cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 92 results. Next

A006148 Number of 4 X n binary matrices up to row and column permutations.

Original entry on oeis.org

1, 5, 22, 87, 317, 1053, 3250, 9343, 25207, 64167, 155004, 357009, 787586, 1670643, 3419552, 6774765, 13027340, 24372942, 44462456, 79240762, 138204782, 236258358, 396409924, 653639898, 1060379169, 1694174350, 2668300758, 4146300078, 6361709115, 9644583474
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013

Programs

  • Mathematica
    CoefficientList[Series[(x^20 - x^19 + 4 x^18 + 9 x^17 + 23 x^16 + 39 x^15 + 90 x^14 + 131 x^13 + 204 x^12 + 238 x^11 + 252 x^10 + 238 x^9 + 204 x^8 + 131 x^7 + 90 x^6 + 39 x^5 + 23 x^4 + 9 x^3 + 4 x^2 - x + 1)/((1 - x^4)^3 (1 - x^3)^4 (1 - x^2)^3 (1 - x)^6), {x, 0, 45}], x] (* Vincenzo Librandi, Oct 13 2015 *)
    LinearRecurrence[{6,-12,6,6,-6,22,-54,33,-4,12,60,-125,54,-54,70,87,-132,64,-132,87,70,-54,54,-125,60,12,-4,33,-54,22,-6,6,6,-12,6,-1},{1,5,22,87,317,1053,3250,9343,25207,64167,155004,357009,787586,1670643,3419552,6774765,13027340,24372942,44462456,79240762,138204782,236258358,396409924,653639898,1060379169,1694174350,2668300758,4146300078,6361709115,9644583474,14456861538,21439125178,31471971903,45755970759,65915132560,94129925265},30] (* Harvey P. Dale, Jun 22 2021 *)
  • PARI
    Vec(G(4, x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

G.f.: (x^20 - x^19 + 4*x^18 + 9*x^17 + 23*x^16 + 39*x^15 + 90*x^14 + 131*x^13 + 204*x^12 + 238*x^11 + 252*x^10 + 238*x^9 + 204*x^8 + 131*x^7 + 90*x^6 + 39*x^5 + 23*x^4 + 9*x^3 + 4*x^2 - x + 1)/((1 - x^4)^3*(1 - x^3)^4*(1 - x^2)^3*(1 - x)^6). - Vladeta Jovovic, Feb 04 2000

Extensions

More terms from Vladeta Jovovic, Feb 04 2000
Definition corrected by Max Alekseyev, Feb 05 2010
More terms from Vincenzo Librandi, Oct 13 2015

A057524 Number of 3 x n binary matrices without unit columns up to row and column permutations.

Original entry on oeis.org

1, 3, 7, 14, 25, 41, 64, 95, 136, 189, 256, 339, 441, 564, 711, 885, 1089, 1326, 1600, 1914, 2272, 2678, 3136, 3650, 4225, 4865, 5575, 6360, 7225, 8175, 9216, 10353, 11592, 12939, 14400, 15981, 17689, 19530, 21511, 23639, 25921, 28364, 30976
Offset: 0

Views

Author

Vladeta Jovovic, Sep 02 2000

Keywords

Comments

Unit column of a binary matrix is a column with only one 1. First differences of a(n) give number of minimal 3-covers of an unlabeled n-set that cover 3 points of that set uniquely (if offset is 3).

Examples

			There are 7 binary 3x2 matrices without unit columns up to row and column permutations:
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 1] [1 1] [1 1].
		

Crossrefs

Cf. A038846 for labeled case.

Programs

  • Mathematica
    CoefficientList[ Series[ 1/(1 - x^3)/(1 - x^2)/(1 - x)^3, {x, 0, 42}], x] (* Jean-François Alcover, Mar 26 2013 *)

