cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 144 results. Next

A054977 a(0)=2, a(n)=1 for n >= 1.

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Henry Gould, May 29 2000

Keywords

Comments

Arises in Gilbreath-Proth conjecture; see A036262.
a(n) is also the continued fraction for (3+sqrt(5))/2. - Enrique Pérez Herrero, May 16 2010
a(n) is also the denominator for odd Bernoulli Numbers. - Enrique Pérez Herrero, Jul 17 2010
a(n) = 3 - A040000(n); a(n) = A182579(n+1,1). - Reinhard Zumkeller, May 07 2012
From Paul Curtz, Feb 04 2014: (Start)
Difference table of a(n):
2, 1, 1, 1, 1, 1, 1, ...
-1, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, ...
-1, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, ...
-1, 0, 0, 0, 0, 0, 0, ... .
a(n) is an autosequence of second kind. Its inverse binomial transform is the signed sequence with the main diagonal (here A000038) double of the following diagonal (here A000007). Here the other diagonals are also A000007.
b(n) = A000032(n) - a(n) = 0, 0, 2, 3, 6, 10, 17, 28, ... = 0, followed by A001610(n) is the autosequence of second kind preceding A000032(n).
The corresponding autosequence of first kind, 0 followed by 1's, is A057427(n).
The Akiyama-Tanigawa transform applied to a(n) yields a(n).
(End)
Harmonic or factorial (base) expansion of e, cf. MathWorld link. - M. F. Hasler, Nov 25 2018
Decimal expansion of 19/90. - Elmo R. Oliveira, Aug 09 2024

Crossrefs

Programs

Formula

a(n) = A027642(2*n+1). - Enrique Pérez Herrero, Jul 17 2010
G.f.: (2-x)/(1-x). - Wolfdieter Lang, Oct 05 2014
Sum_{k>=1} a(n)/n! = exp(1). - G. C. Greubel, Nov 26 2018

A119456 Numbers m such that the Bernoulli number B_{10*m} has denominator 66.

Original entry on oeis.org

1, 5, 17, 37, 47, 59, 61, 67, 71, 73, 79, 85, 101, 107, 127, 137, 139, 149, 163, 167, 185, 197, 199, 223, 227, 229, 257, 263, 269, 277, 283, 289, 295, 305, 307, 311, 313, 317, 331, 335, 347, 353, 355, 365, 373, 379, 383, 389, 395, 397, 401, 433, 449, 457, 461
Offset: 1

Views

Author

Alexander Adamchuk, Jul 26 2006

Keywords

Comments

Subset of A002181 (inverse of the Euler totient function).
Most terms are primes except for n = 12, 21, 32, 33, 34, 40, ... because a(12) = 85 = 5*17, a(21) = 185 = 5*37, a(32) = 289 = 17*17, a(33) = 295 = 5*59, a(34) = 305 = 5*61, a(40) = 335 = 5*67, ... Each composite term appears to be a product of two primes from previous terms or a square of a prime from previous terms.
Composite terms are the products of powers of primes that are factors of previous terms. For example, there are terms equal to 17, 17^2, 5*17^2, 59^2, 59*61, 61^2, 61*67, 67^2, 67*73, 17^3, 5*17*59, 71*73, 5*17*61, 73^2, 71*79, 73*79, 5*17*73, 79^2, 61*167, 101^2, 37*277, 5*37*59, 79*139, 107^2, 5*17*139, 5*37*67, 5*37*71, 17^2*47, 61*223, 61*227, 5*17*163, 5*17*167, 71*227, 127^2, 17^2*59, 5*59^2, 17^2*61, 5*61^2, 137^2, 137*139, 139^2, 17^2*67, 5*17*229, 137*149, 5*61*67, 5*59*71, 17^2*73, 5*67^2, 5*61*79, 5*67*73, 5*17^3, ... - Alexander Adamchuk, Jul 28 2006

Crossrefs

Programs

  • Mathematica
    Do[s=1+Divisors[n]; s1=Flatten[Position[PrimeQ[s], True]]; s2=Part[s, s1]; If[Equal[s2, {2, 3, 11}], Print[n/10]], {n, 1, 50000}] (* Alexander Adamchuk, Jul 28 2006 *)
  • PARI
    isok(m) = denominator(bernfrac(10*m)) == 66; \\ Michel Marcus, May 31 2022

Formula

a(n) = A051230(n)/10 = A051229(n)/5.

