cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 111 results. Next

A065164 Permutation t->t+1 of Z, folded to N.

Original entry on oeis.org

2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13, 18, 15, 20, 17, 22, 19, 24, 21, 26, 23, 28, 25, 30, 27, 32, 29, 34, 31, 36, 33, 38, 35, 40, 37, 42, 39, 44, 41, 46, 43, 48, 45, 50, 47, 52, 49, 54, 51, 56, 53, 58, 55, 60, 57, 62, 59, 64, 61, 66, 63, 68, 65, 70, 67, 72, 69, 74
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

Corresponds to simple periodic asynchronic site swap pattern ...111111... (tossing one ball from hand to hand forever).
This permutation consists of a single infinite cycle.
This is, starting at a(2) = 4, the same as the "increasing oscillating sequence" shown in Proposition 3.1, p.7 and plotted in the right of figure 1, of Vatter. The same paper, p.4, cites Comtet and uses without giving the A-number of A003319. Abstract: We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley-Wilf limit) at least lambda = approx 2.48187, the unique real root of x^5-2x^4-2x^2-2x-1, thereby establishing a conjecture of Albert and Linton. - Jonathan Vos Post, Jul 18 2008

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 819.

Crossrefs

Row 1 of A065167. Obtained by composing permutations A014681 and A065190. Inverse permutation: A065168.

Programs

  • Maple
    ss1 := [seq(PerSS(n,1), n=1..120)]; PerSS := (n,c) -> Z2N(N2Z(n)+c);
    N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
  • Mathematica
    Join[{2}, LinearRecurrence[{1, 1, -1}, {4, 1, 6}, 100]] (* Amiram Eldar, Aug 08 2023 *)

Formula

Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)+1).
a(n) = n + 2*(-1^n) for n > 1. - Frank Ellermann, Feb 12 2002
a(n) = 2*n-a(n-1)-1, n>2. - Vincenzo Librandi, Dec 07 2010, corrected by R. J. Mathar, Dec 07 2010
From Colin Barker, Feb 18 2013: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
G.f.: x*(3*x^3-5*x^2+2*x+2) / ((x-1)^2*(x+1)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 1. - Amiram Eldar, Aug 08 2023

A109062 Triangle read by rows: number of atomic set compositions of size n and length k (see description in A095989) 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 11, 23, 13, 1, 26, 112, 158, 71, 1, 57, 446, 1170, 1241, 461, 1, 120, 1593, 6880, 12871, 10912, 3447, 1, 247, 5337, 35503, 103887, 150413, 106031, 29093, 1, 502, 17190, 168982, 724148, 1589266, 1872286, 1128218, 273343, 1, 1013, 54008
Offset: 1

Views

Author

Mike Zabrocki, Aug 24 2005

Keywords

Comments

Also the number of free generators and primitives of the quasi-symmetric functions in non-commuting variables. - Mike Zabrocki, Aug 06 2006
Triangle given by [1,0,2,0,3,0,4,0,5,...] DELTA [1,2,2,3,3,4,4,5,5,6,6,7,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 01 2007
Apparently, the alternating sums vanish for n > 1. - F. Chapoton, Sep 05 2023

Examples

			Atomic set compositions a(1,1)=1: [{1}]; a(2,1)=1, a(2,2)=1: [{12}], [{2},{1}]; a(3,1)=1, a(3,2)=4, a(3,3)=3: [{123}], [{2},{13}], [{3}, {12}], [{23}, {1}], [{13},{2}], [{2},{3},{1}], [{3},{1},{2}], [{3},{2},{1}].
Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1, 11,  23,  13;
  1, 26, 112, 158, 71;
  ...
		

Crossrefs

Row sums are equal to A095989, a(n,n) = A003319, a(n,2) = A000295.

Programs

  • Maple
    f:=(n,k)->coeff(coeff(series(1-1/(1+add(add(q^m*t^i*
        Stirling2(m,i)*i!,i=1..m),m=1..n)),q,n+1),q,n),t,k):
    seq(seq(f(n,k), k=1..n), n=1..10);

Formula

G.f.: 1-1/(1+Sum_{n>=1} Sum_{k=1..n} q^n*t^k*Stirling2(n,k)*k!).

