1)*(3k-2n-3)/((n-k+1)*(k+1)) (n >= 2). - Emeric Deutsch, Mar 26 2004
Recurrence: (n-2)*(n+2)*a(n) = 3*(n-1)*(2*n-1)*a(n-1) - 5*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 5^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
a(n) = (2/(n+1))*Sum_{m=0..n-1} C(n+1,m)*C(2*n-2*m+2,n-m-1). - Vladimir Kruchinin Oct 18 2022
Let h(n) = hypergeom([-n-2, -n+2], [-n+1/2], -1/4) then a(n) = A002057(n-2)*h(n) = (2*(n-1)/(n+2))*CatalanNumber(n)*h(n). - Peter Luschny, Oct 23 2022

Extensions

More terms from Vladeta Jovovic, Jul 19 2001

A115143 a(n) = -4*binomial(2*n-5, n-4)/n for n > 0 and a(0) = 1.

Original entry on oeis.org

1, -4, 2, 0, -1, -4, -14, -48, -165, -572, -2002, -7072, -25194, -90440, -326876, -1188640, -4345965, -15967980, -58929450, -218349120, -811985790, -3029594040, -11338026180, -42550029600, -160094486370, -603784920024, -2282138106804, -8643460269248, -32798844771700
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

Previous name: Fourth convolution of A115140.
a(n+4) := - convolution ( A000108(n+1) ), n=0,1,... - Tilman Neumann, Jan 05 2009
Self-convolution of A115141. - R. J. Mathar, Sep 26 2012

Crossrefs

Programs

  • Magma
    [1,-4,2] cat [-4*Binomial(2*n-5,n-4)/n: n in [3..30]]; // G. C. Greubel, Feb 12 2019
    
  • Maple
    A115143 := n -> `if`(n=0, 1, -4*binomial(2*n-5,n-4)/n):
    seq(A115143(n), n=0..28); # Peter Luschny, Feb 27 2017
    A115143List := proc(m) local A, P, n; A := [1,-4,2,0]; P := [-1,0];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A115143List(27); # Peter Luschny, Mar 26 2022
  • Mathematica
    Join[{1},Table[-4*Binomial[2n-5,n-4]/n,{n,30}]] (* Harvey P. Dale, Dec 01 2017 *)
    CoefficientList[Series[(1-4*x+2*x^2+(1-2*x)*Sqrt[1-4*x])/2, {x,0,30}], x] (* G. C. Greubel, Feb 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x+2*x^2 +(1-2*x)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
    
  • Sage
    [1,-4,2] + [-4*binomial(2*n-5,n-4)/n for n in (3..30)] # G. C. Greubel, Feb 12 2019

Formula

O.g.f.: 1/c(x)^4 = P(5, x) - x*P(4, x)*c(x) with the o.g.f. c(x) := (1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(5, x) = 1-3*x+x^2 and P(4, x) = 1-2*x.
a(n) = -C4(n-4), n>=4, with C4(n) := A002057(n) (fourth convolution of Catalan numbers). a(0)=1, a(1)=-4, a(2)=2, a(3)=0. [1, -4, 2] is row n=4 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
E.g.f.: 1 - 3*x + 1/2*x^2 - x*Q(0), where Q(k)= 1 - 2*x/(k+2 - (k+2)*(2*k+1)/(2*k+1 - (k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013
D-finite with recurrence n*(n-4)*a(n) -2*(2*n-5)*(n-3)*a(n-1)=0. - R. J. Mathar, Sep 15 2024

Extensions

Simpler name from Peter Luschny, Feb 27 2017

A006659 Number of closed meander systems of order n+1 with n components.