Extensions

More terms from Alexander Adamchuk, Jul 28 2006

A249134 Numbers k such that Bernoulli number B_k has denominator 2730.

Original entry on oeis.org

12, 24, 1308, 1884, 2004, 2364, 2532, 2724, 3804, 4008, 4044, 4188, 4236, 4668, 5052, 5064, 5268, 5388, 5484, 6252, 6492, 6564, 6756, 6852, 7044, 7188, 7356, 7404, 7608, 7764, 8124, 8412, 8472, 8796, 9084, 9228, 9852, 9876, 9924
Offset: 1

Views

Author

Keywords

Comments

2730 = 2 * 3 * 5 * 7 * 13.

Examples

			BernoulliB(12) is -691/2730, hence 12 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 0, n <= 10^4, n = n+12, If[Denominator[BernoulliB[n]] == 2730, Print[n]; Sow[n]]]][[2, 1]]
    Select[Table[n, {n, 2, 10000}], Denominator@BernoulliB[#]==2730 &] (* Vincenzo Librandi, Apr 02 2015 *)
  • PARI
    is(n)=denominator(bernfrac(n))==2730 \\ Charles R Greathouse IV, Oct 22 2014
    
  • PARI
    is(n)=if(n%12 || n%16==0 || n%9==0, return(0)); forprime(p=5,107, if(n%p==0, return(0))); fordiv(n,d, if(isprime(d+1) && d>13, return(0))); 1 \\ Charles R Greathouse IV, Oct 22 2014

A002432 Denominators of zeta(2*n)/Pi^(2*n).

Original entry on oeis.org

2, 6, 90, 945, 9450, 93555, 638512875, 18243225, 325641566250, 38979295480125, 1531329465290625, 13447856940643125, 201919571963756521875, 11094481976030578125, 564653660170076273671875, 5660878804669082674070015625, 62490220571022341207266406250
Offset: 0

Views

Author

Keywords

Comments

Also denominators in expansion of Psi(x).
For n >= 1 a(n) is always divisible by 3 (by the von Staudt-Clausen theorem, see A002445).
A comment due to G. Campbell: The original approach taken by Euler was to derive the infinite product for sin(Pi*x)/(Pi*x) equal to (1 - x^2/1^2) (1 - x^2/2^2)(1 - x^2/3^2) ... treating sin(Pi*x)/(Pi*x) as if it were a polynomial. Differentiating the logarithm of both sides and equating coefficients gives all of the zeta function values for 2, 4, 6, 8, .... - M. F. Hasler, Mar 29 2015
Note that 2n+1 divides a(n) for every n. If 2n+1 > 9 is composite, then (2n+1)^2 divides a(n). If 2n+1 is prime, then (2n+1)^2 does not divide a(n). My theorem: for n > 4, (2n+1)^2 divides a(n) if and only if the number 2n+1 is composite. - Thomas Ordowski, Nov 07 2022

Examples

			(zeta(2n)/Pi^(2n), n = 0, 1, 2, 3, ...) = (-1/2, 1/6, 1/90, 1/945, 1/9450, 1/93555, 691/638512875, 2/18243225, 3617/325641566250, ...), i.e.: zeta(0) = -1/2, zeta(2) = Pi^2/6, zeta(4) = Pi^4/90, zeta(6) = Pi^6/945, zeta(8) = Pi^8/9450, zeta(10) = Pi^10/93555, zeta(12) = Pi^12*691/638512875, ...
In Maple, series(Psi(x),x,20) gives -1*x^(-1) + (-gamma) + 1/6*Pi^2*x + (-Zeta(3))*x^2 + 1/90*Pi^4*x^3 + (-Zeta(5))*x^4 + 1/945*Pi^6*x^5 + (-Zeta(7))*x^6 + 1/9450*Pi^8*x^7 + (-Zeta(9))*x^8 + 1/93555*Pi^10*x^9 + ...
a(5) = 93555 = 10!/(2^9 * B(10)) = 3628800/(512*5/66). - _Frank Ellermann_, Apr 03 2020
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046988 (numerators), A006003.