A113871 G.f.: 1/(Sum_{k>=0} (k!)^2 x^k).

Original entry on oeis.org

1, -1, -3, -29, -499, -13101, -486131, -24266797, -1571357619, -128264296301, -12894743113075, -1566235727656365, -226180775756251955, -38308065207361046509, -7521255169156107737331, -1694604321825062440852013, -434302821056087233474158259
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 20; CoefficientList[Series[1/Sum[(k!)^2 x^k, {k, 0, nn}], {x, 0, nn}], x] (* T. D. Noe, Jan 03 2013 *)
  • Sage
    h = 1/(1+x*hypergeometric((1,2,2),(),x))
    taylor(h,x,0,16).list() # Peter Luschny, Jul 28 2015
    
  • Sage
    def A113871_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n,-1,-1):
                C[k] = C[k-1] * k^2
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0])
        return R
    print(A113871_list(17)) # Peter Luschny, Jul 30 2015

Formula

G.f.: 2/Q(0), where Q(k) = 1 + 1/(1 - (k+1)^2*x/((k+1)^2*x + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 17 2013
a(n) ~ -n!^2 * (1 - 2/n^2 - 5/n^4 - 10/n^5 - 67/n^6 - 332/n^7 - 2152/n^8 - 14946/n^9 - 115583/n^10). - Vaclav Kotesovec, Jul 28 2015
a(0) = 1, a(n) = -Sum_{k=0..n-1} a(k) * ((n-k)!)^2. - Daniel Suteu, Feb 23 2018

A122949 Number of ordered pairs of permutations generating a transitive group.

Original entry on oeis.org

1, 3, 26, 426, 11064, 413640, 20946960, 1377648720, 114078384000, 11611761920640, 1425189271161600, 207609729886944000, 35419018603306060800, 6996657393055480550400, 1584616114318716544665600, 407930516160959891683584000, 118458533875304716189544448000
Offset: 1

Views

Author

Philippe Flajolet, Oct 25 2006

Keywords

Comments

From Dixon: The sequence is asymptotic to (n!)^2; when divided by n!^2, it has a high-order asymptotic contact with the probability that two randomly chosen permutations generate the symmetric group. Also: a(n)=(n-1)!*A003319(n+1), where A003319 is the number of connected [or indecomposable] permutations. The coefficients in the asymptotic expansion of a(n)/(n!)^2 are A113869 and in absolute value, they constitute A084357 (number of sets of sets of lists).

Examples

			a(2)=3 because there are 2!*2!=4 pairs of permutations, of which only [(1,1),(1,1)] does not generate a transitive group.
		

Crossrefs

Programs

  • Maple
    series(log(add(n!*z^n,n=0..Order+2)),z=0):seq(coeff(%,z,j)*j!,j=0..Order);
  • Mathematica
    max = 15; Drop[ CoefficientList[ Series[ Log[1 + Sum[n!*z^n, {n, 1, max}]], {z, 0, max}], z]* Range[0, max]!, 1](* Jean-François Alcover, Oct 05 2011 *)
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, k!*x^k)))) \\ Seiichi Manyama, Mar 01 2019

Formula

Exponential generating function is: log(1+Sum_{n>=1}n!*z^n).
a(n) = (n!)^2 - (n-1)! * Sum_{k=1..n-1} a(k) * (n-k)! / (k-1)!. - Ilya Gutkovskiy, Jul 10 2020

Extensions

More terms from Seiichi Manyama, Mar 01 2019

A140456 a(n) is the number of indecomposable involutions of length n.

Original entry on oeis.org

1, 1, 1, 3, 7, 23, 71, 255, 911, 3535, 13903, 57663, 243871, 1072031, 4812575, 22278399, 105300287, 510764095, 2527547455, 12794891007, 66012404863, 347599231103, 1863520447103, 10178746224639, 56548686860543, 319628408814847, 1835814213846271
Offset: 1