Formula

(1/6)*(Z(S_n; 5, 5, ...)+3*Z(S_n; 3, 5, 3, 5, ...)+2*Z(S_n; 2, 2, 5, 2, 2, 5, ...)) where Z(S_n; x_1, x_2, x_3, ...) is cycle index of symmetric group S_n of degree n.
G.f.: 1/(1-x^3)/(1-x^2)/(1-x)^3.
Let P(i,k) be the number of integer partitions of n into k parts, then with k=3 we have a(n) = Sum_{m=1..n} Sum_{i=k..m} P(i,k). - Thomas Wieder, Feb 18 2007
a(n) = Sum_{m=0..n} (n-m+1)*floor(((m+3)^2+3)/12). [Renzo Benedetti, Sep 30 2009]
a(n) = floor( ((n+2)*(n+6)/12)^2 ) = round( ((n+2)*(n+6)/12)^2 ). [Renzo Benedetti, Jul 25 2012]
Partial sums of A000601. - R. J. Mathar, Jul 25 2012

Extensions

More terms from James Sellers, Sep 07 2000

A173196 Partial sums of A002620.

Original entry on oeis.org

0, 0, 1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203, 252, 308, 372, 444, 525, 615, 715, 825, 946, 1078, 1222, 1378, 1547, 1729, 1925, 2135, 2360, 2600, 2856, 3128, 3417, 3723, 4047, 4389, 4750, 5130, 5530, 5950, 6391, 6853, 7337, 7843, 8372, 8924, 9500
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2010

Keywords

Comments

Essentially a duplicate of A002623: 0, 0, followed by A002623.
The only primes in this sequence are 3, 7, and 13: for n > 2 both a(2*n+1) = n*(n+1)*(4*n+5)/6 and a(2*n) = n*(n+1)*(4*n-1)/6 are composite. - Bruno Berselli, Jan 19 2011
a(n-1) is the number of integer-sided scalene triangles with largest side <= n, including degenerate (i.e., collinear) triangles. a(n-2) is the number of non-degenerate integer-sided scalene triangles. - Alexander Evnin, Oct 12 2010
Also n-th differences of square pyramidal numbers (A000330) and numbers of triangles in triangular matchstick arrangement of side n (A002717). - Konstantin P. Lakov, Apr 13 2018
Also the number of undirected bishop moves on a n X n chessboard, counted up to rotations and reflections of the board. - Hilko Koning, Aug 16 2025

Examples

			a(57) = 0 + 0 + 1 + 2 + 4 + 6 + 9 + 12 + 16 + 20 + 25 + 30 + 36 + 42 + 49 + 56 + 64 + 72 + 81 + 90 + 100 + 110 + 121 + 132 + 144 + 156 + 169 + 182 + 196 + 210 + 225 + 240 + 256 + 272 + 289 + 306 + 324 + 342 + 361 + 380 + 400 + 420 + 441 + 462 + 484 + 506 + 529 + 552 + 576 + 600 + 625 + 650 + 676 + 702 + 729 + 756 + 784 + 812 = 15834.
		

References

  • A. Yu. Evnin. Problem book on discrete mathematics. Moscow: Librokom, 2010; problem 787. (In Russian)

Crossrefs

Programs

  • Magma
    [Floor((2*n^3+3*n^2-2*n)/24): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
  • Mathematica
    CoefficientList[Series[x^2/((1 - x)^3 (1 - x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
    Accumulate[Floor[Range[0,60]^2/4]] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,0,1,3,7},60] (* Harvey P. Dale, Feb 09 2020 *)
    a[ n_] := Quotient[2 n^3 + 3 n^2 - 2 n, 24]; (* Michael Somos, Jan 14 2021 *)

Formula

G.f.: x^2 / ((1-x)^3 * (1-x^2)).
a(n) = (4*n^3 + 6*n^2 - 4*n - 3 + 3*(-1)^n)/48. - Bruno Berselli, Jan 19 2011
a(n) = A002623(n-2) for n >= 2. - Martin von Gagern, Dec 05 2014
a(n) = Sum_{i=0..n} A002620(i) = Sum_{i=0..n} floor(i/2)*ceiling(i/2) = Sum_{i=0..n} floor(i^2/4).
a(n) = round((2*n^3 + 3*n^2 - 2*n)/24) = round((4*n^3 + 6*n^2 - 4*n - 3)/48) = floor((2*n^3 + 3*n^2 - 2*n)/24) = ceiling((2*n^3 + 3*n^2 - 2*n - 3)/24). - Mircea Merca, Nov 23 2010
a(n) = a(n-2) + n*(n-1)/2, n > 1. - Mircea Merca, Nov 25 2010
a(n) = floor(n/2)*(floor(n/2)+1)*(8*ceiling(n/2) - 2*n - 1)/6. - Alexander Evnin, Oct 12 2010
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jan 14 2021
E.g.f.: (x*(3 + 9*x + 2*x^2)*cosh(x) - (3 - 3*x - 9*x^2 - 2*x^3)*sinh(x))/24. - Stefano Spezia, Jun 02 2021

A093361 Add/multiply sequence, see example.

