cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 122 results. Next

A098149 a(0)=-1, a(1)=-1, a(n)=-3*a(n-1)-a(n-2) for n>1.

Original entry on oeis.org

-1, -1, 4, -11, 29, -76, 199, -521, 1364, -3571, 9349, -24476, 64079, -167761, 439204, -1149851, 3010349, -7881196, 20633239, -54018521, 141422324, -370248451, 969323029, -2537720636, 6643838879, -17393796001, 45537549124, -119218851371
Offset: 0

Views

Author

Creighton Dement, Aug 29 2004

Keywords

Comments

Sequence relates bisections of Lucas and Fibonacci numbers.
2*a(n) + A098150(n) = 8*(-1)^(n+1)*A001519(n) - (-1)^(n+1)*A005248(n+1). Apparently, if (z(n)) is any sequence of integers (not all zero) satisfying the formula z(n) = 2(z(n-2) - z(n-1)) + z(n-3) then |z(n+1)/z(n)| -> golden ratio phi + 1 = (3+sqrt(5))/2.
Pisano period lengths: 1, 3, 4, 6, 1, 12, 8, 6, 12, 3, 10, 12, 7, 24, 4, 12, 9, 12, 18, 6, ... . - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Oct 12 2020: (Start)
[X(n) = (-1)^n*(S(n, 3) + S(n-1, 3)), Y(n) = X(n-1)] gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 3*X*Y = +5, for n = -oo..+oo, with Chebyshev S polynomials (A049310), with S(-1, x) = 0, S(-|n|, x) = - S(|n|-2, x), for |n| >= 2, and S(n,-x) = (-1)^n*S(n, x). The present sequence is a(n) = -X(n-1), for n >= 0. See the formula section.
This binary indefinite quadratic form of discriminant 5, representing 5, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication) See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = -1; a[n_] := a[n] = -3a[n - 2] - a[n - 1]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Sep 01 2004 *)
    LinearRecurrence[{-3,-1},{-1,-1},30] (* Harvey P. Dale, Apr 19 2014 *)
    CoefficientList[Series[-(1 + 4 x)/(1 + 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)

Formula

G.f.: -(1+4*x)/(1+3*x+x^2). - Philippe Deléham, Nov 19 2006
a(n) = (-1)^n*A002878(n-1). - R. J. Mathar, Jan 30 2011
-a(n+1) = Sum_{k, 0<=k<=n}(-5)^k*Binomial(n+k, n-k) = Sum_{k, 0<=k<=n}(-5)^k*A085478(n, k). - Philippe Deléham, Nov 28 2006
a(n) = (-1)^n*(S(n-1, 3) + S(n-2, 3)) = (-1)^n*S(2*(n-1), sqrt(5)), for n >= 0, with Chebyshev S polynomials (A049310), with S(-1, x) = 0 and S(-2, x) = -1. S(n, 3) = A001906(n+1) = F(2*(n+1)), with F = A000045. - Wolfdieter Lang, Oct 12 2020

Extensions

Simpler definition from Philippe Deléham, Nov 19 2006

A098532 Sum of sixth powers of first n Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 66, 795, 16420, 278564, 5105373, 90871494, 1635675910, 29316316535, 526297607496, 9442398055752, 169448124595321, 3040546683808010, 54560921044808010, 979052407236876819, 17568407254504944748
Offset: 0

Views

Author

Benoit Cloitre, Sep 12 2004

Keywords

Crossrefs

Programs

  • Magma
    [(Fibonacci(n)^5*Fibonacci(n+3) + Fibonacci(2*n))/4: n in [0..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    Table[(Fibonacci[n]^5*Fibonacci[n+3] + Fibonacci[2*n])/4, {n,0,30}] (* G. C. Greubel, Jan 17 2018 *)
  • PARI
    a(n)=sum(i=0,n,fibonacci(i)^6);
    
  • PARI
    for(n=0,30, print1((fibonacci(n)^5*fibonacci(n+3) + fibonacci(2*n))/4, ", ")) \\ G. C. Greubel, Jan 17 2018
    

