cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 301 results. Next

A038622 Triangular array that counts rooted polyominoes.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 13, 9, 4, 1, 35, 26, 14, 5, 1, 96, 75, 45, 20, 6, 1, 267, 216, 140, 71, 27, 7, 1, 750, 623, 427, 238, 105, 35, 8, 1, 2123, 1800, 1288, 770, 378, 148, 44, 9, 1, 6046, 5211, 3858, 2436, 1296, 570, 201, 54, 10, 1, 17303, 15115, 11505, 7590, 4302, 2067, 825, 265
Offset: 0

Views

Author

N. J. A. Sloane, torsten.sillke(AT)lhsystems.com

Keywords

Comments

The PARI program gives any row k and any n-th term for this triangular array in square or right triangle array format. - Randall L Rathbun, Jan 20 2002
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Triangle read by rows = partial sums of A064189 terms starting from the right. - Gary W. Adamson, Oct 25 2008
Column k has e.g.f. exp(x)*(Bessel_I(k,2x)+Bessel_I(k+1,2x)). - Paul Barry, Mar 08 2011

Examples

			From _Paul Barry_, Mar 08 2011: (Start)
Triangle begins
     1;
     2,    1;
     5,    3,    1;
    13,    9,    4,   1;
    35,   26,   14,   5,   1;
    96,   75,   45,  20,   6,   1;
   267,  216,  140,  71,  27,   7,  1;
   750,  623,  427, 238, 105,  35,  8, 1;
  2123, 1800, 1288, 770, 378, 148, 44, 9, 1;
Production matrix is
  2, 1,
  1, 1, 1,
  0, 1, 1, 1,
  0, 0, 1, 1, 1,
  0, 0, 0, 1, 1, 1,
  0, 0, 0, 0, 1, 1, 1,
  0, 0, 0, 0, 0, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 1, 1
(End)
		

Crossrefs

Cf. A005773 (1st column), A005774 (2nd column), A005775, A066822, A000244 (row sums).

Programs

  • Haskell
    import Data.List (transpose)
    a038622 n k = a038622_tabl !! n !! k
    a038622_row n = a038622_tabl !! n
    a038622_tabl = iterate (\row -> map sum $
       transpose [tail row ++ [0,0], row ++ [0], [head row] ++ row]) [1]
    -- Reinhard Zumkeller, Feb 26 2013
  • Maple
    T := (n,k) -> simplify(GegenbauerC(n-k,-n+1,-1/2)+GegenbauerC(n-k-1,-n+1,-1/2)):
    for n from 1 to 9 do seq(T(n,k),k=1..n) od; # Peter Luschny, May 12 2016
  • Mathematica
    nmax = 10; t[n_ /; n > 0, k_ /; k >= 1] := t[n, k] = t[n-1, k-1] + t[n-1, k] + t[n-1, k+1]; t[0, 0] = 1; t[0, ] = 0; t[?Negative, ?Negative] = 0; t[n, 0] := 2 t[n-1, 0] + t[n-1, 1]; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]](* Jean-François Alcover, Nov 09 2011 *)
  • PARI
    s=[0,1]; {A038622(n,k)=if(n==0,1,t=(2*(n+k)*(n+k-1)*s[2]+3*(n+k-1)*(n+k-2)*s[1])/((n+2*k-1)*n); s[1]=s[2]; s[2]=t; t)}
    

Formula

a(n, k) = a(n-1, k-1) + a(n-1, k) + a(n-1, k+1) for k>0, a(n, k) = 2*a(n-1, k) + a(n-1, k+1) for k=0.
Riordan array ((sqrt(1-2x-3x^2)+3x-1)/(2x(1-3x)),(1-x-sqrt(1-2x-3x^2))/(2x)). Inverse of Riordan array ((1-x)/(1+x+x^2),x/(1+x+x^2)). First column is A005773(n+1). Row sums are 3^n (A000244). If L=A038622, then L*L' is the Hankel matrix for A005773(n+1), where L' is the transpose of L. - Paul Barry, Sep 18 2006
T(n,k) = GegenbauerC(n-k,-n+1,-1/2) + GegenbauerC(n-k-1,-n+1,-1/2). In this form also the missing first column of the triangle 1,1,1,3,7,19,... (cf. A002426) can be computed. - Peter Luschny, May 12 2016
From Peter Bala, Jul 12 2021: (Start)
T(n,k) = Sum_{j = k..n} binomial(n,j)*binomial(j,floor((j-k)/2)).
Matrix product of Riordan arrays ( 1/(1 - x), x/(1 - x) ) * ( (1 - x*c(x^2))/(1 - 2*x), x*c(x^2) ) = A007318 * A061554 (triangle version), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
Triangle equals A007318^(-1) * A092392 * A007318. (End)
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + x)*(1 + x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

Extensions

More terms from David W. Wilson

A081671 Expansion of e.g.f. exp(4x) * I_0(2x).