Programs

  • Maple
    seq(denom(Zeta(2*n)/Pi^(2*n)),n=0..24); # Martin Renner, Sep 07 2016
    A002432List := proc(len) series(-x*cot(x)/2, x, 2*len+1):
    seq(denom(coeff(%, x, n)), n=0..2*len-1, 2) end:
    A002432List(17); # Peter Luschny, Jun 07 2020
  • Mathematica
    Table[Denominator[Zeta[2 n]/Pi^(2 n)], {n, 0, 30}] (* Artur Jasinski, Mar 11 2010 *)
    Denominator[Zeta[2*Range[0, 20]]] (* Harvey P. Dale, Sep 05 2013 *)
  • PARI
    a(n)=numerator(bestappr(Pi^(2*n)/zeta(2*n))) \\ Requires sufficient realprecision. The standard value of 38 digits yields erroneous values for n>9. \p99 is more than enough to get the 3 lines of displayed data. - M. F. Hasler, Mar 29 2015
    
  • PARI
    a002432(n) = denominator(polcoeff((1-x*cotan(x))/2,n*2))
    default(seriesprecision, 33); for(i=0,16,print1(a002432(i),",")) \\ Chris Boyd, Dec 21 2015

Formula

Sum_{n>=1} 2/(n^2 + 1) = Pi*coth(Pi)-1. 2*Sum_{k>=1} (-1)^(k + 1)/n^(2*k) = 2/(n^2+1). - Shmuel Spiegel (shmualm(AT)hotmail.com), Aug 13 2001
zeta(2n)/(2i * ( log(1-i)-log(1+i) ))^(2n) = zeta(2n)/(-i*log(-1))^(2n). - Eric Desbiaux, Dec 12 2008
zeta(2n) = Sum_{k >= 1} k^(-2n) = (-1)^(n-1)*B_{2n}*2^(2n-1)*Pi^(2n)/(2n)!.
a(n) = -A046988(n)*A010050(n)*A002445(n)/(A009117(n)*A000367(n))
a(n) = sqrt(denominator(Sum_{i>=1} A000005(i)/i^2n)). - Enrique Pérez Herrero, Jan 19 2012
Sum_{k >= 1} zeta(2k)*x^(2k) = (1-Pi*x*cot(Pi*x))/2. - Chris Boyd, Dec 21 2015
a(n) = denominator([x^(2*n)] -x*cot(x)/2). - Peter Luschny, Jun 07 2020

Extensions

Formula and link from Henry Bottomley, Mar 10 2000
Formula corrected by Bjoern Boettcher, May 15 2003
Corrected and edited by M. F. Hasler, Mar 29 2015
a(0) = 2 prepended by Peter Luschny, Jun 07 2020

A001897 Denominators of cosecant numbers: -2*(2^(2*n-1)-1)*Bernoulli(2*n).

Original entry on oeis.org

1, 3, 15, 21, 15, 33, 1365, 3, 255, 399, 165, 69, 1365, 3, 435, 7161, 255, 3, 959595, 3, 6765, 903, 345, 141, 23205, 33, 795, 399, 435, 177, 28393365, 3, 255, 32361, 15, 2343, 70050435, 3, 15, 1659, 115005, 249, 1702155, 3, 30705, 136059, 705, 3, 2250885, 3, 16665, 2163
Offset: 0

Views

Author

Keywords

Comments

Same as half the denominators of the even-indexed Bernoulli numbers B_{2*n} for n>0, by the von Staudt-Clausen theorem and Fermat's little theorem. - Bernd C. Kellner and Jonathan Sondow, Jan 02 2017 [This is implemented in the second Maple program. - Peter Luschny, Aug 21 2021]

Examples

			Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = A001896/A001897.
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
  • S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Denominator(2*(1-2^(2*n-1))*Bernoulli(2*n)): n in [0..55]]; // G. C. Greubel, Apr 06 2019
  • Maple
    b := n -> bernoulli(n)*2^add(i,i=convert(n,base,2));
    a := n -> denom(b(2*n)); # Peter Luschny, May 02 2009
    # Alternative :
    Clausen := proc(n) local i,S; map(i->i+1, numtheory[divisors](n));
    S := select(isprime, %); if S <> {} then mul(i,i=S) else NULL fi end:
    A001897_list := n -> [1,seq(Clausen(2*i)/2,i=1..n-1)];
    A001897_list(52); # Peter Luschny, Oct 03 2011
  • Mathematica
    a[n_] := Denominator[-2*(2^(2*n-1)-1)*BernoulliB[2*n]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 11 2013 *)
  • PARI
    a(n) = denominator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Apr 06 2019
    
  • Sage
    def A001897(n):
        if n == 0:
            return 1
        M = (d + 1 for d in divisors(2 * n))
        return prod(s for s in M if is_prime(s)) / 2
    [A001897(n) for n in range(55)]  # Peter Luschny, Feb 20 2016
    