Views

Author

Joel B. Lewis, Jul 22 2008

Keywords

Comments

An involution is a self-inverse permutation. A permutation of [n] = {1, 2, ..., n} is indecomposable if it does not fix [j] for any 0 < j < n.
From Paul Barry, Nov 26 2009: (Start)
G.f. of a(n+1) is 1/(1-x-2x^2/(1-x-3x^2/(1-x-4x^2/(1-x-5x^2/(1-...))))) (continued fraction).
a(n+1) is the binomial transform of the aeration of A000698(n+1). Hankel transform of a(n+1) is A000178(n+1). (End)
From Groux Roland, Mar 17 2011: (Start)
a(n) is the INVERTi transform of A000085(n+1)
a(n) is also the moment of order n for the density: sqrt(2/Pi^3)*exp((x-1)^2/2)/(1-(erf(I*(x-1)/sqrt(2)))^2).
More generally, if c(n)=int(x^n*rho(x),x=a..b) with rho(x) a probability density function of class C1, then the INVERTi transform of (c(1),..c(n),..) starting at n=2 gives the moments of mu(x) = rho(x) / ((s(x))^2+(Pi*rho(x))^2) with s(x) = int( rho'(t)*log(abs(1-t/x)), t=a..b) + rho(b)*log(x/(b-x)) + rho(a)*log((x-a)/x).
(End)
For n>1 sum over all Motzkin paths of length n-2 of products over all peaks p of (x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p. - Alois P. Heinz, May 24 2015

Examples

			The unique indecomposable involution of length 3 is 321. The indecomposable involutions of length 4 are 3412, 4231 and 4321.
G.f. = x + x^2 + 3*x^3 + 7*x^4 + 23*x^5 + 71*x^6 + 255*x^7 + 911*x^8 + ...
		

Crossrefs

Cf. A000085 (involutions), A000698 (indecomposable fixed-point free involutions), and A003319 (indecomposable permutations).

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1)
                     + b(x-1, y, false) + b(x-1, y+1, true)))
        end:
    a:= n-> `if`(n=1, 1, b(n-2, 0, false)):
    seq(a(n), n=1..35);  # Alois P. Heinz, May 24 2015
  • Mathematica
    CoefficientList[Series[1 - 1/Total[CoefficientList[Series[E^(x + x^2/2), {x, 0, 50}], x] * Range[0, 50]! * x^Range[0, 50]], {x, 0, 50}], x]

Formula

G.f.: 1 - 1/I(x), where I(x) is the ordinary generating function for involutions (A000085).
G.f.: Q(0) +1/x, where Q(k) = 1 - 1/x - (k+1)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Sep 16 2013

A167894 Expansion of g.f.: 1/(Sum_{k >= 0} k!*x^k).

Original entry on oeis.org

1, -1, -1, -3, -13, -71, -461, -3447, -29093, -273343, -2829325, -31998903, -392743957, -5201061455, -73943424413, -1123596277863, -18176728317413, -311951144828863, -5661698774848621, -108355864447215063
Offset: 0

Views

Author

Philippe Deléham, Nov 15 2009

Keywords

Comments

Essentially the same as A003319, which is the main entry for these numbers. - N. J. A. Sloane, Jun 11 2013

References

  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 40.

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(&+[Factorial(k)*x^k: k in [0..m+1]]) )); // G. C. Greubel, Feb 07 2019
  • Mathematica
    CoefficientList[Series[1/(Sum[k!*x^k, {k, 0, 25}]), {x, 0, 20}], x] (* G. C. Greubel, Jun 30 2016 *)
  • Maxima
    a(n) := if n=0 then 1 else -sum( a(i)*(n-i)!,i,0,n-1); /* Vladimir Kruchinin, Oct 10 2024 */
    
  • PARI
    m=20; my(x='x+O('x^m)); Vec(1/sum(k=0,m+1, k!*x^k)) \\ G. C. Greubel, Feb 07 2019
    
  • Sage
    def A167894_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = C[k-1] * k
            C[0] = -sum(C[k] for k in (1..n))
            R.append(C[0])
        return R
    print(A167894_list(20)) # Peter Luschny, Feb 19 2016
    
  • Sage
    m=20; (1/sum(factorial(k)*x^k for k in range(m+1))).series(x, m).coefficients(x, sparse=False) # G. C. Greubel, Feb 07 2019
    