Original entry on oeis.org

1, 4, 18, 88, 454, 2424, 13236, 73392, 411462, 2325976, 13233628, 75682512, 434662684, 2505229744, 14482673832, 83940771168, 487610895942, 2838118247064, 16547996212044, 96635257790352, 565107853947444, 3308820294176016, 19395905063796312, 113814537122646432
Offset: 0

Views

Author

Paul Barry, Mar 28 2003

Keywords

Comments

Binomial transform of A026375. Second binomial transform of A000984.
Largest coefficient of (1+4x+x^2)^n. - Paul Barry, Dec 15 2003
Row sums of triangle in A124574. - Philippe Deléham, Sep 27 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in 4 colors. - N-E. Fahssi, Feb 05 2008
Diagonal of rational function 1/(1 - (x^2 + 4*x*y + y^2)). - Gheorghe Coserea, Aug 01 2018

Crossrefs

Column 4 of A292627.
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • Maple
    seq(simplify(2^n*hypergeom([-n,1/2], [1], -2)),n=0..23); # Peter Luschny, Apr 26 2016
    seq(simplify(GegenbauerC(n,-n,-2)),n=0..23); # Peter Luschny, May 09 2016
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[(1-2*x)*(1-6*x)],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
  • Maxima
    a(n):=coeff(expand((1+4*x+x^2)^n),x^n);
    makelist(a(n),n,0,30); /* Emanuele Munarini, Apr 27 2012 */
    
  • PARI
    x='x+O('x^66); Vec(1/sqrt((1-2*x)*(1-6*x))) \\ Joerg Arndt, May 07 2013
    
  • PARI
    {a(n) = sum(k=0, n\2, 4^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019

Formula

a(n) = Sum_{m=0..n} Sum_{k=0..m} C(n, m)*C(m, k)*C(2k, k).
G.f.: 1/sqrt((1-2*x)*(1-6*x)). - Vladeta Jovovic, Oct 09 2003
a(n) = Sum_{k=0..n} 2^(n-k) * C(n, k) * C(2*k, k). - Paul Barry, Jan 27 2005
a(n) = Sum_{k=0..n} 6^(n-k) * (-1)^k * C(n,k) * C(2*k,k). - Paul D. Hanna, Dec 09 2018
D-finite with recurrence: n*a(n) = 4*(2*n-1)*a(n-1) - 12*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ sqrt(3/(2*Pi*n))*6^n. - Vaclav Kotesovec, Oct 13 2012
a(n) = 2^n*hypergeom([-n,1/2], [1], -2). - Peter Luschny, Apr 26 2016
a(n) = GegenbauerC(n, -n, -2). - Peter Luschny, May 09 2016
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (2 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (6 - 4*x^2)^n/sqrt(1 - x^2) dx . - Peter Bala, Jan 27 2020
From Peter Bala, Jan 10 2022: (Start)
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 4*x + 17*x^2 + 76*x^3 + 354*x^4 + ... is the o.g.f. of A005572.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = (1/2)^n * Sum_{k=0..n} 3^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A111808 Left half of trinomial triangle (A027907), triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 7, 1, 4, 10, 16, 19, 1, 5, 15, 30, 45, 51, 1, 6, 21, 50, 90, 126, 141, 1, 7, 28, 77, 161, 266, 357, 393, 1, 8, 36, 112, 266, 504, 784, 1016, 1107, 1, 9, 45, 156, 414, 882, 1554, 2304, 2907, 3139, 1, 10, 55, 210, 615, 1452, 2850, 4740, 6765, 8350
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 17 2005

Keywords

Comments

Consider a doubly infinite chessboard with squares labeled (n,k), ranks or rows n in Z, files or columns k in Z (Z denotes ...,-2,-1,0,1,2,... ); number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,n-k). - Harrie Grondijs, May 27 2005. Cf. A026300, A114929, A114972.
Triangle of numbers C^(2)(n-1,k), n>=1, of combinations with repetitions from elements {1,2,...,n} over k, such that every element i, i=1,...,n, appears in a k-combination either 0 or 1 or 2 times (cf. also A213742-A213745). - Vladimir Shevelev and Peter J. C. Moses, Jun 19 2012

References

  • Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.