Original entry on oeis.org

2, 12, 56, 240, 990, 4004, 16016, 63648, 251940, 994840, 3922512, 15452320, 60843510, 239519700, 942871200, 3711935040, 14615744220, 57562286760, 226760523600, 893550621600, 3522078700140, 13887053160552
Offset: 1

Views

Author

D. Ivanov, S. K. Lando and A. K. Zvonkin (zvonkin(AT)labri.u-bordeaux.fr)

Keywords

Comments

a(n) is the total number of long interior inclines in all Dyck (n+2)-paths. An incline is a maximal subpath of like steps (all Us or all Ds); interior means it does not start or end the path; long means of length >= 2. Example: for n=1, the 5 Dyck 3-paths are shown with long interior inclines in uppercase: uuuddd, uududd, udUUdd, ududud, uuDDud and so a(1)=2. - David Callan, Jul 03 2006
a(n) is the number of corners in all parallelogram polyominoes of semiperimeter n+3. - Emeric Deutsch, Oct 09 2008

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 2*A002694(n+1).
A diagonal of triangle A008828.

Programs

  • Haskell
    a006659 n = 2 * a007318' (2 * n + 2) (n - 1)
    -- Reinhard Zumkeller, Jun 18 2012
    
  • Maple
    seq(2*binomial(2*n+2,n-1),n=1..22); # Emeric Deutsch, Oct 09 2008
  • Mathematica
    f[x_] := 32/((1 + Sqrt[1 - 4x])^4*Sqrt[1 - 4x]); CoefficientList[ Series[ f[x], {x, 0, 21}], x] (* Jean-François Alcover, Dec 07 2011 *)
    CoefficientList[Series[4*Exp[2x](BesselI[1,2*x]+ x(x-1)(BesselI[0,2x]+BesselI[1,2x]))/x^2,{x,0,22}],x]Table[n!,{n,0,22}] (* Stefano Spezia, May 10 2022 *)
  • PARI
    a(n)=2*binomial(2*n+2,n-1) \\ Charles R Greathouse IV, Dec 07 2011
    
  • PARI
    x='x+O('x^100); Vec(32/(sqrt(1-4*x)*(1+sqrt(1-4*x))^4)) \\ Altug Alkan, Oct 14 2015

Formula

G.f.: 32/(sqrt(1-4x)*(1+sqrt(1-4x))^4).
a(n) = (n+1) * A002057(n). - Ralf Stephan, Aug 31 2003
a(n) = 2*binomial(2n+2, n-1). - Emeric Deutsch, Oct 09 2008
a(n) = {(-56 - 30*n - 4*n^2)*a(n+1) + (8*n+12+n^2)*a(n+2), a(0)=2, a(1)=12}. - Simon Plouffe (master's thesis, 1992)
a(n) ~ 2^(2*n+3)/sqrt(n*Pi). - Charles R Greathouse IV, Dec 07 2011
E.g.f.: 4*exp(2*x)*(I_1(2*x) + x*(x - 1)*(I_0(2*x) + I_1(2*x)))/x^2, where I_n(x) is the modified Bessel function of the first kind. - Stefano Spezia, May 09 2022
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 23/12 - 13*Pi/(18*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 53*log(phi)/(5*sqrt(5)) - 37/20, where phi is the golden ratio (A001622). (End)

A099376 An inverse Chebyshev transform of x^3.

Original entry on oeis.org

0, 1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, 326876, 1188640, 4345965, 15967980, 58929450, 218349120, 811985790, 3029594040, 11338026180, 42550029600, 160094486370, 603784920024, 2282138106804, 8643460269248
Offset: 0