Formula

a(n) = (1/500)*(F(6*n+1) +3*F(6*n+2) -(-1)^n*(16*F(4*n+1)+8*F(4*n+2))-60*F(2*n+1) +120*F(2*n+2) -(-1)^n*40 ) where F(n)=A000045(n).
G.f.: x*(1-11*x-64*x^2-11*x^3+x^4)/((x+1)*(1-18*x+x^2)*(1-3*x+x^2)*(1+7*x+x^2)). - R. J. Mathar, Feb 26 2012
a(n) = -6*(-1)^n*A049685(n)/125 +3*A002878(n)/25 +A049629(n)/125 -2*(-1)^n/25. - R. J. Mathar, Feb 26 2012
a(n)= (F(n)^5 * F(n+3) + F(2*n))/4. - Gary Detlefs, Jan 05 2013

A110391 a(n) = L(3*n)/L(n), where L(n) = Lucas number.

Original entry on oeis.org

1, 4, 6, 19, 46, 124, 321, 844, 2206, 5779, 15126, 39604, 103681, 271444, 710646, 1860499, 4870846, 12752044, 33385281, 87403804, 228826126, 599074579, 1568397606, 4106118244, 10749957121, 28143753124, 73681302246, 192900153619, 505019158606, 1322157322204
Offset: 0

Views

Author

Amarnath Murthy, Jul 27 2005

Keywords

Comments

Subsidiary sequences: a(n) = L((2k+1)*n)/L(n) for k = 2,3, etc. This is the sequence for k = 1.

Examples

			a(1) = L(3)/L(1) = 4/1 = 4.
		

Crossrefs

Programs

  • Magma
    [Lucas(3*n)/Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    with(combinat): L:=n->fibonacci(n+2)-fibonacci(n-2): seq(L(3*n)/L(n),n=0..30); # Emeric Deutsch, Jul 31 2005
  • Mathematica
    Table[LucasL[3 n]/LucasL[n], {n, 0, 27}] (* Michael De Vlieger, Mar 18 2015 *)
    LinearRecurrence[{2,2,-1},{1,4,6},40] (* Harvey P. Dale, Aug 20 2020 *)
  • PARI
    Vec((1+2*x-4*x^2)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Jun 03 2016
    
  • PARI
    for(n=0,30, print1((fibonacci(3*n+1) + fibonacci(3*n-1))/( fibonacci(n+1) + fibonacci(n-1)), ", ")) \\ G. C. Greubel, Dec 17 2017

Formula

From R. J. Mathar, Oct 18 2010: (Start)
a(n) = A005248(n) - (-1)^n.
a(n) = +2*a(n-1) +2*a(n-2) -a(n-3).
G.f.: ( 1+2*x-4*x^2 ) / ( (1+x)*(x^2-3*x+1) ). (End)
Exp( Sum_{n >= 1} a(n)*t^n/n ) = 1 + 4*t + 11*t^2 + 29*t^3 + ... is the o.g.f. for A002878. This is the case x = 1 of the general result exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n, where L(n,x) is the n-th Lucas polynomial of A114525. - Peter Bala, Mar 18 2015
a(n) = 2^(-n)*(-(-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n). - Colin Barker, Jun 03 2016

Extensions

Corrected and extended by Emeric Deutsch and Erich Friedman, Jul 31 2005

A005592 a(n) = F(2n+1) + F(2n-1) - 1.