Crossrefs

Row sums give A027914; central terms give A027908;
T(n, 0) = 0;
T(n, 1) = n for n>1;
T(n, 2) = A000217(n) for n>1;
T(n, 3) = A005581(n) for n>2;
T(n, 4) = A005712(n) for n>3;
T(n, 5) = A000574(n) for n>4;
T(n, 6) = A005714(n) for n>5;
T(n, 7) = A005715(n) for n>6;
T(n, 8) = A005716(n) for n>7;
T(n, 9) = A064054(n-5) for n>8;
T(n, n-5) = A098470(n) for n>4;
T(n, n-4) = A014533(n-3) for n>3;
T(n, n-3) = A014532(n-2) for n>2;
T(n, n-2) = A014531(n-1) for n>1;
T(n, n-1) = A005717(n) for n>0;
T(n, n) = central terms of A027907 = A002426(n).

Programs

  • Maple
    T := (n,k) -> simplify(GegenbauerC(k, -n, -1/2)):
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 09 2016
  • Mathematica
    Table[GegenbauerC[k, -n, -1/2], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)

Formula

(1 + x + x^2)^n = Sum(T(n,k)*x^k: 0<=k<=n) + Sum(T(n,k)*x^(2*n-k): 0<=k
T(n, k) = A027907(n, k) = Sum_{i=0,..,(k/2)} binomial(n, n-k+2*i) * binomial(n-k+2*i, i), 0<=k<=n.
T(n, k) = GegenbauerC(k, -n, -1/2). - Peter Luschny, May 09 2016

Extensions

Corrected and edited by Johannes W. Meijer, Oct 05 2010

A077042 Square array read by falling antidiagonals of central polynomial coefficients: largest coefficient in expansion of (1 + x + x^2 + ... + x^(n-1))^k = ((1-x^n)/(1-x))^k, i.e., the coefficient of x^floor(k*(n-1)/2) and of x^ceiling(k*(n-1)/2); also number of compositions of floor(k*(n+1)/2) into exactly k positive integers each no more than n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 6, 7, 4, 1, 1, 0, 1, 10, 19, 12, 5, 1, 1, 0, 1, 20, 51, 44, 19, 6, 1, 1, 0, 1, 35, 141, 155, 85, 27, 7, 1, 1, 0, 1, 70, 393, 580, 381, 146, 37, 8, 1, 1, 0, 1, 126, 1107, 2128, 1751, 780, 231, 48, 9, 1, 1, 0, 1, 252, 3139
Offset: 0

Author

Henry Bottomley, Oct 22 2002

Keywords

Comments

From Michel Marcus, Dec 01 2012: (Start)
A pair of numbers written in base n are said to be comparable if all digits of the first number are at least as big as the corresponding digit of the second number, or vice versa. Otherwise, this pair will be defined as uncomparable. A set of pairwise uncomparable integers will be called anti-hierarchic.
T(n,k) is the size of the maximal anti-hierarchic set of integers written with k digits in base n.
For example, for base n=2 and k=4 digits:
- 0 (0000) and 15 (1111) are comparable, while 6 (0110) and 9 (1001) are uncomparable,
- the maximal antihierarchic set is {3 (0011), 5 (0101), 6 (0110), 9 (1001), 10 (1010), 12 (1100)} with 6 elements that are all pairwise uncomparable. (End)

Examples

			Rows of square array start:
  1,    0,    0,    0,    0,    0,    0, ...
  1,    1,    1,    1,    1,    1,    1, ...
  1,    1,    2,    3,    6,   10,   20, ...
  1,    1,    3,    7,   19,   51,  141, ...
  1,    1,    4,   12,   44,  155,  580, ...
  1,    1,    5,   19,   85,  381, 1751, ...
  ...
Read by antidiagonals:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 2, 1, 1;
  0, 1, 3, 3, 1, 1;
  0, 1, 6, 7, 4, 1, 1;
  ...
		

Crossrefs

Programs

Formula

By the central limit theorem, T(n,k) is roughly n^(k-1)*sqrt(6/(Pi*k)).
T(n,k) = Sum{j=0,h/n} (-1)^j*binomial(k,j)*binomial(k-1+h-n*j,k-1) with h=floor(k*(n-1)/2), k>0. - Michel Marcus, Dec 01 2012

A094061 Number of n-moves paths of a king starting and ending at the origin of an infinite chessboard.