Original entry on oeis.org

1, 3, 7, 11, 27, 33, 69, 77, 141, 151, 251, 263, 407, 421, 617, 633, 889, 907, 1231, 1251, 1651, 1673, 2157, 2181, 2757, 2783, 3459, 3487, 4271, 4301, 5201, 5233, 6257, 6291, 7447, 7483, 8779, 8817, 10261, 10301, 11901, 11943, 13707, 13751, 15687, 15733, 17849
Offset: 0

Views

Author

Jorge Coveiro, Apr 28 2004

Keywords

Comments

It appears that a(2*n+1) = 2*(n + A002623(2*n-1)) + 3. - Carl Najafi, Jan 21 2013

Examples

			a(0) = 1
a(1) = 1+2
a(2) = 1+2*3
a(3) = 1+2*3+4
a(4) = 1+2*3+4*5
a(5) = 1+2*3+4*5+6
a(6) = 1+2*3+4*5+6*7
a(7) = 1+2*3+4*5+6*7+8
a(8) = 1+2*3+4*5+6*7+8*9
		

Crossrefs

Cf. A002623.

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,3,7,11,27,33,69},50] (* Harvey P. Dale, Jun 02 2019 *)

Formula

a(n) = (1/24)*(4*n^3 + 12*n^2 + 20*n + 33 + (6*n^2 - 9)*(-1)^n). - Ralf Stephan, Dec 02 2004
G.f.: (1 + 2*x + x^2 - 2*x^3 + 7*x^4 - x^6)/((1 + x)^3*(x - 1)^4). - R. J. Mathar, May 20 2013
E.g.f.: ((12 + 15*x + 15*x^2 + 2*x^3)*cosh(x) + (21 + 21*x + 9*x^2 + 2*x^3)*sinh(x))/12. - Stefano Spezia, Apr 18 2023

Extensions

More terms from Ralf Stephan, Dec 02 2004

A001769 Expansion of 1/((1+x)*(1-x)^7).

Original entry on oeis.org

1, 6, 22, 62, 148, 314, 610, 1106, 1897, 3108, 4900, 7476, 11088, 16044, 22716, 31548, 43065, 57882, 76714, 100386, 129844, 166166, 210574, 264446, 329329, 406952, 499240, 608328, 736576, 886584, 1061208, 1263576, 1497105, 1765518, 2072862, 2423526, 2822260, 3274194, 3784858
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002620, A002623, A001752, A001753 (first differences), A158454 (signed column k=3), A001779 (partial sums), A169794 (binomial transf.).

Programs

  • Magma
    [(4*n^6+96*n^5+910*n^4+4320*n^3+10696*n^2+12864*n+5715)/5760+(-1)^n/128: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
    
  • Mathematica
    CoefficientList[Series[1/((1+x)(1-x)^7),{x,0,30}],x] (* or *) LinearRecurrence[ {6,-14,14,0,-14,14,-6,1},{1,6,22,62,148,314,610,1106},40] (* Harvey P. Dale, May 24 2015 *)
  • PARI
    a(n)=(4*n^6+96*n^5+910*n^4+4320*n^3+10696*n^2+12864*n)\/5760+1 \\ Charles R Greathouse IV, Apr 17 2012

Formula

From Paul Barry, Jul 01 2003: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+6, 6).
a(n) = (4*n^6 +96*n^5 +910*n^4 +4320*n^3 +10696*n^2 +12864*n+5715)/5760+(-1)^n/128. (End)
Boas-Buck recurrence: a(n) = (1/n)*Sum_{p=0..n-1} (7 + (-1)^(n-p))*a(p), n >= 1, a(0) = 1. See the Boas-Buck comment in A046521 (here for the unsigned column k = 3 with offset 0).
a(n)+a(n+1) = A000579(n+7). - R. J. Mathar, Jan 06 2021

A005744 Expansion of x*(1+x-x^2)/((1-x)^4*(1+x)).