Original entry on oeis.org

1, 2, 6, 17, 46, 122, 321, 842, 2206, 5777, 15126, 39602, 103681, 271442, 710646, 1860497, 4870846, 12752042, 33385281, 87403802, 228826126, 599074577, 1568397606, 4106118242, 10749957121, 28143753122, 73681302246, 192900153617, 505019158606, 1322157322202
Offset: 0

Views

Author

Keywords

Comments

For any m, the maximum element in the continued fraction of F(2n+m)/F(m) is a(n). - Benoit Cloitre, Jan 10 2006
The continued fraction [a(n);1,a(n)-1,1,a(n)-1,...] = phi^(2n), where phi = 1.618... is the golden ratio, A001622. - Thomas Ordowski, Jun 07 2013
a(n) is the number of labeled subgraphs of the n-cycle C_n. For example, a(3)=17. There are 7 subgraphs of the triangle C_3 with 0 edges, 6 with 1 edge, 3 with 2 edges, and 1 with 3 edges (C_3 itself); here 7+6+3+1 = 17. - John P. McSorley, Oct 31 2016
a(n) equals the sum of the n-th row of triangle A277919. - John P. McSorley, Nov 25 2016

Examples

			G.f. = 1 + 2*x + 6*x^2 + 17*x^3 + 46*x^4 + 122*x^5 + 321*x^6 + 842*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A004146+1 and A005248+1.
Bisection of A014217; the other bisection is A002878, which also bisects A000032.

Programs

  • Haskell
    a005592 n = a005592_list !! (n-1)
    a005592_list = map (subtract 1) $
                       tail $ zipWith (+) a001519_list $ tail a001519_list
    -- Reinhard Zumkeller, Aug 09 2013
  • Magma
    [Fibonacci(2*n+1)+Fibonacci(2*n-1)-1: n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
    
  • Maple
    A005592:=-(2-2*z+z**2)/(z-1)/(z**2-3*z+1); # conjectured by Simon Plouffe in his 1992 dissertation
    # second Maple program:
    F:= n-> (<<0|1>, <1|1>>^n)[1,2]:
    a:= n-> F(2*n+1)+F(2*n-1)-1:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 04 2016
  • Mathematica
    Table[Fibonacci[2n+1]+Fibonacci[2n-1]-1,{n,30}] (* Harvey P. Dale, Aug 22 2011 *)
    a[n_] := LucasL[2n]-1; Array[a, 30] (* Jean-François Alcover, Dec 09 2015 *)
  • PARI
    a(n)=fibonacci(2*n+1)+fibonacci(2*n-1)-1 \\ Charles R Greathouse IV, Aug 23 2011
    
  • Sage
    [lucas_number2(n,3,1)-1 for n in range(1,29)] # Zerinvary Lajos, Jul 06 2008
    

Formula

a(n) = Lucas(2*n)-1, with Lucas(n)=A000032(n).
a(n) = floor(r^(2*n)), where r = golden ratio = (1+sqrt(5))/2.
a(n) = floor(Fibonacci(5*n)/Fibonacci(3*n)). - Gary Detlefs, Mar 11 2011
a(n) = +4*a(n-1) -4*a(n-2) +1*a(n-3). - Joerg Arndt, Mar 11 2011
a(n) = A001519(2*n-1) + A001519(2*n+1) - 1. - Reinhard Zumkeller, Aug 09 2013
a(n) = 3*a(n) - a(n-1) + 1; a(n) = A004146(n) + 1, n>0. - Richard R. Forberg, Sep 04 2013
a(n) = 2*cosh(2*n*arcsinh(1/2)) - 1. - Ilya Gutkovskiy, Oct 31 2016
a(n) = floor(sqrt(5)*Fibonacci(2*n)), for n > 0 (Seamons, 1966). - Amiram Eldar, Feb 05 2022

Extensions

Formulae and comments by Clark Kimberling, Nov 24 2010
a(0)=1 prepended by Alois P. Heinz, Nov 04 2016

A203976 a(n) = 3*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=5, a(3)=4.

