cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 66 results. Next

A049682 a(n) = (Lucas(8*n) - 2)/45.

Original entry on oeis.org

0, 1, 49, 2304, 108241, 5085025, 238887936, 11222647969, 527225566609, 24768378982656, 1163586586618225, 54663801192073921, 2568035069440856064, 120642984462528161089, 5667652234669382715121, 266259012044998459449600, 12508505913880258211416081
Offset: 0

Views

Author

Keywords

Comments

This is a divisibility sequence.

Examples

			G.f. = x + 49*x^2 + 2304*x^3 + 108241*x^4 + 5085025*x^5 + 238887936*x^6 + ...
		

Crossrefs

Programs

  • GAP
    List([0..20], n-> (Fibonacci(4*n)/3)^2 ); # G. C. Greubel, Dec 14 2019
  • Magma
    [(Fibonacci(4*n)/3)^2: n in [0..20]]; // G. C. Greubel, Dec 02 2017
    
  • Maple
    with(combinat); seq( fibonacci(4*n)^2/9, n=0..20); # G. C. Greubel, Dec 14 2019
  • Mathematica
    LinearRecurrence[{48,-48,1},{0,1,49},20] (* or *) CoefficientList[Series[ (-x-x^2)/ (x^3-48x^2+48x-1),{x,0,20}],x] (* Harvey P. Dale, Apr 22 2011 *)
  • MuPAD
    numlib::fibonacci(4*n)^2/9 $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    vector(21, n, (fibonacci(4*(n-1))/3)^2) \\ G. C. Greubel, Dec 02 2017
    
  • Sage
    [(fibonacci(4*n)/3)^2 for n in (0..20)] # G. C. Greubel, Dec 14 2019
    

Formula

a(n) = (1/45)*(-2 + ((47 + 7*sqrt(45))/2)^n + ((47 - 7*sqrt(45))/2)^n). - Ralf Stephan, Apr 14 2004
From R. J. Mathar, Jun 03 2009: (Start)
a(n) = (A004187(n))^2.
a(n) = 48*a(n-1) - 48*a(n-2) + a(n-3).
G.f.: x*(1 + x)/((1 - x)*(1 - 47*x + x^2)). (End)
From R. K. Guy, Feb 24 2010: (Start)
a(n) = F(4*n)^2/9.
a(n) - a(n-1) = A004187(2n-1). (End)
From Peter Bala, Jun 03 2016: (Start)
exp( Sum_{n >= 1} 45*a(n)*x^n/n ) = 1 + 15/7*Sum_{n >= 1} Fibonacci(8*n)*x^n.
This is the particular case k = 4 of the relation exp( Sum_{n >= 1} 5*F(k*n)^2*x^n/n ) = 1 + 5*Fibonacci(k)/Lucas(k) * ( Sum_{n >= 1} F(2*k*n)*x^n ). (End)
Lim_{n->infinity} a(n+1)/a(n) = (47 + 21*sqrt(5))/2 = phi^8, where phi is the golden ratio (A001622). - Ilya Gutkovskiy, Jun 06 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Jun 12 2016
0 = a(n)*(+a(n) -98*a(n+1) -2*a(n+2)) + a(n+1)*(+2401*a(n+1) -98*a(n+2)) + a(n+2)^2 for all integer n. - Michael Somos, Jun 12 2016

Extensions

More terms from N. J. A. Sloane, Feb 26 2010

A078366 A Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 17, 288, 4879, 82655, 1400256, 23721697, 401868593, 6808044384, 115334885935, 1953885016511, 33100710394752, 560758191694273, 9499788548407889, 160935647131239840, 2726406212682669391, 46187969968474139807, 782469083251377707328, 13255786445304946884769
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 285*a^2 = +4 with companion sequence b(n)=A078367(n+1), n >= 0.
This is the m=19 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..18 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364 and A077412. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 17's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,16}. - Milan Janjic, Jan 23 2015

Crossrefs

Cf. A077428, A078355 (Pell +4 equations). Cf. A078367.