Formula

a(0)=1, a(n)=(1/2)*A002445(n) for n>=1. - Joerg Arndt, May 07 2012
a(n) = denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 29 2012
a(0)=1, a(n) = (1/2)*A027642(2*n) = (3/2)*A277087(n) for n>=1. - Jonathan Sondow, Dec 14 2016
From Peter Luschny, Sep 06 2017: (Start)
a(n) = denominator(r(n)) where r(n) = Sum_{0..n} (-1)^(n-k)*A241171(n, k)/(2*k+1).
a(n) = denominator(bernoulli(2*n, 1/2))/4^n = A033469(n)/4^n. (End)
Apparently a(n) = denominator(Sum_{k=0..2*n-2} (-1)^k*E2(2*n-1, k+1)/binomial(4*n-1, k+1)), where E2(n, k) denotes the second-order Eulerian numbers A340556. - Peter Luschny, Feb 17 2021

A051714 Numerators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)*(a(n,k) - a(n,k+1)), n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, -1, 1, 1, 2, 1, -1, 0, 1, 1, 5, 2, -3, -1, 1, 1, 1, 3, 5, -1, -1, 1, 0, 1, 1, 7, 5, 0, -4, 1, 1, -1, 1, 1, 4, 7, 1, -1, -1, 1, -1, 0, 1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5, 1, 1, 5, 3, 8, -7, -9, 5, 7, -5, 5, 0, 1, 1, 11, 15, 27, -28, -343, 295, 200, -44, -1017, 691, -691
Offset: 0

Views

Author

Keywords

Comments

Leading column gives the Bernoulli numbers A164555/A027642. - corrected by Paul Curtz, Apr 17 2014

Examples

			Table begins:
   1     1/2   1/3    1/4   1/5  1/6  1/7 ...
   1/2   1/3   1/4    1/5   1/6  1/7 ...
   1/6   1/6   3/20   2/15  5/42 ...
   0     1/30  1/20   2/35  5/84 ...
  -1/30 -1/30 -3/140 -1/105 ...
Antidiagonals of numerator(a(n,k)):
  1;
  1,  1;
  1,  1,  1;
  1,  1,  1,  0;
  1,  1,  3,  1, -1;
  1,  1,  2,  1, -1,   0;
  1,  1,  5,  2, -3,  -1,  1;
  1,  1,  3,  5, -1,  -1,  1,  0;
  1,  1,  7,  5,  0,  -4,  1,  1, -1;
  1,  1,  4,  7,  1,  -1, -1,  1, -1,  0;
  1,  1,  9, 28, 49, -29, -5,  8,  1, -5,  5;
		

Crossrefs

Denominators are in A051715.

Programs

  • Magma
    function a(n,k)
      if n eq 0 then return 1/(k+1);
      else return (k+1)*(a(n-1,k) - a(n-1,k+1));
      end if;
    end function;
    A051714:= func< n,k | Numerator(a(n,k)) >;
    [A051714(k,n-k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 22 2023
    
  • Maple
    a:= proc(n,k) option remember;
          `if`(n=0, 1/(k+1), (k+1)*(a(n-1,k)-a(n-1,k+1)))
        end:
    seq(seq(numer(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
  • Mathematica
    nmax = 12; a[0, k_]:= 1/(k+1); a[n_, k_]:= a[n, k]= (k+1)(a[n-1, k]-a[n-1, k+1]); Numerator[Flatten[Table[a[n-k, k], {n,0,nmax}, {k, n, 0, -1}]]] (* Jean-François Alcover, Nov 28 2011 *)
  • SageMath
    def a(n,k):
        if (n==0): return 1/(k+1)
        else: return (k+1)*(a(n-1, k) - a(n-1, k+1))
    def A051714(n,k): return numerator(a(n, k))
    flatten([[A051714(k, n-k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Apr 22 2023

Formula

From Fabián Pereyra, Jan 14 2023: (Start)
a(n,k) = numerator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)).
E.g.f.: A(x,t) = (x+log(1-t))/(1-t-exp(-x)) = (1+(1/2)*x+(1/6)*x^2/2!-(1/30)*x^4/4!+...)*1 + (1/2+(1/3)*x+(1/6)*x^2/2!+...)*t + (1/3+(1/4)*x+(3/20)*x^2/2!+...)*t^2 + .... (End)

Extensions

More terms from James Sellers, Dec 07 1999

A006954 Denominators of Bernoulli numbers B_0, B_1, B_2, B_4, B_6, ...