Original entry on oeis.org

0, 1, 5, 4, 15, 11, 40, 29, 105, 76, 275, 199, 720, 521, 1885, 1364, 4935, 3571, 12920, 9349, 33825, 24476, 88555, 64079, 231840, 167761, 606965, 439204, 1589055, 1149851, 4160200, 3010349, 10891545, 7881196, 28514435, 20633239, 74651760, 54018521, 195440845
Offset: 0

Views

Author

Michael Somos, Jan 08 2012

Keywords

Comments

a(n+1) = p(n+2) where p(x) is the unique degree-n polynomial such that p(k) = Lucas(k) for k = 1, ..., n+1.
This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m).
a(n) = row sums of triangle A226377(n), based on differences among Lucas Numbers. - Richard R. Forberg, Aug 01 2013
A strong divisibility sequence, i.e., gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence of convergents of the 2-periodic continued fraction [0; 1, -5, 1, -5, ...] = 1/(1 - 1/(5 - 1/(1 - 1/(5 - ...)))) = 1/2*(5 - sqrt(5)) begins [0/1, 1/1, 5/4, 4/3, 15/11, 11/8, 40/29,...]. The present sequence is the sequence of numerators; the sequence of denominators [1, 1, 4, 3, 11, 8, 29,...] is A005013. - Peter Bala, May 19 2014
It appears that the first homology group of the branched n-th cyclic covering of the group of figure-eight knot is the direct sum of cyclic groups of orders a(n) and A005013(n), so the order of that group is the product of these numbers, i. e. A004146(n); see the table on p. 156 of the paper by Fox. - Andrey Zabolotskiy, Mar 16 2023

Examples

			a(3) = 4 since p(x) = (-x^2 + 7*x - 4) / 2 interpolates p(1) = 1, p(2) = 3, p(3) = 4, and p(4) = 4.
		

Crossrefs

Cf. A000032, A000045, A201157 (bisection), A002878 (bisection). A005013.

Programs

  • Haskell
    a203976 n = a203976_list !! n
    a203976_list = 0 : 1 : 5 : 4 : zipWith (-)
       (map (* 3) $ drop 2 a203976_list) a203976_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[0,1,5,4]; [n le 4 select I[n] else 3*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 29 2016
  • Mathematica
    LinearRecurrence[{0,3,0,-1},{0,1,5,4},40] (* Harvey P. Dale, Apr 06 2013 *)
  • PARI
    {a(n) = if( n%2, fibonacci(n+1) + fibonacci(n-1), 5 * fibonacci(n))}
    
  • PARI
    {a(n) = if( n<0, -a(-n), polcoeff( x * (1 + 5*x + x^2) / (1 - 3*x^2 + x^4) + x * O(x^n), n))}
    
  • PARI
    {a(n) = if( n<0, -a(-n), subst( polinterpolate( vector( n, k, fibonacci(k-1) + fibonacci(k+1) )), x, n + 1))}
    

Formula

a(1) = 1, a(2) = 5, a(3) = 4, a(n) * a(n-3) = a(n-1) * a(n-2) - 5. a(-n) = -a(n).
G.f.: x * (1 + 5*x + x^2) / ( (x^2+x-1)*(x^2-x-1) ).
a(2*n) = 5 * A000045(2*n) (Fibonacci). a(2*n+1) = A000032(2*n+1) (Lucas).
a(A004277(n)) = A054888(n+1). - Reinhard Zumkeller, Jan 11 2012
a(n) = A000032(n+1) - A061084(n). - R. J. Mathar, Jun 23 2013
a(2n) = a(2n-1) + a(2n+1), for n>0. - Richard R. Forberg, Aug 01 2013
a(n) = (2^(-1-n)*((-5-sqrt(5)+(-1)^n*(-5+sqrt(5)))*((-1+sqrt(5))^n-(1+sqrt(5))^n)))/sqrt(5). - Colin Barker, Mar 28 2016
E.g.f.: exp(-phi*x)*(exp(x) - 1)*(phi*exp(sqrt(5)*x) - 1/phi), where phi = (1 + sqrt(5))/2. - G. C. Greubel, Mar 28 2016

A013946 Least d for which the number with continued fraction [n,n,n,n...] is in Q(sqrt(d)).