Original entry on oeis.org

1, 0, 8, 24, 216, 1200, 8840, 58800, 423640, 3000480, 21824208, 158964960, 1171230984, 8668531872, 64574844048, 483114856224, 3630440899800, 27379154692032, 207172490054816, 1572194644061184, 11962847247681616, 91242602561647680, 697438669619791008
Offset: 0

Author

Matthijs Coster, Apr 29 2004

Keywords

Comments

The chessboard here is the full four-quadrant board Z X Z.
This is an analog of A054474 for walks on a square grid where the steps can be made diagonally as well.
a(n) is the constant term in the expansion of ((x + 1/x) * (y + 1/y) + x^2 + 1/x^2 + y^2 + 1/y^2)^n. - Seiichi Manyama, Nov 03 2019

References

  • D. Joyner, "Adventures in Group Theory: Rubik's Cube, Merlin's Machine and Other Mathematical Toys", Johns Hopkins University Press, 2002, pp. 79

Crossrefs

Programs

  • Maple
    a:=array(0..30):a[0]:=1:a[1]:=0:a[2]:=8:a[3]:=24:for n from 3 to 29 do a[n+1]:= (n*(5*n+1)*a[n]+2*(15*n^2+6*n-5)*a[n-1]-8*(5*n^2-23*n+21)*a[n-2]-64*(n-2)^2*a[n-3])/(n+1)^2: print(n+1,a[n+1]) od:
    # second Maple program
    a:= proc(n) option remember; `if`(n<3, (n-1)*(9*n-2)/2,
          ((n-1)*(3*n-1)*(3*n-4) *a(n-1)
          +(108*n^3-396*n^2+452*n-152) *a(n-2)
          +32*(3*n-2)*(n-2)^2 *a(n-3))/ (n^2*(3*n-5)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 02 2012
  • Mathematica
    a[n_]:=Module[{f=(x+x^-1+y+y^-1+x y+x^-1y+x^-1y^-1+x y^-1)^n,s}, s=Series[f,{x,0,0},{y,0,0}]; SeriesCoefficient[s,{0,0}]]; Table[a[n], {n,1,22}] (* Armin Vollmer (Armin.Vollmer(AT)kabelleipzig.de), May 01 2006 *)
    CoefficientList[Series[1/(1+4*x)*LegendreP[-1/2,1-32*x*(1+x)/(1+4*x)^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 16 2013 *)
  • Maxima
    a[0]:1$
    a[1]:0$
    a[2]:8$
    a[3]:24$
    a[n]:=((n-1)*(3*n-1)*(3*n-4) *a[n-1]
          +(108*n^3-396*n^2+452*n-152) *a[n-2]
          +32*(3*n-2)*(n-2)^2 *a[n-3])/ (n^2*(3*n-5))$
    A094061(n):=a[n]$
    makelist(A094061(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^2)} \\ Seiichi Manyama, Oct 29 2019
    
  • PARI
    {a(n) = polcoef(polcoef(((x+1/x)*(y+1/y)+x^2+1/x^2+y^2+1/y^2)^n, 0), 0)} \\ Seiichi Manyama, Nov 03 2019

Formula

D-finite with recurrence (n+1)^2*a(n+1) = n*(5*n+1)*a(n) + 2*(15*n^2+6*n-5)*a(n-1) - 8*(5*n^2-23*n+21) *a(n-2) - 64*(n-2)^2*a(n-3).
G.f.: (2/(Pi*(1+4*x))) * EllipticK(4*sqrt(x*(1+x))/(1+4*x)) = 1/(1+4*x) * hypergeom([1/2,1/2], [1], 16*(x*(1+x))/(1+4*x)^2). - Sergey Perepechko, Jan 15 2011
a(n) ~ 2^(3*n+1)/(3*Pi*n). - Vaclav Kotesovec, Aug 16 2013
a(n) = (1/Pi^2) * Integral_{y = 0..Pi} Integral_{x = 0..Pi} (2*cos(x) + 2*cos(y) + 4*cos(x)*cos(y))^n dx dy. - Peter Bala, Feb 14 2017
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^2. - Seiichi Manyama, Oct 29 2019
From Peter Bala, Feb 08 2022: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the stronger congruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 5 and positive integers n and k. (End)
a(n) = Sum_{j = 0..n} Sum_{k = 0..j} binomial(2*j,j)^2*binomial(j,k)* binomial(n+j-k,2*j)*(-4)^(n-j-k). - Peter Bala, Mar 19 2022

