A053469
a(n) = n*6^(n-1).
Original entry on oeis.org
1, 12, 108, 864, 6480, 46656, 326592, 2239488, 15116544, 100776960, 665127936, 4353564672, 28298170368, 182849716224, 1175462461440, 7522959753216, 47958868426752, 304679870005248, 1929639176699904, 12187194800209920, 76779327241322496, 482612914088312832
Offset: 1
G.f. = x + 12*x^2 + 108*x^3 + 864*x^4 + 6480*x^5 + 46656*x^6 + ... - _Michael Somos_, Dec 16 2019
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[n*(6^(n-1)): n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
-
f[n_]:=n*6^(n-1);f[Range[40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{12,-36},{1,12},20] (* Harvey P. Dale, Apr 28 2015 *)
-
a(n)=n*6^(n-1) \\ Charles R Greathouse IV, Oct 07 2015
-
[lucas_number1(n,12,36) for n in range(1, 21)] # Zerinvary Lajos, Apr 28 2009
A054335
A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0
Triangle begins:
1;
2, 1;
6, 4, 1;
20, 16, 6, 1;
70, 64, 30, 8, 1;
252, 256, 140, 48, 10, 1;
924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
2, 1;
2, 2, 1;
0, 2, 2, 1;
-2, 0, 2, 2, 1;
0, -2, 0, 2, 2, 1;
4, 0, -2, 0, 2, 2, 1;
0, 4, 0, -2, 0, 2, 2, 1;
-10, 0, 4, 0, -2, 0, 2, 2, 1;
0, -10, 0, 4, 0, -2, 0, 2, 2, 1; (End)
-
T:= function(n, k)
if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
fi;
end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
-
T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
[[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
-
A054335 := proc(n,k)
if k <0 or k > n then
0 ;
elif type(k,odd) then
kprime := floor(k/2) ;
binomial(n-kprime-1,kprime)*4^(n-k) ;
else
kprime := k/2 ;
binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
end if;
end proc: # R. J. Mathar, Mar 12 2013
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
-
Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
-
T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
-
def T(n, k):
if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
[[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
A020920
Expansion of 1/(1-4*x)^(9/2).
Original entry on oeis.org
1, 18, 198, 1716, 12870, 87516, 554268, 3325608, 19122246, 106234700, 573667380, 3024791640, 15628090140, 79342611480, 396713057400, 1957117749840, 9540949030470, 46021048264620, 219878341708740, 1041528987041400, 4895186239094580, 22844202449108040
Offset: 0
Cf.
A000302,
A000332,
A000984,
A001622,
A002457,
A002697,
A002802,
A020918,
A038845,
A038846,
A046521 (fifth column).
-
List([0..30], n-> Binomial(n+4, 4)*Binomial(2*(n+4), n+4)/70) # G. C. Greubel, Jul 20 2019
-
[(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/105: n in [0..30]]; // Vincenzo Librandi, Jul 05 2013
-
seq(binomial(2*n+8, n+4)*binomial(n+4, n)/70, n=0..30); # Zerinvary Lajos, May 05 2007
-
CoefficientList[Series[1/(1-4x)^(9/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
-
vector(30, n, n--; m=n+4; binomial(m, 4)*binomial(2*m, m)/70) \\ G. C. Greubel, Jul 20 2019
-
[binomial(n+4, 4)*binomial(2*(n+4), n+4)/70 for n in (0..30)] # G. C. Greubel, Jul 20 2019
A212698
Main transitions in systems of n particles with spin 3/2.
Original entry on oeis.org
3, 24, 144, 768, 3840, 18432, 86016, 393216, 1769472, 7864320, 34603008, 150994944, 654311424, 2818572288, 12079595520, 51539607552, 219043332096, 927712935936, 3917010173952, 16492674416640, 69269232549888, 290271069732864, 1213860837064704, 5066549580791808
Offset: 1
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Cf.
A001787,
A212697,
A212699,
A212700,
A212701,
A212702,
A212703,
A212704 (for b = 2, 3, 5, 6, 7, 8, 9, 10).
-
[3*n*4^(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2015
-
Table[Sum[Binomial[n,i] i 3^i,{i,0,n}],{n,1,21}] (* Geoffrey Critzer, Aug 08 2013 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212698.txt", n, " ", mtrans(n, 4)))
A002699
a(n) = n*2^(2*n-1).
Original entry on oeis.org
0, 2, 16, 96, 512, 2560, 12288, 57344, 262144, 1179648, 5242880, 23068672, 100663296, 436207616, 1879048192, 8053063680, 34359738368, 146028888064, 618475290624, 2611340115968, 10995116277760, 46179488366592, 193514046488576
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Rebecca Bourn and William Q. Erickson, A palindromic polynomial connecting the earth mover's distance to minuscule lattices of Type A, arXiv:2307.02652 [math.CO], 2023.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
-
[n*2^(2*n-1): n in [0..30]]; /* or */ I:=[0, 2]; [n le 2 select I[n] else 8*Self(n-1)-16*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2013
-
A002699 := n->n*2^(2*n-1);
A002699:=2*z/(4*z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[(n 2^(2 n - 1)), {n, 0, 30}] (* Vincenzo Librandi, Mar 20 2013 *)
LinearRecurrence[{8,-16},{0,2},30] (* Harvey P. Dale, Dec 20 2015 *)
-
a(n)=n*2^(2*n-1) \\ Charles R Greathouse IV, Oct 07 2015
A082134
Expansion of e.g.f. x*exp(3*x)*cosh(x).