Original entry on oeis.org

5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 5, 37, 173, 2, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 5, 226, 965, 257, 1093, 290, 1229, 13, 1373, 362, 61, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677, 2813, 730, 3029, 785, 3253
Offset: 1

Views

Author

Keywords

Comments

Square roots of a(n) are found in the limiting ratios of A000045, A001333, A003688, A015448, A015449, A015451 and so on. I.e., the limiting ratios are the golden ratio, silver mean, bronze ratio and so on. - Mats Granvik, Oct 20 2010

Crossrefs

a(n) = 2 is equivalent to "n is in the sequence A077444", a(n) = 5 is equivalent to "n is in the sequence A002878".

Programs

  • Mathematica
    z = 5000; u = Table[{p, e} = Transpose[FactorInteger[n]];
    Times @@ (p^Mod[e, 2]), {n, z}]; Table[u[[n^2 + 4]], {n, 1, Sqrt[z - 4]}]  (* Clark Kimberling, Jul 20 2015, based on T. D. Noe's program at A007913 *)
  • PARI
    A013946(n)=core(n^2+4)  \\ M. F. Hasler, Dec 08 2010

Formula

a(n) = A007913(n^2+4). - David W. Wilson, Dec 08 2010

Extensions

More terms from David W. Wilson

A061171 One half of second column of Lucas bisection triangle (odd part).

Original entry on oeis.org

3, 19, 79, 283, 940, 2982, 9171, 27581, 81557, 237995, 687158, 1966764, 5588259, 15780103, 44323195, 123920827, 345062176, 957403026, 2647935987, 7302634865, 20087869313, 55128445259, 150971982314
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator of g.f. is on half of row polynomial Sum_{m=0..2} A061187(1,m) * x^m.

Crossrefs

Programs

  • Magma
    I:=[3,19,79,283]; [n le 4 select I[n] else 6*Self(n-1) - 11*Self(n-2) + 6*Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    CoefficientList[Series[(1+x)(3-2x)/(1-3x+x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6,-1},{3,19,79,283},30] (* Harvey P. Dale, Oct 11 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(3-2*x)/(1-3*x+x^2)^2) \\ G. C. Greubel, Dec 21 2017
    

Formula

2*a(n) = A060924(n+1, 1).
G.f.: (1+x)*(3-2*x)/(1-3*x+x^2)^2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4), with a(0)=3, a(1)=19, a(2)=79, a(3)=283. - Harvey P. Dale, Oct 11 2012
a(n) = Fibonacci(2*n+4) + n*Lucas(2*n+3). - Lechoslaw Ratajczak, May 06 2020

A065034 a(n) = Lucas(2*n) + 1.

Original entry on oeis.org

3, 4, 8, 19, 48, 124, 323, 844, 2208, 5779, 15128, 39604, 103683, 271444, 710648, 1860499, 4870848, 12752044, 33385283, 87403804, 228826128, 599074579, 1568397608, 4106118244, 10749957123, 28143753124, 73681302248, 192900153619, 505019158608, 1322157322204
Offset: 0

Views

Author

N. J. A. Sloane, Nov 04 2001

Keywords

Crossrefs

Cf. A002878 (first differences). - R. J. Mathar, Jul 18 2009

Programs

  • Magma
    [ Lucas(2*n) + 1: n in [0..210]]; // Vincenzo Librandi, Apr 15 2011
  • Maple
    a:= n-> (<<0|1>, <1|1>>^(2*n). <<2,1>>)[1, 1]+1:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 01 2016
  • Mathematica
    LucasL[2 Range[30]]+1 (* Harvey P. Dale, Oct 21 2011 *)
    LinearRecurrence[{4, -4, 1}, {3, 4, 8}, 30] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    a(n) = { fibonacci(2*n + 1) + fibonacci(2*n - 1) + 1 } \\ Harry J. Smith, Oct 03 2009
    
  • PARI
    Vec((3-2*x)*(1-2*x)/((1-x)*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Nov 01 2016
    

Formula

a(n) = F(2*n+1) + F(2*n-1) + 1 = A005248(n) + 1.
From R. J. Mathar, Jul 18 2009: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: 1/(1-x) + (2-3*x)/(1-3*x+x^2). (End)
a(n) = 1 + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n. - Colin Barker, Nov 01 2016

Extensions

a(0)=3 prepended by Joerg Arndt, Nov 01 2016

A082762 Trinomial transform of Lucas numbers (A000032).