Original entry on oeis.org

1, 2, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530, 1806, 690, 282, 46410, 66, 1590, 798, 870, 354, 56786730, 6, 510, 64722, 30, 4686, 140100870, 6, 30, 3318, 230010, 498, 3404310, 6, 61410, 272118, 1410, 6, 4501770
Offset: 0

Views

Author

Keywords

Comments

These are the denominators if you hurriedly look down a list of the nonzero Bernoulli numbers without noticing that B_1 has been included.
From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.1, p. 41.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Join[{1,2},Denominator[BernoulliB[Range[2,100,2]]]] (* Harvey P. Dale, Apr 11 2016 *)

Formula

E.g.f: t/(e^t - 1).

Extensions

More terms from T. D. Noe, Mar 31 2004

A051715 Denominators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)(a(n,k)-a(n,k+1)), n >= 0, k >= 0.

Original entry on oeis.org

1, 2, 2, 3, 3, 6, 4, 4, 6, 1, 5, 5, 20, 30, 30, 6, 6, 15, 20, 30, 1, 7, 7, 42, 35, 140, 42, 42, 8, 8, 28, 84, 105, 28, 42, 1, 9, 9, 72, 84, 1, 105, 140, 30, 30, 10, 10, 45, 120, 140, 28, 105, 20, 30, 1, 11, 11, 110, 495, 3960, 924, 231, 165, 220, 66, 66, 12, 12, 66, 55, 495, 264, 308, 132, 165, 44, 66, 1
Offset: 0

Views

Author

Keywords

Comments

Leading column gives the Bernoulli numbers A027641/A027642.

Examples

			Table begins:
    1    1/2   1/3    1/4   1/5  1/6  1/7 ...
   1/2   1/3   1/4    1/5   1/6  1/7 ...
   1/6   1/6   3/20   2/15  5/42 ...
    0    1/30  1/20   2/35  5/84 ...
  -1/30 -1/30 -3/140 -1/105 ...
		

Crossrefs

Numerators are in A051714.

Programs

  • Maple
    a:= proc(n,k) option remember;
          `if`(n=0, 1/(k+1), (k+1)*(a(n-1,k)-a(n-1,k+1)))
        end:
    seq(seq(denom(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
  • Mathematica
    nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Denominator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]](* Jean-François Alcover, Nov 28 2011 *)

Formula

a(n,k) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)). - Fabián Pereyra, Jan 14 2023

Extensions

More terms from James Sellers, Dec 08 1999

A006863 Denominator of B_{2n}/(-4n), where B_m are the Bernoulli numbers.

Original entry on oeis.org

1, 24, 240, 504, 480, 264, 65520, 24, 16320, 28728, 13200, 552, 131040, 24, 6960, 171864, 32640, 24, 138181680, 24, 1082400, 151704, 5520, 1128, 4455360, 264, 12720, 86184, 13920, 1416, 6814407600, 24
Offset: 0

Views

Author

Keywords

Comments

Carmichael defines lambda(n) to be the exponent of the group U(n) of units of the integers mod n. He shows that given m there is a number lambda^*(m) such that lambda(n) divides m if and only if n divides lambda^*(m). He gives a formula for lambda^*(m), equivalent to the one I've quoted for even m. (We have lambda^*(m)=2 for any odd m.) The present sequence gives the values of lambda^*(2m) for positive integers m. - Peter J. Cameron, Mar 25 2002
(-1)^n*B_{2n}/(-4n) = Integral_{t>=0} t^(2n-1)/(exp(2*Pi*t) - 1)dt. - Benoit Cloitre, Apr 04 2002
Michael Lugo (see link) conjectures, and Peter McNamara proves, that a(n) = gcd_{ primes p > 2n+1 } (p^(2n) - 1). - Tanya Khovanova, Feb 21 2009 [edited by Charles R Greathouse IV, Dec 03 2014]

References

  • Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Integrals and Asymptotic Expansions, p. 220.
  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 130.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 286.
  • Douglas C. Ravenel, Complex cobordism theory for number theorists, Lecture Notes in Mathematics, 1326, Springer-Verlag, Berlin-New York, 1988, pp. 123-133.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, pp. 285-324 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003. (The function K(2n), see p. 303.)