Extensions

More terms from and entry improved by Sergey Perepechko, Sep 06 2004

A201552 Square array read by diagonals: T(n,k) = number of arrays of n integers in -k..k with sum equal to 0.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 7, 19, 19, 1, 9, 37, 85, 51, 1, 11, 61, 231, 381, 141, 1, 13, 91, 489, 1451, 1751, 393, 1, 15, 127, 891, 3951, 9331, 8135, 1107, 1, 17, 169, 1469, 8801, 32661, 60691, 38165, 3139, 1, 19, 217, 2255, 17151, 88913, 273127, 398567, 180325, 8953, 1
Offset: 1

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Equivalently, the number of compositions of n*(k + 1) into n parts with maximum part size 2*k+1. - Andrew Howroyd, Oct 14 2017

Examples

			Some solutions for n=7, k=3:
..1...-2....1...-1....1...-3....0....0....1....2....3...-3....0....2....1....0
.-1....2...-2....2....2....2...-1....0....2....2...-2...-1...-2...-1....2...-1
.-3...-1....1...-3....2....1....0....1....3....0....2....0...-1....2...-2...-1
..0....3....3....3...-2...-2....3....3...-3...-3....0...-1...-1...-1....0....3
..2...-1...-1...-1...-3....0...-3...-2....1...-1...-1....1....1....0....3...-1
..2...-1...-3....0....2....3....0....1...-2....1....1....1....3...-2...-3...-3
.-1....0....1....0...-2...-1....1...-3...-2...-1...-3....3....0....0...-1....3
Table starts:
.   1,      1,       1,        1,        1,         1,...
.   3,      5,       7,        9,       11,        13,...
.   7,     19,      37,       61,       91,       127,...
.  19,     85,     231,      489,      891,      1469,...
.  51,    381,    1451,     3951,     8801,     17151,...
. 141,   1751,    9331,    32661,    88913,    204763,...
. 393,   8135,   60691,   273127,   908755,   2473325,...
.1107,  38165,  398567,  2306025,  9377467,  30162301,...
.3139, 180325, 2636263, 19610233, 97464799, 370487485,...
		

Programs

  • Maple
    seq(print(seq(add((-1)^i*binomial(n, i)*binomial((k+1)*n-(2*k+1)*i-1, n-1), i = 0..floor((1/2)*n)), k = 1..10)), n = 1..10); # Peter Bala, Oct 16 2024
  • Mathematica
    comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}];  T[n_, k_] := comps[n*(k + 1), 2*k + 1, n]; Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
  • PARI
    comps(r, m, k)=sum(i=0, floor((r-k)/m), (-1)^i*binomial(r-1-i*m, k-1)*binomial(k, i));
    T(n,k) = comps(n*(k+1), 2*k+1, n); \\ Andrew Howroyd, Oct 14 2017

Formula

Empirical: T(n,k) = Sum_{i=0..floor(k*n/(2*k+1))} (-1)^i*binomial(n,i)* binomial((k+1)*n-(2*k+1)*i-1,n-1).
The above empirical formula is true and can be derived from the formula for the number of compositions with given number of parts and maximum part size. - Andrew Howroyd, Oct 14 2017
Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k + 1
T(3,k) = 3*k^2 + 3*k + 1
T(4,k) = (16/3)*k^3 + 8*k^2 + (14/3)*k + 1
T(5,k) = (115/12)*k^4 + (115/6)*k^3 + (185/12)*k^2 + (35/6)*k + 1
T(6,k) = (88/5)*k^5 + 44*k^4 + 46*k^3 + 25*k^2 + (37/5)*k + 1
T(7,k) = (5887/180)*k^6 + (5887/60)*k^5 + (2275/18)*k^4 + (357/4)*k^3 + (6643/180)*k^2 + (259/30)*k + 1
T(m,k) = (1/Pi)*integral_{x=0..Pi} (sin((k+1/2)x)/sin(x/2))^m dx; for the proof see Dirichlet Kernel link; so f(m,n) = (1/Pi)*integral_{x=0..Pi} (Sum_{k=-n..n} exp(I*k*x))^m dx = sum(integral(exp(I(k_1+...+k_m).x),x=0..Pi)/Pi,{k_1,...,k_m=-n..n}) = sum(delta_0(k1+...+k_m),{k_1,...,k_m=-n..n}) = number of arrays of m integers in -n..n with sum zero. - Yalcin Aktar, Dec 03 2011
T(n, k) = the constant term in the expansion of (x^(-k) + ... + x^(-1) + 1 + x + ... + x^k)^n = the coefficient of x^(k*n) (i.e., the central coefficient) in the expansion of (1 + x + ... + x^(2*k))^n = the coefficient of x^(k*n) in the expansion of ( (1 - x^(2*k+1))/(1 - x) )^n. Expanding the binomials and collecting terms gives the empirical formula above. - Peter Bala, Oct 16 2024