Original entry on oeis.org

0, 1, 4, 9, 17, 28, 43, 62, 86, 115, 150, 191, 239, 294, 357, 428, 508, 597, 696, 805, 925, 1056, 1199, 1354, 1522, 1703, 1898, 2107, 2331, 2570, 2825, 3096, 3384, 3689, 4012, 4353, 4713, 5092, 5491, 5910, 6350, 6811, 7294, 7799, 8327, 8878, 9453, 10052
Offset: 0

Views

Author

Keywords

Comments

Number of n-covers of a 2-set.
Boolean switching functions a(n,s) for s = 2.
Without the initial 0, this is row 1 of the convolution array A213778. - Clark Kimberling, Jun 21 2012
a(n) equals the second column of the triangle A355754. - Eric W. Weisstein, Mar 12 2024

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

John W. Layman observes that A003453 appears to be the alternating sum transform (PSumSIGN) of A005744.
Cf. A355754.

Programs

  • Mathematica
    CoefficientList[Series[x (1+x-x^2)/((1-x)^4(1+x)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,1,4,9,17},50] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,3,-2,-2,3]^n*[0;1;4;9;17])[1,1] \\ Charles R Greathouse IV, Feb 06 2017

Formula

a(n) = A002623(n) - (n+1).
a(n) = n*(n-1)/2 + Sum_{j=1..floor((n+1)/2)} (n-2*j+1)*(n-2*j)/2. - N. J. A. Sloane, Nov 28 2003
From R. J. Mathar, Apr 01 2010: (Start)
a(n) = 5*n/12 - 1/16 + 5*n^2/8 + n^3/12 + (-1)^n/16.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). (End)
a(n) = A181971(n+1, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) + a(n+1) = A008778(n). - R. J. Mathar, Mar 13 2021
E.g.f.: (x*(2*x^2 + 21*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 27*x - 3)*sinh(x))/24. - Stefano Spezia, Jul 27 2022

Extensions

Additional comments from Alford Arnold

A062109 Expansion of ((1-x)/(1-2*x))^4.

Original entry on oeis.org

1, 4, 14, 44, 129, 360, 968, 2528, 6448, 16128, 39680, 96256, 230656, 546816, 1284096, 2990080, 6909952, 15859712, 36175872, 82051072, 185139200, 415760384, 929562624, 2069889024, 4591714304, 10150215680, 22364028928, 49123688448, 107592286208, 235015241728, 512040632320
Offset: 0

Views

Author

Henry Bottomley, May 30 2001

Keywords

Comments

If X_1,X_2,...,X_n are 2-blocks of a (2n+4)-set X then, for n >= 1, a(n+1) is the number of (n+3)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 23 2007
If the offset here is set to zero, the binomial transform of A006918. - R. J. Mathar, Jun 29 2009
a(n) is the number of weak compositions of n with exactly 3 parts equal to 0. - Milan Janjic, Jun 27 2010
Binomial transform of A002623. - Carl Najafi, Jan 22 2013
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^4; see A291000. - Clark Kimberling, Aug 24 2017

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^4)); // G. C. Greubel, Oct 16 2018
  • Maple
    seq(coeff(series(((1-x)/(1-2*x))^4, x,n+1),x,n),n=0..30); # Muniru A Asiru, Jul 01 2018
  • Mathematica
    CoefficientList[Series[(1 - x)^4/(1 - 2 x)^4, {x, 0, 26}], x] (* Michael De Vlieger, Jul 01 2018 *)
    LinearRecurrence[{8,-24,32,-16},{1,4,14,44,129},30] (* Harvey P. Dale, Sep 02 2022 *)
  • PARI
    a(n)=if(n<1,n==0,(n+5)*(n^2+13*n+18)*2^n/96)
    

Formula

a(n) = (n+5)*(n^2 + 13*n + 18)*2^(n-5)/3, with a(0)=1.
a(n) = A055809(n-5)*2^(n-4).
a(n) = 2*a(n-1) + A058396(n) - A058396(n-1).
a(n) = Sum_{kA058396(n).
a(n) = A062110(4, n).
G.f.: (1-x)^4/(1-2*x)^4.