Crossrefs

Numerators are A001067.

Programs

  • GAP
    Concatenation([1], List([1..35], n-> DenominatorRat(Bernoulli(2*n)/(-4*n)) )); # G. C. Greubel, Sep 19 2019
  • Magma
    [1] cat [Denominator(Bernoulli(2*n)/(-4*n)):n in [1..35]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    1,seq(denom(bernoulli(2*n)/(-4*n)), n=1 .. 100); # Robert Israel, Dec 03 2014
  • Mathematica
    a[n_] := Denominator[BernoulliB[2n]/(-4n)]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    a(n) = if (n == 0, 1, denominator(bernfrac(2*n)/(-4*n))); \\ Michel Marcus, Sep 10 2013
    
  • Sage
    [1]+[denominator(bernoulli(2*n)/(-4*n)) for n in (1..35)] # G. C. Greubel, Sep 19 2019
    

Formula

B_{2k}/(4k) = -(1/2)*zeta(1-2k). For n > 0, a(n) = gcd k^L (k^{2n}-1) where k ranges over all the integers and L is as large as necessary.
Product of 2^{a+2} (where 2^a exactly divides 2*n) and p^{a+1} (where p is an odd prime such that p-1 divides 2*n and p^a exactly divides 2*n). - Peter J. Cameron, Mar 25 2002

Extensions

Thanks to Michael Somos for helpful comments.

A155100 Triangle read by rows: coefficients in polynomials P_n(u) arising from the expansion of D^(n-1) (tan x) in increasing powers of tan x for n>=1 and 1 for n=0.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 2, 2, 0, 8, 0, 6, 0, 16, 0, 40, 0, 24, 16, 0, 136, 0, 240, 0, 120, 0, 272, 0, 1232, 0, 1680, 0, 720, 272, 0, 3968, 0, 12096, 0, 13440, 0, 5040, 0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320, 7936, 0, 176896, 0, 814080, 0, 1491840
Offset: 0

Views

Author

N. J. A. Sloane, Nov 05 2009

Keywords

Comments

The definition is d^(n-1) tan x / dx^n = P_n(tan x) for n>=1 and 1 for n=0.
Interpolates between factorials and tangent numbers.
From Peter Bala, Mar 02 2011: (Start)
Companion triangles are A104035 and A185896.
A combinatorial interpretation for the polynomial P_n(t) as the generating function for a sign change statistic on certain types of signed permutation can be found in [Verges].
A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...,|x_n|} = {1,2,...,n}.
They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube.
Let x_1,...,x_n be a signed permutation and put x_0 = -(n+1) and x_(n+1) = (-1)^n*(n+1). Then x_0,x_1,...,x_n,x_(n+1) is a snake of type S(n) when x_0 < x_1 > x_2 < ... x_(n+1). For example, -5 4 -3 -1 -2 5 is a snake of type S(4).
Let sc be the number of sign changes through a snake sc = #{i, 0 <= i <= n, x_i*x_(i+1) < 0}. For example, the snake -5 4 -3 -1 -2 5 has sc = 3.
The polynomial P_(n+1)(t) is the generating function for the sign change statistic on snakes of type S(n): P_(n+1)(t) = sum {snakes in S(n)} t^sc.
See the example section below for the cases n=1 and n=2.
(End)
Equals A107729 when the first column is removed. - Georg Fischer, Jul 26 2023

Examples

			The polynomials P_{-1}(u) through P_6(u) with exponents in decreasing order:
      1
      u
      u^2 +    1
    2*u^3 +    2*u
    6*u^4 +    8*u^2 +    2
   24*u^5 +   40*u^3 +   16*u
  120*u^6 +  240*u^4 +  136*u^2 +  16
  720*u^7 + 1680*u^5 + 1232*u^3 + 272*u
  ...
Triangle begins:
  1
  0, 1
  1, 0, 1
  0, 2, 0, 2
  2, 0, 8, 0, 6
  0, 16, 0, 40, 0, 24
  16, 0, 136, 0, 240, 0, 120
  0, 272, 0, 1232, 0, 1680, 0, 720
  272, 0, 3968, 0, 12096, 0, 13440, 0, 5040
  0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320
  7936, 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880
  0, 353792, 0, 3610112, 0, 12207360, 0, 18627840, 0, 13305600, 0, 3628800
  ...
From _Peter Bala_, Feb 07 2011: (Start)
Examples of sign change statistic sc on snakes of type S(n):
    Snakes     # sign changes sc  t^sc
  ===========  =================  ====
n=1:
  -2  1 -2 ........... 2 ........ t^2
  -2 -1 -2 ........... 0 ........ 1
                  yields P_2(t) = 1 + t^2;
n=2:
  -3  1 -2  3 ........ 3 ........ t^3
  -3  2  1  3 ........ 1 ........ t
  -3  2 -1  3 ........ 3 ........ t^3
  -3 -1 -2  3 ........ 1 ........ t
                  yields P_3(t) = 2*t + 2*t^3. (End)
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.