Formula

a(n) = - Sum_{i=0..n-1} a(i)*(n-i)! for n > 0 with a(0) = 1. - Vladimir Kruchinin, Oct 10 2024
From Sergei N. Gladkovskii, Jun 24 2012, Oct 15 2012, Nov 18 2012, Dec 26 2012, Apr 25 2013, May 29 2013, Aug 08 2013, Nov 19 2013: (Start) Continued fractions:
G.f.: 1 - x/Q(0), where Q(k) = 1 - (k+1)*x/(1 - (k+2)*x/Q(k+1)).
G.f.: U(0) where U(k) = 1 - x*(k+1)/(1 - x*(k+1)/U(k+1)).
G.f.: 1/G(0) where G(k) = 1 + x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))).
G.f.: A(x) = 1 - x/G(0) where G(k) = 1 + (k+1)*x - x*(k+2)/G(k+1).
G.f.: x*Q(0), where Q(k) = 1/x - 1 - 2*k - (k+1)^2/Q(k+1).
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))).
G.f.: 2/Q(0), where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )).
G.f.: conjecture: Q(0), where Q(k) = 1 + k*x - (k+1)*x/Q(k+1). (End)
a(n) ~ -n! * (1 - 2/n - 1/n^2 - 5/n^3 - 32/n^4 - 253/n^5 - 2381/n^6 - 25912/n^7 - 319339/n^8 - 4388949/n^9 - 66495386/n^10 - ...). - Vaclav Kotesovec, Dec 08 2020

A233824 A recurrent sequence in Panaitopol's formula for pi(x), where pi(x) is the number of primes <= x.

Original entry on oeis.org

0, 1, 3, 13, 71, 461, 3447, 29093, 273343, 2829325, 31998903, 392743957, 5201061455, 73943424413, 1123596277863, 18176728317413, 311951144828863, 5661698774848621, 108355864447215063, 2181096921557783605
Offset: 0

Views

Author

Jonathan Sondow, Dec 17 2013

Keywords

Comments

Sum_{k=0..n} k!*a(n-k) = n*n!.
Panaitopol proved that x/pi(x) = log(x) - 1 - Sum_{k=1..m} a(k)/log(x)^k + O(1/log(x)^{m+1}) for m > 0.

Examples

			0!*a(0) = a(0) = 0*0!, so a(0) = 0.
0!*a(1) + 1!*a(0) = a(1) + a(0) = 1*1!, so a(1) = 1.
0!*a(2) + 1!*a(1) + 2!*a(0) = a(2) + a(1) + 2*a(0) = 2*2!, so a(2) = 4 - 1 = 3.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = n*n! - Sum[ k! a[n - k], {k, n - 1}]; Table[a@ n, {n, 0, 19}] (* Michael De Vlieger, Mar 26 2016 *)

Formula

a(n) = n*n! - Sum_{k=1..n-1} k!*a(n-k).
a(n) = A003319(n+1) if n > 0. (Proof. Set b(n) = A003319(n), so that b(n) = n! - Sum_{k=1..n-1} k!*b(n-k). To get b(n+1) = a(n) for n > 0, induct on n, use (n+1)! = n*n! + n!, and replace k with k+1 in the sum.)

A004208 a(n) = n * (2*n - 1)!! - Sum_{k=0..n-1} a(k) * (2*n - 2*k - 1)!!.

Original entry on oeis.org

1, 5, 37, 353, 4081, 55205, 854197, 14876033, 288018721, 6138913925, 142882295557, 3606682364513, 98158402127761, 2865624738913445, 89338394736560917, 2962542872271918593, 104128401379446177601, 3867079042971339087365, 151312533647578564021477
Offset: 1

Views

Author

N. J. A. Sloane, following a suggestion from E. W. Bowen, Aug 27 1976

Keywords

Comments

a(n+1) is the moment of order n for the probability density function rho(x) = Pi^(-3/2)*sqrt(x/2)*exp(x/2)/(1-erf^2(i*sqrt(x/2))) on the interval 0..infinity, where erf is the error function and i=sqrt(-1). - Groux Roland, Nov 10 2009

References

  • E. W. Bowen, Letter to N. J. A. Sloane, Aug 27 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000698.