A133713 Array read by antidiagonals, giving the sizes pi_l(c_l(m,n)) of minimal covers (see reference for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 13, 1, 1, 15, 65, 81, 22, 1, 1, 21, 140, 325, 226, 34, 1, 1, 28, 266, 995, 1371, 561, 50, 1, 1, 36, 462, 2541, 5901, 5087, 1277, 70, 1, 1, 45, 750, 5698, 20097, 30569, 17080, 2706, 95, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Examples

			Array begins:
1 1 1 1 1 1 1 1 1 ...
1 3 7 13 22 34 50 ...
1 6 25 81 226 561 1277 ...
1 10 65 325 1371 5087 17080 ...
1 15 140 995 5901 30569 142375 ...
...
		

Crossrefs

Rows give A002623, A133714-A133717.
Columns give A000217, A001296, A133718-A133710.

Programs

  • Maple
    A133713 := proc(l,cl)
            g := 1 ;
            for k from 1 to cl+1 do
              add( binomial(binomial(l,k+1)+i-1,i)*t^(i*k),i=0..ceil(cl/k)) ;
              g := g*% ;
            end do:
            g := expand(g) ;
            coeftayl(g,t=0,cl) ;
    end proc:
    seq(seq(A133713(d-k, k), k=0..d-2), d=2..11); # R. J. Mathar, Nov 23 2011
  • Mathematica
    A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl+1, k++, s = Sum[Binomial[Binomial[l, k+1]+i-1, i]*t^(i*k), {i, 0, Ceiling[cl/k]}]; g = g*s]; g = Expand[g]; SeriesCoefficient[g, {t, 0, cl}]]; A133713[A133713%5Bl-cl+2,%20cl%5D,%20%7Bl,%200,%209%7D,%20%7Bcl,%200,%20l%7D%5D%20//%20Flatten%20(*%20_Jean-Fran%C3%A7ois%20Alcover">, 0] = 1; Table[A133713[l-cl+2, cl], {l, 0, 9}, {cl, 0, l}] // Flatten (* _Jean-François Alcover, Jan 07 2014, translated from Maple *)

Formula

Burger and van Vuuren give a generating function.

Extensions

Missing term 2706 inserted by Jean-François Alcover, Jan 07 2014

A275281 Number T(n,k) of set partitions of [n] with symmetric block size list of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 7, 0, 1, 0, 1, 10, 19, 13, 3, 1, 0, 1, 0, 56, 0, 22, 0, 1, 0, 1, 35, 160, 171, 86, 34, 4, 1, 0, 1, 0, 463, 0, 470, 0, 50, 0, 1, 0, 1, 126, 1337, 2306, 2066, 1035, 250, 70, 5, 1, 0, 1, 0, 3874, 0, 10299, 0, 2160, 0, 95, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2016

Keywords

Examples

			T(4,2) = 3: 12|34, 13|24, 14|23.
T(5,3) = 7: 12|3|45, 13|2|45, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34.
T(6,4) = 13: 12|3|4|56, 13|2|4|56, 1|23|45|6, 1|23|46|5, 14|2|3|56, 1|24|35|6, 1|24|36|5, 1|25|34|6, 1|26|34|5, 15|2|3|46, 1|25|36|4, 1|26|35|4, 16|2|3|45.
T(7,5) = 22: 12|3|4|5|67, 13|2|4|5|67, 1|23|4|56|7, 1|23|4|57|6, 14|2|3|5|67, 1|24|3|56|7, 1|24|3|57|6, 1|2|345|6|7, 1|2|346|5|7, 1|2|347|5|6, 15|2|3|4|67, 1|25|3|46|7, 1|25|3|47|6, 1|2|356|4|7, 1|2|357|4|6, 1|26|3|45|7, 1|27|3|45|6, 16|2|3|4|57, 1|26|3|47|5, 1|2|367|4|5, 1|27|3|46|5, 17|2|3|4|56.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   0,    1;
  0, 1,   3,    2,    1;
  0, 1,   0,    7,    0,    1;
  0, 1,  10,   19,   13,    3,    1;
  0, 1,   0,   56,    0,   22,    0,   1;
  0, 1,  35,  160,  171,   86,   34,   4,  1;
  0, 1,   0,  463,    0,  470,    0,  50,  0, 1;
  0, 1, 126, 1337, 2306, 2066, 1035, 250, 70, 5, 1;
  ...
		