Original entry on oeis.org
0, 1, 6, 30, 144, 680, 3168, 14560, 66048, 296064, 1313280, 5772800, 25178112, 109078528, 469819392, 2013388800, 8590196736, 36507779072, 154620002304, 652837519360, 2748784312320, 11544883101696, 48378534690816
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,96,-64).
-
[n*2^(n-2)*(1+2^(n-1)): n in [0..25]]; // G. C. Greubel, Feb 05 2018
-
a:= n -> n*binomial(2^(n-1) +1, 2); seq(a(n), n=0..25); # G. C. Greubel, Apr 16 2020
-
Table[n(2^(n-1) +4^(n-1))/2, {n, 0, 22}] (* Michael De Vlieger, Nov 29 2015 *)
With[{nmax = 25}, CoefficientList[Series[x*Exp[3*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Feb 05 2018 *)
-
a(n)=n*(2^n--+4^n)/2 \\ Charles R Greathouse IV, Jan 14 2013
-
[n*binomial(2^(n-1)+1, 2) for n in (0..25)] # G. C. Greubel, Apr 16 2020
A260006
a(n) = f(1,n,n), where f is the Sudan function defined in A260002.
Original entry on oeis.org
0, 3, 12, 35, 90, 217, 504, 1143, 2550, 5621, 12276, 26611, 57330, 122865, 262128, 557039, 1179630, 2490349, 5242860, 11010027, 23068650, 48234473, 100663272, 209715175, 436207590, 905969637, 1879048164, 3892314083, 8053063650, 16642998241, 34359738336
Offset: 0
a(4) = (2^4 - 1)*(4 + 2) = 90.
Cf.
A000295 (f(1,0,n)),
A000325 (f(1,2,n)),
A005408 (f(1,n,1) = 2n+1),
A001787 (n*2^(n-1)),
A079583 (f(1,1,n)),
A123720 (f(1,4,n)),
A133124 (f(1,3,n)).
-
[(2^n-1)*(n+2): n in [0..30]]; // Vincenzo Librandi, Aug 22 2015
-
Table[(2^n -1)(n+2), {n, 0, 30}] (* Michael De Vlieger, Aug 22 2015 *)
CoefficientList[Series[x(3 -6x +2x^2)/((1-x)^2 (1-2x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 22 2015 *)
LinearRecurrence[{6,-13,12,-4},{0,3,12,35},40] (* Harvey P. Dale, Mar 04 2023 *)
-
vector(40, n, n--; (2^n-1)*(n+2)) \\ Michel Marcus, Jul 29 2015
-
concat(0, Vec(x*(3-6*x+2*x^2)/((1-x)^2*(1-2*x)^2) + O(x^40))) \\ Colin Barker, Jul 29 2015
-
[(n+2)*(2^n -1) for n in (0..30)] # G. C. Greubel, Dec 30 2021
A020922
Expansion of 1/(1-4*x)^(11/2).
Original entry on oeis.org
1, 22, 286, 2860, 24310, 184756, 1293292, 8498776, 53117350, 318704100, 1848483780, 10418726760, 57302997180, 308554600200, 1630931458200, 8480843582640, 43464323361030, 219878341708740, 1099391708543700, 5439095821216200, 26651569523959380, 129450480544945560
Offset: 0
Cf.
A000302,
A000984,
A001622,
A002457,
A002697,
A002802,
A020918,
A020920,
A038845,
A038846,
A040075,
A046521 (sixth column).
-
List([0..30], n-> Binomial(n+5, 5)*Binomial(2*n+10, n+5)/252); # G. C. Greubel, Jul 20 2019
-
[(2*n+9)*(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)*Binomial(2*n, n)/945: n in [0..30]] // Vincenzo Librandi, Jul 05 2013
-
CoefficientList[Series[1/(1-4x)^(11/2), {x,0,30}], x] (* Vincenzo Librandi, Jul 05 2013 *)
-
vector(30, n, n--; m=n+5; binomial(m, 5)*binomial(2*m, m)/252) \\ G. C. Greubel, Jul 20 2019
-
[binomial(n+5, 5)*binomial(2*n+10, n+5)/252 for n in (0..30)] # G. C. Greubel, Jul 20 2019
A045543
6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.
Original entry on oeis.org
1, 24, 336, 3584, 32256, 258048, 1892352, 12976128, 84344832, 524812288, 3148873728, 18320719872, 103817412608, 574988746752, 3121367482368, 16647293239296, 87398289506304, 452414675091456, 2312341672689664, 11683410556747776, 58417052783738880, 289303499500421120
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+5,5)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i+5, j)*4^i, j =i), i=0..30); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+5,5)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1/(1-4x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {24,-240,1280,-3840,6144,-4096}, {1,24,336,3584,32256, 258048}, 30] (* Harvey P. Dale, Mar 24 2018 *)
-
Vec(1/(1-4*x)^6 + O(x^30)) \\ Michel Marcus, Aug 21 2015
-
[lucas_number2(n, 4, 0)*binomial(n,5)/2^10 for n in range(5, 35)] # Zerinvary Lajos, Mar 11 2009
A079028
a(0) = 1, a(n) = (n + 4)*4^(n-1) for n >= 1.
Original entry on oeis.org
1, 5, 24, 112, 512, 2304, 10240, 45056, 196608, 851968, 3670016, 15728640, 67108864, 285212672, 1207959552, 5100273664, 21474836480, 90194313216, 377957122048, 1580547964928, 6597069766656, 27487790694400, 114349209288704, 474989023199232, 1970324836974592, 8162774324609024
Offset: 0
Previous
Showing 11-20 of 49 results.
Next
Comments