Original entry on oeis.org

1, 8, 44, 232, 1216, 6368, 33344, 174592, 914176, 4786688, 25063424, 131233792, 687149056, 3597959168, 18839158784, 98643116032, 516502061056, 2704439902208, 14160631169024, 74146027405312, 388233639755776, 2032817728913408, 10643971814457344
Offset: 0

Views

Author

Emanuele Munarini, May 21 2003

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 8]; [n le 2 select I[n] else 6*Self(n-1)-4*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    a[n_]:=(MatrixPower[{{2,2},{2,4}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    f[n_] := Block[{s = Sqrt@ 5}, Simplify[((1 + s)(3 + s)^n + (1 - s)(3 - s)^n)/2]]; Array[f, 21, 0] (* Robert G. Wilson v, Mar 07 2011 *)
    LinearRecurrence[{6,-4}, {1, 8}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    x='x+O('x^30); Vec((1 + 2*x)/(1 - 6*x + 4*x^2)) \\ G. C. Greubel, Dec 21 2017
    

Formula

a(n) = Sum_{k=0..2*n} Trinomial(n,k)*Lucas(k+1), where Trinomial(n,k) = trinomial coefficients (A027907).
a(n) = 2^n*Lucas(2*n+1), where Lucas = A000032.
From Philippe Deléham, Mar 01 2004: (Start)
a(n) = 2^n*A002878(n) = 2^(-n)*Sum_{k>=0} C(2*n+1,2*k)*5^k; see A091042.
a(0) = 1, a(1) = 8, a(n+1) = 6*a(n) - 4*a(n-1). (End)
From Al Hakanson (hawkuu(AT)gmail.com), Jul 13 2009: (Start)
a(n) = ((1+sqrt(5))*(3+sqrt(5))^n + (1-sqrt(5))*(3-sqrt(5))^n)/2.
Third binomial transform of 1, 5, 5, 25, 25, 125. (End)
G.f.: (1 + 2*x)/(1 - 6*x + 4*x^2). - Colin Barker, Mar 23 2012

A110035 Row sums of an unsigned characteristic triangle for the Fibonacci numbers.

Original entry on oeis.org

1, 2, 5, 12, 31, 80, 209, 546, 1429, 3740, 9791, 25632, 67105, 175682, 459941, 1204140, 3152479, 8253296, 21607409, 56568930, 148099381, 387729212, 1015088255, 2657535552, 6957518401, 18215019650, 47687540549, 124847601996
Offset: 0

Views

Author

Paul Barry, Jul 08 2005

Keywords

Comments

Rows sums of abs(A110033).

Examples

			G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 31*x^4 + 80*x^5 + 209*x^6 + ... - _Michael Somos_, Mar 03 2023
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-3,1},{1,2,5,12},50] (* Harvey P. Dale, May 01 2022 *)
    a[ n_] := With[{F = Fibonacci}, (1 + F[n+1]*F[n+2] + F[n+n])/2]; (* Michael Somos, Mar 03 2023 *)
  • PARI
    {a(n) = my(F = fibonacci); (1 + F(n+1)*F(n+2) + F(n+n))/2}; /* Michael Somos, Mar 03 2023 */

Formula

G.f.: (1-x-x^2)/((1-x^2)(1-3x+x^2));
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4);
a(n) = F(2n) + 1 + Sum_{k=0..n-1} F(k)*F(k+1).
From R. J. Mathar, Jul 22 2010: (Start)
a(n) = Sum_{i=0..n} A061646(i).
a(n) = (5 + (-1)^n + 4*A002878(n))/10. (End)
a(n) = A110034(-n) = 1 - A110034(1+n) = A236438(n) + (n mod 2) = (1 + F(n+1)*F(n+2) + F(2*n))/2 for all n in Z. - Michael Somos, Mar 03 2023
Previous Showing 41-50 of 122 results. Next