Crossrefs

Columns k=0-1,3,5,7,9 give: A000007, A000012 for n>0, A275289, A275290, A275291, A275292.
Bisections of columns k=2,4,6,8,10 give: A001700(n-1) for n>0, A275293, A275294, A275295, A275296.
Row sums give A275282.
T(n,A004525(n)) gives A305197.
T(2n,n) gives A275283.
T(2n+1,A109613(n)) gives A305198.
T(n,n) gives A000012.
T(n+3,n+1) gives A002623.

Programs

  • Maple
    b:= proc(n, s) option remember; expand(`if`(n>s,
          binomial(n-1, n-s-1)*x, 1)+add(binomial(n-1, j-1)*
          b(n-j, s+j)*binomial(s+j-1, j-1), j=1..(n-s)/2)*x^2)
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, s_] := b[n, s] = Expand[If[n>s, Binomial[n-1, n-s-1]*x, 1] + Sum[ Binomial[n-1, j-1]*b[n-j, s+j]*Binomial[s+j-1, j-1], {j, 1, (n-s)/2} ]*x^2]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 03 2017, translated from Maple *)

Formula

T(n,k) = 0 if n is odd and k is even.

A212964 Number of (w,x,y) with all terms in {0,...,n} and |w-x| < |x-y| < |y-w|.

Original entry on oeis.org

0, 0, 0, 2, 6, 14, 26, 44, 68, 100, 140, 190, 250, 322, 406, 504, 616, 744, 888, 1050, 1230, 1430, 1650, 1892, 2156, 2444, 2756, 3094, 3458, 3850, 4270, 4720, 5200, 5712, 6256, 6834, 7446, 8094, 8778, 9500, 10260, 11060, 11900, 12782, 13706
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.
Magic numbers of nucleons in a biaxially deformed nucleus at oscillator ratio 1:2 (oblate ellipsoid) under the simple harmonic oscillator model. - Jess Tauber, May 14 2013
a(n) is the number of Sidon subsets of {1,...,n+1} of size 3. - Carl Najafi, Apr 27 2014

Crossrefs

First differences: A007590, is first differences of 2*A001752(n-4) for n > 3; partial sums: 2*A001752(n-3) for n > 2, is partial sums of A007590(n-1) for n > 0. - Guenther Schrack, Mar 19 2018

Programs

  • Magma
    [(2*n-1)*(2*n^2-2*n-3)/24 - (-1)^n/8: n in [0..50]]; // Vincenzo Librandi, Jul 25 2014
    
  • Maple
    A212964:=n->add(floor(i^2/2) - 2*floor(i/2), i=1..n): seq(A212964(n), n=0..50); # Wesley Ivan Hurt, Jul 23 2014
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] < Abs[x - y] < Abs[y - w], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 45]]   (* A212964 *)
    m/2 (* essentially A002623 *)
    CoefficientList[Series[2 x^3/((1 + x) (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 25 2014 *)
  • PARI
    a(n) = (2*n-1)*(2*n^2-2*n-3)/24 - (-1)^n/8;
    vector (100, n, a(n-1)) \\ Altug Alkan, Sep 30 2015

Formula

a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).
G.f.: f(x)/g(x), where f(x)=2*x^3 and g(x)=(1+x)(1-x)^4.
a(n+3) = 2*A002623(n).
a(n) = Sum_{k=0..n} floor((k-1)^2/2). - Enrique Pérez Herrero, Dec 28 2013
a(n) = Sum_{i=1..n} floor(i^2/2) - 2*floor(i/2). - Wesley Ivan Hurt, Jul 23 2014
a(n) = (2*n-1)*(2*n^2-2*n-3)/24 - (-1)^n/8. - Robert Israel, Jul 23 2014
E.g.f.: (x*(2*x^2 + 3*x - 3)*cosh(x) + (2*x^3 + 3*x^2 - 3*x + 3)*sinh(x))/12. - Stefano Spezia, Jul 06 2021
Previous Showing 21-30 of 92 results. Next