A071675 Array read by antidiagonals of trinomial coefficients.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 3, 3, 1, 0, 0, 2, 6, 4, 1, 0, 0, 1, 7, 10, 5, 1, 0, 0, 0, 6, 16, 15, 6, 1, 0, 0, 0, 3, 19, 30, 21, 7, 1, 0, 0, 0, 1, 16, 45, 50, 28, 8, 1, 0, 0, 0, 0, 10, 51, 90, 77, 36, 9, 1, 0, 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1, 0, 0, 0, 0, 1, 30, 141, 266, 266
Offset: 0

Author

Henry Bottomley, May 30 2002

Keywords

Comments

Read as a number triangle, this is the Riordan array (1, x(1+x+x^2)) with T(n,k) = Sum_{i=0..floor((n+k)/2)} C(k,2i+2k-n)*C(2i+2k-n,i). Rows start {1}, {0,1}, {0,1,1}, {0,1,2,1}, {0,0,3,3,1},... Row sums are then the trinomial numbers A000073(n+2). Diagonal sums are A013979. - Paul Barry, Feb 15 2005
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th antidiagonal of the array. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213742. For example, s_1(n)=binomial(n,1)=n is the first column of A213742 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213742 for n>1, etc. In particular (see comment in A213742) in cases k=4,5,6,7,8, s_k(n) is A005718(n+2), A005719(n), A005720(n), A001919(n), A064055(n+3), respectively. - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012

Examples

			Rows start
1, 0,  0,  0,  0,  0, ...;
1, 1,  1,  0,  0,  0,  0, ...;
1, 2,  3,  2,  1,  0,  0, ...;
1, 3,  6,  7,  6,  3,  1, 0, ...;
1, 4, 10, 16, 19, 16, 10, 4, 1, ...; etc.
		

Crossrefs

Visible version of A027907. Row sums are 3^n, i.e. A000244. Central diagonal is A002426. Cf. A071676 for a slight variation.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n - k - j, j]*Binomial[k, n - k - j], {j, 0,
    Floor[(n - k)/2]}]; Table[T[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) starting with T(0, 0)=1. See A027907 for more.
As a number triangle, T(n, k) = Sum_{i=0..floor((n-k)/2)} C(n-k-i, i) * C(k, n-k-i). - Paul Barry, Apr 26 2005

A089627 T(n,k) = binomial(n,2*k)*binomial(2*k,k) for 0 <= k <= n, triangle read by rows.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 0, 0, 1, 12, 6, 0, 0, 1, 20, 30, 0, 0, 0, 1, 30, 90, 20, 0, 0, 0, 1, 42, 210, 140, 0, 0, 0, 0, 1, 56, 420, 560, 70, 0, 0, 0, 0, 1, 72, 756, 1680, 630, 0, 0, 0, 0, 0, 1, 90, 1260, 4200, 3150, 252, 0, 0, 0, 0, 0, 1, 110, 1980, 9240, 11550, 2772, 0, 0, 0, 0, 0, 0, 1, 132, 2970, 18480, 34650, 16632, 924, 0, 0, 0, 0, 0, 0, 1, 156, 4290, 34320, 90090, 72072, 12012, 0, 0, 0, 0, 0, 0, 0, 1, 182, 6006, 60060, 210210, 252252, 84084, 3432, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Author

Philippe Deléham, Dec 31 2003

Keywords

Comments

The rows of this triangle are the gamma vectors of the n-dimensional type B associahedra (Postnikov et al., p.38 ). Cf. A055151 and A101280. - Peter Bala, Oct 28 2008
T(n,k) is the number of Grand Motzkin paths of length n having exactly k upsteps (1,1). Cf. A109189, A055151. - Geoffrey Critzer, Feb 05 2014
The result Sum_{k = 0..floor(n/2)} C(n,2*k)*C(2*k,k)*x^k = (sqrt(1 - 4*x))^n* P(n,1/sqrt(1 - 4*x)) expressing the row polynomials of this triangle in terms of the Legendre polynomials P(n,x) is due to Catalan. See Laden, equation 7.10, p. 56. - Peter Bala, Mar 18 2018