Programs

  • GAP
    a:=[1,17,288];; for n in [4..20] do a[n]:=17*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 25 2019
  • Magma
    I:=[1, 17, 288]; [n le 3 select I[n] else 17*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
    
  • Mathematica
    CoefficientList[Series[1/(1 - 17 x + x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
    LinearRecurrence[{17,-1},{1,17},20] (* Harvey P. Dale, Aug 02 2018 *)
  • PARI
    my(x='x+O('x^20)); Vec(1/(1-17*x+x^2)) \\ G. C. Greubel, May 25 2019
    
  • Sage
    [lucas_number1(n,17,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 17*a(n-1) - a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = S(2*n+1, sqrt(19))/sqrt(19) = S(n, 17), where S(n, x) = U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (17+sqrt(285))/2 and am = (17-sqrt(285))/2.
G.f.: 1/(1-17*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*16^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = (1/15)*(15 + sqrt(285)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = (1/34)*(15 + sqrt(285)). - Peter Bala, Dec 23 2012
For n >= 1, a(n) = U(n-1,13/2), where U(k,x) represents Chebyshev polynomial of the second order. - Milan Janjic, Jan 23 2015
a(n) = sqrt((A078367(n+1)^2 - 4)/285), n>=0, (Pell equation d=285, +4).
E.g.f.: exp(17*x/2)*(sqrt(285)*cosh(sqrt(285)*x/2) + 17*sinh(sqrt(285)*x/2))/sqrt(285). - Stefano Spezia, Aug 19 2023

A167816 Numerator of x(n) = x(n-1) + x(n-2), x(0)=0, x(1)=1/3; denominator=A167817.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 8, 13, 7, 34, 55, 89, 48, 233, 377, 610, 329, 1597, 2584, 4181, 2255, 10946, 17711, 28657, 15456, 75025, 121393, 196418, 105937, 514229, 832040, 1346269, 726103, 3524578, 5702887, 9227465, 4976784, 24157817, 39088169, 63245986, 34111385
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 13 2009

Keywords

Crossrefs

Programs

  • Magma
    [0,1,1] cat [Numerator(Fibonacci(n)/Fibonacci(2*n-4)): n in [3..40]]; // Vincenzo Librandi, Jun 28 2016
  • Mathematica
    Numerator[LinearRecurrence[{1,1},{0,1/3},40]] (* Harvey P. Dale, Dec 07 2014 *)
    LinearRecurrence[{0, 0, 0, 7, 0, 0, 0, -1},{0, 1, 1, 2, 1, 5, 8, 13},39] (* Ray Chandler, Aug 03 2015 *)

Formula

a(n) = (a(n-1)*A093148(n+2) + a(n-2)*A093148(n+1))/A093148(n-1) for n>1.
a(4*n) = A004187(n) = (a(4*n-1) + a(4*n-2))/3;
a(4*n+1) = A033889(n) = 3*a(4*n-1) + a(4*n-2);
a(4*n+2) = A033890(n) = a(4*n-1) + 3*a(4*n-2);
a(4*n+3) = A033891(n) = a(4*n-1) + a(4*n-2).
Numerator of Fibonacci(n) / Fibonacci(2n-4) for n>=3. - Gary Detlefs, Dec 20 2010

Extensions

Definition corrected by D. S. McNeil, May 09 2010

A214986 Power ceiling array for the golden ratio, by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 5, 1, 1, 12, 21, 22, 7, 1, 1, 20, 55, 94, 48, 12, 1, 1, 33, 144, 399, 329, 134, 18, 1, 1, 54, 377, 1691, 2255, 1487, 323, 30, 1, 1, 88, 987, 7164, 15456, 16492, 5796, 872, 47, 1, 1, 143, 2584, 30348, 105937, 182900
Offset: 1