Views

Author

Paul Barry, Oct 13 2004

Keywords

Comments

The sequence is 0,0,0,1,0,4,0,14,0,...with zeros restored. Second binomial transform of (-1)^n*A003518(n). Second binomial transform of expansion of x^3*c(-x)^8, where c(x) is g.f. of A000108. The g.f. is transformed to x^3 under the Chebyshev transformation A(x) -> (1/(1+x^2))*A(x/(1+x^2)). For a sequence b(n), this corresponds to taking Sum_{k=0..floor(n/2)} C(n-k,k) * (-1)^k * b(n-2k), or Sum_{k=0..n} C((n+k)/2,k) * b(k) * (-1)^((n-k)/2) * (1+(-1)^(n-k))/2.
Let X_n be the set of all noncrossing set partitions of an n-element set which either do not contain {n-1,n} as a block, or which do not contain the block {n} whenever 1 and n-1 are in the same block. For n>0, (-1)^n*a(n) gives the value of the Möbius function of X_{n+2} ordered by dual refinement between the discrete and the full partition. For example, X_3 is a chain consisting of 3 elements and its Möbius function between least and greatest element therefore takes the value a(1)=0. - Henri Mühle, Jan 10 2017

Crossrefs

Partial sums of A026016.

Programs

  • Magma
    [Catalan(n+2) -2*Catalan(n+1): n in [0..30]]; // G. C. Greubel, May 05 2021
    
  • Mathematica
    Table[CatalanNumber[n+2] -2CatalanNumber[n+1], {n, 0, 30}] (* or *)
    Table[4 Binomial[2#+3, #]/(#+4) &[n-1], {n, 0, 30}] (* Michael De Vlieger, Jan 10 2017, latter after Harvey P. Dale at A002057 *)
  • PARI
    {a(n)= if(n<1, 0, n++; 2* binomial(2*n, n-2)/n)} /* Michael Somos, Apr 11 2007 */
    
  • Sage
    [catalan_number(n+2) -2*catalan_number(n+1) for n in (0..30)] # G. C. Greubel, May 05 2021

Formula

G.f.: (1-2*x)^4*( sqrt((1+2*x)/(1-2*x)) - 1)^8/(256*x^5).
a(n) = Sum_{k=0..n} (k+1)*C(n, (n-k)/2)*(-1)^k*( C(3, k) -3*C(2, k) +3*C(1, k) -C(0, k) )*(1+(-1)^(n-k))/(n+k+2).
a(n) = A002057(n-1). - Michael Somos, Jul 31 2005
Given an ellipse with eccentricity e and major and minor axis a and b respectively, then ((a-b)/ (a+b))^2 = 1*(e/2)^4 +4*(e/2)^6 +14*(e/2)^8 +48*(e/2)^10 + ... - Michael Somos, Apr 11 2007
E.g.f.: exp(2x)*(Bessel_I(1,2x) - Bessel_I(3,2x)). - Paul Barry, Jun 04 2007
D-finite with recurrence (n+3)*(n-1)*a(n) -2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Sep 26 2012
a(n) = A000108(n+2) - 2*A000108(n+1) for n>0. - Henri Mühle, Jan 10 2017, corrected Sep 25 2021
G.f.: ( (1-2*x)*c(x) - (1-x) )/x^2, where c(x) is the gf of A000108. - G. C. Greubel, May 05 2021
From Peter Bala, Aug 30 2023: (Start)
a(n) = 2*n/((n+2)*(n+3)) * binomial(2*n+2, n+1).
a(n) = 2*Sum_{k = 0..n-1} 1/(n+1)*binomial(n+1, k)*binomial(n+1, k+2). (End)

A102071 Pairwise sums of general ballot numbers (A002026).

Original entry on oeis.org

1, 3, 7, 17, 42, 106, 272, 708, 1865, 4963, 13323, 36037, 98123, 268737, 739833, 2046207, 5682915, 15842505, 44315637, 124348275, 349911204, 987212856, 2791964574, 7913642086, 22477090679, 63964370301, 182353459733, 520735012027, 1489362193002, 4266018891562, 12236183875496, 35142703099692, 101055137177563
Offset: 1

Views

Author

Ralf Stephan, Dec 30 2004

Keywords

Crossrefs

First differences of A005554. Partial sums of A026269. 3rd column of A348840.