Examples

			Triangle begins:
  1
  1,   0
  1,   2,    0
  1,   6,    0,     0
  1,  12,    6,     0,     0
  1,  20,   30,     0,     0,     0
  1,  30,   90,    20,     0,     0,   0
  1,  42,  210,   140,     0,     0,   0, 0
  1,  56,  420,   560,    70,     0,   0, 0, 0
  1,  72,  756,  1680,   630,     0,   0, 0, 0, 0
  1,  90, 1260,  4200,  3150,   252,   0, 0, 0, 0, 0
  1, 110, 1980,  9240, 11550,  2772,   0, 0, 0, 0, 0, 0
  1, 132, 2970, 18480, 34650, 16632, 924, 0, 0, 0, 0, 0, 0
Relocating the zeros to be evenly distributed and interpreting the triangle as the coefficients of polynomials
                     1
                     1
                 1 + 2 q^2
                 1 + 6 q^2
            1 + 12 q^2 +  6 q^4
            1 + 20 q^2 + 30 q^4
       1 + 30 q^2 +  90 q^4 +  20 q^6
       1 + 42 q^2 + 210 q^4 + 140 q^6
  1 + 56 q^2 + 420 q^4 + 560 q^6 + 70 q^8
then the substitution q^k -> 1/(floor(k/2)+1) gives the Motzkin numbers A001006.
- _Peter Luschny_, Aug 29 2011
		

Crossrefs

Row sums A002426. Antidiagonal sums A098479.

Programs

  • Maple
    for i from 0 to 12 do seq(binomial(i, j)*binomial(i-j, j), j=0..i) od; # Zerinvary Lajos, Jun 07 2006
    # Alternatively:
    R := (n, x) -> simplify(hypergeom([1/2 - n/2, -n/2], [1], 4*x)):
    Trow := n -> seq(coeff(R(n,x), x, j), j=0..n):
    seq(print(Trow(n)), n=0..9); # Peter Luschny, Mar 18 2018
  • Mathematica
    nn=15;mxy=(1-x-(1-2x+x^2-4x^2y)^(1/2))/(2x^2 y);Map[Select[#,#>0&]&, CoefficientList[Series[1/(1-x-2y x^2mxy),{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 05 2014 *)
  • PARI
    T(n,k) = binomial(n,2*k)*binomial(2*k,k);
    concat(vector(15, n, vector(n, k, T(n-1, k-1)))) \\ Gheorghe Coserea, Sep 01 2018

Formula

T(n,k) = n!/((n-2*k)!*k!*k!).
E.g.f.: exp(x)*BesselI(0, 2*x*sqrt(y)). - Vladeta Jovovic, Apr 07 2005
O.g.f.: ( 1 - x - sqrt(1 - 2*x + x^2 - 4*x^2*y))/(2*x^2*y). - Geoffrey Critzer, Feb 05 2014
R(n, x) = hypergeom([1/2 - n/2, -n/2], [1], 4*x) are the row polynomials. - Peter Luschny, Mar 18 2018
From Peter Bala, Jun 23 2023: (Start)
T(n,k) = Sum_{i = 0..k} (-1)^i*binomial(n, i)*binomial(n-i, k-i)^2. Cf. A063007(n,k) = Sum_{i = 0..k} binomial(n, i)^2*binomial(n-i, k-i).
T(n,k) = A063007(n-k,k); that is, the diagonals of this table are the rows of A063007. (End)

A084615 a(n) = sum of absolute values of coefficients of (1+x-3x^2)^n.

Original entry on oeis.org

1, 5, 23, 99, 401, 1525, 6345, 27331, 122083, 520805, 2117293, 8301441, 34517395, 147850771, 628707981, 2675100397, 10920387779, 43701876543, 180872758207, 769658883325, 3243501133481, 13617178197183, 56148348498199
Offset: 0

Author

Paul D. Hanna, Jun 01 2003

Keywords

Crossrefs

Programs

  • Magma
    A084614:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-3)^j: j in [0..k]]) >;
    [(&+[Abs(A084614(n,k)): k in [0..2*n]]): n in [0..50]]; // G. C. Greubel, Mar 25 2023
    
  • Mathematica
    Table[Total[Abs[CoefficientList[Expand[(1+x-3x^2)^n],x]]],{n,0,30}] (* Harvey P. Dale, Mar 26 2013 *)
  • PARI
    for(n=0,40,S=0; for(k=0,2*n,t=polcoeff((1+x-3*x^2)^n,k,x); S=S+abs(t)); print1(S","))
    
  • SageMath
    @CachedFunction
    def A084614(n,k): return sum(binomial(n,k-j)*binomial(k-j,j)*(-3)^j for j in range(k+1))
    def A084615(n): return sum(abs(A084614(n,k)) for k in range(2*n+1))
    [A084615(n) for n in range(50)] # G. C. Greubel, Mar 25 2023

Formula

a(n) = Sum_{k=0..2*n} abs( Sum_{j=0..k} binomial(n,k-j)*binomial(k-j,j)*(-3)^j ). - G. C. Greubel, Mar 25 2023

A027914 T(n,0) + T(n,1) + ... + T(n,n), T given by A027907.