Programs

  • Maple
    df := proc(n) product(2*k-1,k=1..n) end: a[1] := 1: for n from 2 to 30 do a[n] := n*df(n)-sum(a[k]*df(n-k),k=1..n-1) od;
  • Mathematica
    CoefficientList[Series[D[Log[Sum[(2n-1)!!x^n,{n,0,19}]],x],{x,0,18}],x] (* Wouter Meeussen, Mar 21 2009 *)
    a[ n_] := If[ n < 1, 0, n Coefficient[ Normal[ Series[ Log @ Erfc @ Sqrt @ x, {x, Infinity, n}] + x + Log[ Sqrt [Pi x]]] /. x -> -1 / 2 / x, x, n]] (* Michael Somos, May 28 2012 *)
  • PARI
    {a(n) = if( n<1, 0, n++; polcoeff( 1 - 1 / (2 * sum( k=0, n, x^k * (2*k)! / (2^k * k!), x * O(x^n))), n))} /* Michael Somos, May 28 2012 */

Formula

a(n) = (1/2) * A000698(n+1), n > 0.
x + (5/2)*x^2 + (37/3)*x^3 + (353/4)*x^4 + (4081/5)*x^5 + (55205/6)*x^6 + ... = log(1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 945*x^5 + 10395*x^6 + ...) where [1, 1, 3, 15, 105, 945, 10395, ...] = A001147(double factorials). - Philippe Deléham, Jun 20 2006
G.f.: ( 1/Q(0) - 1)/x where Q(k) = 1 - x*(2*k+1)/(1 - x*(2*k+4)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: (2/x)/G(0) - 1/x, where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: 1/(2*x^2) - 1/(2*x) - G(0)/(2*x^2), where G(k) = 1 - x*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Aug 15 2013
L.g.f.: log(1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - ...))))))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017

Extensions

Description corrected by Jeremy Magland (magland(AT)math.byu.edu), Jan 07 2000
More terms from Emeric Deutsch, Dec 21 2003

A049294 Number of subgroups of index 3 in free group of rank n+1.

Original entry on oeis.org

1, 13, 97, 625, 3841, 23233, 139777, 839425, 5038081, 30231553, 181395457, 1088385025, 6530334721, 39182057473, 235092443137, 1410554855425, 8463329525761, 50779977940993, 304679869218817, 1828079218458625
Offset: 0

Views

Author

Keywords

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9,-20,12},{1,13,97},20] (* Harvey P. Dale, Sep 24 2017 *)

Formula

a(n) = 3*6^n-3*2^n+1.
G.f.: (1+4*x)/((1-x)*(1-2*x)*(1-6*x)). [Colin Barker, May 08 2012]

Extensions

More terms from Karen Richardson (s1149414(AT)cedarville.edu)

A059439 A diagonal of A059438.

Original entry on oeis.org

0, 0, 1, 2, 7, 32, 177, 1142, 8411, 69692, 642581, 6534978, 72754927, 880877928, 11530686953, 162331760494, 2446380427331, 39300220067668, 670480457586813, 12106985274788506, 230691361507912471, 4625811718758963136
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Comments

Self-convolution of A003319. - Vaclav Kotesovec, Aug 03 2015

Examples

			G.f. = x^2 + 2*x^3 + 7*x^4 + 32*x^5 + 177*x^6 + 1142*x^7 + 8411*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 262 (#14).

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[n_]:=a[n] = n!-Sum[k!*a[n-k], {k,1,n-1}]; Table[Sum[a[k]*a[n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 03 2015 *)
    CoefficientList[Assuming[Element[x, Reals], Series[(1 - x*E^(1/x) / ExpIntegralEi[1/x])^2, {x, 0, 20}]], x] (* Vaclav Kotesovec, Aug 03 2015 *)

Formula

G.f.: (1-1/Sum (k! x^k ))^2.
For n>0, a(n) = A259472(n) + 2*A003319(n). - Vaclav Kotesovec, Aug 03 2015
a(n) ~ 2*(n-1)! * (1 - 1/n - 1/n^2 + 1/n^3 + 30/n^4 + 404/n^5 + 5379/n^6 + 76021/n^7 + 1155805/n^8 + 18931873/n^9 + 333434490/n^10), for coefficients see A260913. - Vaclav Kotesovec, Aug 03 2015

Extensions

More terms from Vladeta Jovovic, Mar 04 2001
Prepended a(0)=0, a(1)=0 from Vaclav Kotesovec, Aug 03 2015
Previous Showing 41-50 of 111 results. Next