Programs

  • Mathematica
    CoefficientList[Series[(4x(1+x))/(1-x+Sqrt[1-2x-3x^2])^2,{x,0,40}],x] (* Harvey P. Dale, Feb 26 2013 *)
  • Maxima
    a(n):=1/n*sum((binomial(j,n-1-j)+4*binomial(j,n-2-j)+3*binomial(j,n-3-j))*binomial(n,j),j,0,n); /* Vladimir Kruchinin, Mar 08 2016 */
    
  • PARI
    z='z+O('z^66); Vec(4*z*(1+z)/(1-z+sqrt(1-2*z-3*z^2))^2) \\ Joerg Arndt, Mar 08 2016

Formula

G.f.: (4*x*(1+x))/(1-x+sqrt(1-2*x-3*x^2))^2.
a(n) = (1/n) * Sum_{j=0..n} ((binomial(j,n-1-j)+4*binomial(j,n-2-j) + 3*binomial(j,n-3-j))*binomial(n,j)). - Vladimir Kruchinin, Mar 08 2016
a(n) ~ 4*3^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 08 2016
a(n) = A001006(n+1) - A001006(n-1). - Gennady Eremin, Sep 23 2021
D-finite with recurrence (n+3)*a(n) + (-3*n-5)*a(n-1) + (-n+3)*a(n-2) + 3*(n-3)*a(n-3) = 0. - R. J. Mathar, Nov 01 2021
From Peter Bala, Feb 02 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*A002057(k).
G.f.: x/(1 + x)*c(x/(1 + x))^4, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

A003446 Number of nonequivalent dissections of a polygon into n triangles by nonintersecting diagonals rooted at a cell up to rotation and reflection.

Original entry on oeis.org

0, 1, 1, 2, 6, 16, 52, 170, 579, 1996, 7021, 24892, 89214, 321994, 1170282, 4277352, 15715249, 57999700, 214939846, 799478680, 2983699498, 11169391168, 41929537871, 157807451672, 595340479694, 2250901216266, 8527700012092, 32369067177176
Offset: 0

Views

Author

Keywords

Comments

Original name: Triangulated (n+2)-gons rooted at one of the triangles.
Also, the total number of atom-rooted polyenoids. - Sean A. Irvine, Oct 05 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A295259.

Programs

  • Mathematica
    c[x_] = (1 - Sqrt[1 - 4*x])/(2*x); d[x_] = 1 + x*c[x^2]; f[x_] = (x/6)*(c[x]^3 + 2*c[x^3] + 3*d[x]*c[x^2]); CoefficientList[ Series[ f[x], {x, 0, 27}], x] (* Jean-François Alcover, Sep 30 2011, after g.f. *)

Formula

Let c(x) = (1-sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers (A000108), let d(x) = 1+x*c(x^2). Then g.f. is (x/6)*(c^3+2*subs(x=x^3, c)+3*d*subs(x=x^2, c)).
Recurrence: n*(n+1)*(n+2)*(12*n^10 - 396*n^9 + 5713*n^8 - 47417*n^7 + 250708*n^6 - 883176*n^5 + 2104831*n^4 - 3368071*n^3 + 3489712*n^2 - 2133004*n + 587808)*a(n) = 2*(n-1)*n*(n+1)*(24*n^10 - 756*n^9 + 10262*n^8 - 78647*n^7 + 374743*n^6 - 1154043*n^5 + 2323495*n^4 - 3057578*n^3 + 2632172*n^2 - 1456776*n + 412560)*a(n-1) + 4*(n-1)*n*(12*n^11 - 384*n^10 + 5377*n^9 - 43234*n^8 + 219811*n^7 - 731024*n^6 + 1576767*n^5 - 2055172*n^4 + 1195025*n^3 + 527398*n^2 - 1223056*n + 534240)*a(n-2) - 2*(72*n^13 - 2484*n^12 + 37950*n^11 - 339019*n^10 + 1971954*n^9 - 7887993*n^8 + 22425262*n^7 - 46437513*n^6 + 71577166*n^5 - 83189763*n^4 + 71509420*n^3 - 41716412*n^2 + 13543200*n - 1451520)*a(n-3) - 4*(n-1)*n*(2*n - 7)*(24*n^10 - 756*n^9 + 10262*n^8 - 78647*n^7 + 374743*n^6 - 1154043*n^5 + 2323495*n^4 - 3057578*n^3 + 2632172*n^2 - 1456776*n + 412560)*a(n-4) - 8*(n-1)*(2*n - 9)*(12*n^11 - 384*n^10 + 5377*n^9 - 43234*n^8 + 219811*n^7 - 731024*n^6 + 1576767*n^5 - 2055172*n^4 + 1195025*n^3 + 527398*n^2 - 1223056*n + 534240)*a(n-5) + 16*(n-6)*(2*n - 11)*(2*n - 9)*(12*n^10 - 276*n^9 + 2689*n^8 - 14529*n^7 + 48009*n^6 - 101629*n^5 + 142510*n^4 - 137838*n^3 + 93836*n^2 - 39760*n + 6720)*a(n-6). - Vaclav Kotesovec, Aug 13 2013
a(n) ~ 4^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013