Original entry on oeis.org

1, 2, 6, 17, 50, 147, 435, 1290, 3834, 11411, 34001, 101400, 302615, 903632, 2699598, 8068257, 24121674, 72137547, 215786649, 645629160, 1932081885, 5782851966, 17311097568, 51828203475, 155188936431, 464732722872
Offset: 0

Keywords

Comments

Let b(n)=a(n) mod 2; then b(n)=1/2+(-1)^n*(1/2-A010060(floor(n/2))). - Benoit Cloitre, Mar 23 2004
Binomial transform of A027306. Inverse binomial transform of = A032443. Hankel transform is {1, 2, 3, 4, ..., n, ...}. - Philippe Deléham, Jul 20 2005
Sums of rows of the triangle in A111808. - Reinhard Zumkeller, Aug 17 2005
Number of 3-ary words of length n in which the number of 1's does not exceed the number of 0's. - David Scambler, Aug 14 2012
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 07 2022

Programs

  • Haskell
    a027914 n = sum $ take (n + 1) $ a027907_row n
    -- Reinhard Zumkeller, Jan 22 2013
  • Maple
    a := n -> simplify((3^n + GegenbauerC(n,-n,-1/2))/2):
    seq(a(n), n=0..25); # Peter Luschny, May 12 2016
  • Mathematica
    CoefficientList[ Series[ (1 + x + Sqrt[1 - 2x - 3x^2])/(2 - 4x - 6x^2), {x, 0, 26}], x] (* Robert G. Wilson v, Jul 21 2015 *)
    Table[(3^n + Hypergeometric2F1[1/2 - n/2, -n/2, 1, 4])/2, {n, 0, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
    f[n_] := Plus @@ Take[ CoefficientList[ Sum[x^k, {k, 0, 2}]^n, x], n +1]; Array[f, 26, 0] (* Robert G. Wilson v, Jan 30 2017 *)
  • PARI
    a(n)=sum(i=0,n,polcoeff((1+x+x^2)^n,i,x))
    
  • PARI
    a(n)=sum(i=0,n,sum(j=0,n,sum(k=0,j,if(i+j+k-n,0,(n!/i!/j!/k!)))))
    
  • PARI
    x='x+O('x^99); Vec((1+x+(1-2*x-3*x^2)^(1/2))/(2*(1-2*x-3*x^2))) \\ Altug Alkan, May 12 2016
    

Formula

a(n) = ( 3^n + A002426(n) )/2; lim n -> infinity a(n+1)/a(n) = 3; 3^n < 2*a(n) < 3^(n+1). - Benoit Cloitre, Sep 28 2002
From Benoit Cloitre, Jan 26 2003: (Start)
a(n) = (1/2) *( Sum{k = 0..n} binomial(n,k)*binomial(n-k,k) + 3^n );
a(n) = Sum_{k = 0..n} Sum_{i = 0..k} binomial(n,i)*binomial(n-i,k);
a(n) = 3^n/2*(1+c/sqrt(n)+O(n^-1/2)) where c=0.5... (End)
c = sqrt(3/Pi)/2 = 0.4886025119... - Vaclav Kotesovec, May 07 2016
a(n) = n!*Sum(i+j+k=n, 1/(i!*j!*k!)) 0<=i<=n, 0<=k<=j<=n. - Benoit Cloitre, Mar 23 2004
G.f.: (1+x+sqrt(1-2x-3x^2))/(2(1-2x-3x^2)); a(n) = Sum_{k = 0..n} floor((k+2)/2)*Sum_{i = 0..floor((n-k)/2)} C(n,i)*C(n-i,i+k)* ((k+1)/(i+k+1)). - Paul Barry, Sep 23 2005; corrected Jan 20 2008
D-finite with recurrence: n*a(n) +(-5*n+4)*a(n-1) +3*(n-2)*a(n-2) +9*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 02 2012
G.f.: (1+x+1/G(0))/(2*(1-2*x-3*x^2)), where G(k)= 1 + x*(2+3*x)*(4*k+1)/(4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 30 2013
From Peter Bala, Jul 21 2015: (Start)
a(n) = [x^n]( 3*x - 1/(1 - x) )^n.
1 + x*exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + ... is the o.g.f. for A005773. (End)
a(n) = (3^n + GegenbauerC(n,-n,-1/2))/2. - Peter Luschny, May 12 2016
Previous Showing 61-70 of 301 results. Next