Crossrefs

For other versions of this triangle see A008293, A101343.
A104035 is a companion triangle.
Highest order coefficients give factorials A000142. Constant terms give tangent numbers A000182. Other coefficients: A002301.
Setting u=1 in P_n gives A000831, u=2 gives A156073, u=3 gives A156075, u=4 gives A156076, u=1/2 gives A156102.
Setting u=sqrt(2) in P_n gives A156108 and A156122; setting u=sqrt(3) gives A156103 and A000436.

Programs

  • Maple
    P:=proc(n) option remember;
    if n=-1 then RETURN(1); elif n=0 then RETURN(u); else RETURN(expand((u^2+1)*diff(P(n-1),u))); fi;
    end;
    for n from -1 to 12 do t1:=series(P(n),u,20); lprint(seriestolist(t1)); od:
    # Alternatively:
    with(PolynomialTools): seq(print(CoefficientList(`if`(i=0,1,D@@(i-1))(tan),tan)), i=0..7); # Peter Luschny, May 19 2015
  • Mathematica
    p[n_, u_] := D[Tan[x], {x, n}] /. Tan[x] -> u /. Sec[x] -> Sqrt[1 + u^2] // Expand; p[-1, u_] = 1; Flatten[ Table[ CoefficientList[ p[n, u], u], {n, -1, 9}]] (* Jean-François Alcover, Jun 28 2012 *)
    T[ n_, k_] := Which[n<0, Boole[n==-1 && k==0], n==0, Boole[k==1], True, (k-1)*T[n-1, k-1] + (k+1)*T[n-1, k+1]]; (* Michael Somos, Jul 09 2024 *)
  • PARI
    {T(n, k) = if(n<0, n==-1 && k==0, n==0, k==1, (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1))}; /* Michael Somos, Jul 09 2024 */

Formula

If the polynomials are denoted by P_n(u), we have the recurrence P_{-1}=1, P_0 = u, P_n = (u^2+1)*dP_{n-1}/du.
G.f.: Sum_{n >= 0} P_n(u) t^n/n! = (sin t + u*cos t)/(cos t - u sin t). [Hoffman]
From Peter Bala, Feb 07 2011: (Start)
RELATION WITH BERNOULLI NUMBERS A000367 AND A002445
Put T(n,t) = P_n(i*t), where i = sqrt(-1). We have the definite integral evaluation, valid when both m and n are >=1 and m+n >= 4:
int( T(m,t)*T(n,t)/(1-t^2), t = -1..1) = (-1)^((m-n)/2)*2^(m+n-1)*Bernoulli(m+n-2).
The case m = n is equivalent to the result of [Grosset and Veselov]. The methods used there extend to the general case.
RELATION WITH OTHER ROW POLYNOMIALS
The following three identities hold for n >= 1:
P_(n+1)(t) = (1+t^2)*R(n-1,t) where R(n,t) is the n-th row polynomial of A185896.
P_(n+1)(t) = (-2*i)^n*(t-i)*R(n,-1/2+1/2*i*t), where i = sqrt(-1) and R(n,x) is an ordered Bell polynomial, that is, the n-th row polynomial of A019538.
P_(n+1)(t) = (t-i)*(t+i)^n*A(n,(t-i)/(t+i)), where {A(n,t)}n>=1 = [1,1+t,1+4*t+t^2,1+11*t+11*t^2+t^3,...] is the sequence of Eulerian polynomials - see A008292. (End)
T(n,k) = cos((n+k)*Pi/2) * Sum_{p=0..n-1} A008292(n-1,p+1) Sum_{j=0..k}(-1)^(p+j+1) * binomial(p+1,k-j) *binomial(n-p-1,j) for n>1. - Ammar Khatab, Aug 15 2024

Extensions

Name clarified by Peter Luschny, May 25 2015
Previous Showing 21-30 of 144 results. Next