Extensions

Name edited by Andrew Howroyd, Nov 20 2017

A090749 a(n) = 12 * C(2n+1,n-5) / (n+7).

Original entry on oeis.org

1, 12, 90, 544, 2907, 14364, 67298, 303600, 1332045, 5722860, 24192090, 100975680, 417225900, 1709984304, 6962078952, 28192122176, 113649492522, 456442180920, 1827459250276, 7297426411968, 29075683360185, 115631433392020, 459124809056550, 1820529677650320, 7210477496434485
Offset: 5

Views

Author

Philippe Deléham, Feb 15 2004

Keywords

Comments

Also a diagonal of A059365 and A009766. See also A000108, A002057, A003517, A003518, A003519.
Number of standard tableaux of shape (n+6,n-5). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

  • Mathematica
    Table[12*Binomial[2*n + 1, n - 5]/(n + 7), {n,5,50}] (* G. C. Greubel, Feb 07 2017 *)
  • PARI
    for(n=5,50, print1(12*binomial(2*n+1,n-5)/(n+7), ", ")) \\ G. C. Greubel, Feb 07 2017

Formula

a(n) = A039598(n, 5) = A033184(n+7, 12).
G.f.: x^5*C(x)^12 with C(x) g.f. of A000108(Catalan).
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=11, a(n-6)=(-1)^(n-11)*coeff(charpoly(A,x),x^11). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-6) for n > 5. - Reinhard Zumkeller, Jul 12 2012
From Karol A. Penson, Nov 21 2016: (Start)
O.g.f.: z^5 * 4^6/(1+sqrt(1-4*z))^12.
Recurrence: (-4*(n-5)^2-58*n+80)*a(n+1)-(-n^2-6*n+27)*a(n+2)=0, a(0),a(1),a(2),a(3),a(4)=0,a(5)=1,a(6)=12, n>=5.
Asymptotics: (-903+24*n)*4^n*sqrt(1/n)/(sqrt(Pi)*n^2).
Integral representation as n-th moment of a signed function W(x) on x=(0,4),in Maple notation: a(n+5)=int(x^n*W(x),x=0..4),n=0,1,..., where W(x)=(256/231)*sqrt(4-x)*JacobiP(5, 1/2, 1/2, (1/2)*x-1)*x^(11/2)/Pi and JacobiP are Jacobi polynomials. Note that W(0)=W(4)=0. (End).
From Ilya Gutkovskiy, Nov 21 2016: (Start)
E.g.f.: 6*exp(2*x)*BesselI(6,2*x)/x.
a(n) ~ 3*2^(2*n+3)/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Sep 26 2022: (Start)
Sum_{n>=5} 1/a(n) = 88699/15120 - 71*Pi/(27*sqrt(3)).
Sum_{n>=5} (-1)^(n+1)/a(n) = 102638*log(phi)/(75*sqrt(5)) - 22194839/75600, where phi is the golden ratio (A001622). (End)

Extensions

Missing term 113649492522 inserted by Ilya Gutkovskiy, Dec 07 2016

A119245 Triangle, read by rows, defined by: T(n,k) = (4*k+1)*binomial(2*n+1, n-2*k)/(2*n+1) for n >= 2*k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 14, 20, 1, 42, 75, 9, 132, 275, 54, 1, 429, 1001, 273, 13, 1430, 3640, 1260, 104, 1, 4862, 13260, 5508, 663, 17, 16796, 48450, 23256, 3705, 170, 1, 58786, 177650, 95931, 19019, 1309, 21, 208012, 653752, 389367, 92092, 8602, 252, 1
Offset: 0

Views

Author

Paul D. Hanna, May 10 2006

Keywords

Comments

Closely related to triangle A118919.
Row n contains 1+floor(n/2) terms.
From Peter Bala, Mar 20 2009: (Start)
Combinatorial interpretations of T(n,k):
1) The number of standard tableaux of shape (n-2*k,n+2*k).
2) The entries in column k are (with an offset of 2*k) the number of n-th generation vertices in the tree of sequences with unit increase labeled by 4*k. See [Sunik, Theorem 4]. (End)

Examples

			Triangle begins:
     1;
     1;
     2,     1;
     5,     5;
    14,    20,    1;
    42,    75,    9;
   132,   275,   54,   1;
   429,  1001,  273,  13;
  1430,  3640, 1260, 104,  1;
  4862, 13260, 5508, 663, 17; ...
		

Crossrefs

Cf. A119244 (eigenvector), A088218, A000108, A000344, A001392; A118919 (variant), A158483; A002057, A002894.

Programs

  • Mathematica
    f1 = (1-Sqrt[1-4*x])/(2*x);
    DeleteCases[CoefficientList[Normal@Series[f1/(1 - x^2*y*f1^4),{x,0,10},{y,0,5}],{x,y}],0,Infinity]//TableForm  (* Bradley Klee, Feb 26 2018 *)
    Table[(1+4*k)/(n+1+2*k)*Binomial[2*n,n+2*k],{n,0,10},{k,0,Floor[n/2]}]//TableForm (* Bradley Klee, Feb 26 2018 *)
  • PARI
    T(n,k)=(4*k+1)*binomial(2*n+1,n-2*k)/(2*n+1)

Formula

G.f.: A(x,y) = f/(1-x^2*y*f^4), where f=(1-sqrt(1-4*x))/(2*x) is the Catalan g.f. (A000108).
Row sums equal A088218(n) = C(2*n-1,n).
T(n,0) = A000108(n) (the Catalan numbers).
T(n,1) = A000344(n).
T(n,2) = A001392(n).
Sum_{k=0..floor(n/2)} k*T(n,k) = A000346(n-2).
Eigenvector is defined by: A119244(n) = Sum_{k=0..[n\2]} T(n,k)*A119244(k).
...
T(n,k) = (4*k+1)/(n+2*k+1)*binomial(2*n,n+2*k). Compare with A158483. - Peter Bala, Mar 20 2009
T(n,k) = A039599(n, 2*k). - Johannes W. Meijer, Sep 04 2013
A002894(n) = Sum_{k=0..floor(n/2)} (binomial(2k,k)^2)*(4^(n-2*k))*T(n,k). - Bradley Klee, Feb 26 2018

A120989 Level of the first leaf (in preorder traversal) of a binary tree, summed over all binary trees with n edges. A binary tree is a rooted tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child.

Original entry on oeis.org

2, 9, 34, 123, 440, 1573, 5642, 20332, 73644, 268090, 980628, 3603065, 13293540, 49234605, 182991450, 682341000, 2551955340, 9570762990, 35985909180, 135628219350, 512302356384, 1939078493154, 7353556121924, 27936898370248, 106313496846200
Offset: 1

Views

Author

Emeric Deutsch, Jul 30 2006

Keywords

Comments

a(n) is the number of lattice paths from (0,0) to (n+2,n+2) using E(1,0) and N(0,1) as steps that have exactly two E steps below subdiagonal y = x-1. - Ran Pan, Feb 01 2016
a(n) is the number of permutations pi of [n+3] such that s(pi)=p456...(n+3), where s is West's stack-sorting map and p=132. The same statement is true if p=231 or p=312. - Colin Defant, Jan 14 2019

Examples

			a(1)=2 because for each of the trees / and \ the level of the first leaf is 1.
		

Crossrefs

Programs

  • Magma
    [2*n*(7*n+13)*Binomial(2*n+1,n)/((n+2)*(n+3)*(n+4)): n in [1..30]]; // Vincenzo Librandi, Feb 01 2016
    
  • Maple
    a:=n->2*n*(7*n+13)*binomial(2*n+1,n)/(n+2)/(n+3)/(n+4): seq(a(n),n=1..27);
  • Mathematica
    Table[2 n (7 n + 13) Binomial[2 n + 1, n] / ((n + 2) (n + 3) (n + 4)), {n, 30}] (* Vincenzo Librandi, Feb 01 2016 *)
  • PARI
    a(n)=2*n*(7*n+13)*binomial(2*n+1,n)/prod(i=2,4,n+i) \\ Charles R Greathouse IV, Feb 01 2016

Formula

a(n) = Sum_{k=1..n} k*A120988(n,k).
a(n) = 2*n*(7n+13)*binomial(2n+1,n)/((n+2)(n+3)(n+4)).
G.f.: z*(1+C)*C^4, where C = (1-sqrt(1-4*z))/(2z) is the Catalan function.
G.f.: 2*(1+2*z-sqrt(1-4*z))/(1-2*z+sqrt(1-4*z))^2.
D-finite with recurrence -(n-1)*(7*n+6)*(n+4)*a(n) +2*n*(7*n+13)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Aug 22 2016
a(n) ~ c*4^n*n^(-3/2), with c = 28/sqrt(Pi). - Stefano Spezia, Oct 19 2023

A262543 Number of rooted asymmetrical polyenoids of type U_n* having n edges.

Original entry on oeis.org

0, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, 33592, 117572, 416024, 1485800, 5348880, 19389690, 70715340, 259289580, 955277400, 3534526380, 13128240840, 48932534040, 182965127280, 686119227300, 2579808294648, 9723892802904, 36734706144304, 139067101832008, 527495903500720
Offset: 1

Views

Author

N. J. A. Sloane, Oct 06 2015

Keywords

Comments

Essentially the same as A068875 and A002420. See those entries for much more information.

Examples

			G.f. = 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 84*x^6 + 264*x^7 + 858*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [0] cat [2*Catalan(n-1): n in [2..40]]; // Vincenzo Librandi, Feb 28 2017
    
  • Maple
    A262543List := proc(m) local A, P, n; A := [0, 2]; P := [2];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A262543List(29); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[If[n==1,0,2 CatalanNumber[n-1]], {n,1,26}] (* Peter Luschny, Feb 27 2017 *)
    Join[{0}, Rest[CoefficientList[Series[2 (1 - Sqrt[1 - 4 x])/(2 x), {x, 0, 30}], x]]] (* Vincenzo Librandi, Feb 28 2017 *)
  • PARI
    a(n)=if(n>1, 2*binomial(2*n-2,n-1)/n, 0) \\ Charles R Greathouse IV, Feb 28 2017

Formula

From Gennady Eremin, Feb 22 2021: (Start)
G.f.: 1 - 2*x - sqrt(1 - 4*x).
G.f.: x*(A(x) - 1), where A(x) is the g.f. of A068875. (End)
Previous Showing 31-40 of 67 results. Next