Views

Author

Clark Kimberling, Oct 28 2012

Keywords

Comments

row 0: A000012 ... row 6: A049660
row 1: A000071 ... row 8: A049668
row 2: A001906 ... col 0: A000012
row 3: A049652 ... col 1: A169986
row 4: A004187
For x>1, define c(x,0) = 1 and c(x,n) = ceiling(x*c(x,n-1)) for n>0. Row m of A214986 is the sequence c(r^m,n), where r = golden ratio = (1 + sqrt(5))/2. The name of the array corresponds to the power ceiling function f(x) = limit of c(x,n)/x^n as n increases without bound; f(x) generalizes the case for x = 3/2 as described under "Power Ceilings" at MathWorld. For a graph of f(x), see the Mathematica program at A083286.
The term "power ceiling sequence" extends to sequences generated by recurrences P(n) = ceiling(x*P(n-1)) + g(n), and "power ceiling functions" f(x) to the limit of P(n)/x^n in case x>1 and g(n)/x^n -> 0.
Suppose that h is a nonnegative integer and g(n) is a constant. If x is a positive integer power of the golden ratio r, then f(x), in many cases, lies in the field Q(sqrt(5)). Examples matching rows of A214986, using g(n) = 0, follow:
...
x ... P ........ f(x)
r ... A000071 .. (5 + 2*sqrt(5))/2 = 1.8944... (A010532)
r^2 . A001906 .. (5 + 3*sqrt(5))/10 = 1.7082...(A176015)
r^3 . A049652 .. (25 + 11*sqrt(5))/40 = 1.2399...
r^4 . A004187 .. (15 + 7*sqrt(5))/10 = 1.0219...
...
If k is odd, then f(r^k) = r^k((b(k) + c(k))/d(k)), where
b(k) = L(j)^2 + L(j-1)^2, where j=[(k+1)/2], L=A000032 (Lucas numbers); c(k) = (L(k)+2)*sqrt(5); d(k) = 10*F(k)*L(k), where F=A000045 (Fibonacci numbers). If k is even, then f(r^k) = r^k/(F(k)*sqrt(5)).

Examples

			Northwest corner:
1...1....1.....1......1.......1
1...2....4.....7......12......20
1...3....8.....21.....55......144
1...5....22....94.....399.....1691
1...7....48....329....2255....15456
1...19...134...1487...16492...182900
		

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio;
    s[x_, 0] := 1; s[x_, n_] := Ceiling[x*s[x, n - 1]];
    t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}]  ]
    u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]

Formula

The odd-numbered rows of A214986 are even-numbered rows of A213978; the even-numbered rows of A214986 are odd-numbered rows of A214984.

A099459 Expansion of 1/(1 - 7*x + 9*x^2).

Original entry on oeis.org

1, 7, 40, 217, 1159, 6160, 32689, 173383, 919480, 4875913, 25856071, 137109280, 727060321, 3855438727, 20444528200, 108412748857, 574888488199, 3048504677680, 16165536349969, 85722212350663, 454565659304920
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

Associated to the knot 9_48 by the modified Chebyshev transform A(x) -> (1/(1+x^2)^2)*A(x/(1+x^2)). See A099460 and A099461.

Crossrefs

Programs

  • Magma
    [n le 2 select 7^(n-1) else 7*Self(n-1) -9*Self(n-2): n in [1..31]]; // G. C. Greubel, Nov 18 2021
  • Mathematica
    LinearRecurrence[{7,-9},{1,7},30] (* Harvey P. Dale, Jan 06 2012 *)
  • Sage
    [lucas_number1(n,7,9) for n in range(1, 22)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-9)^k*7^(n-2*k).
a(n) = Sum{k=0..n} binomial(2*n-k+1, k) * 3^k. - Paul Barry, Jan 17 2005
a(n) = 7*a(n-1) - 9*a(n-2), n >= 2. - Vincenzo Librandi, Mar 18 2011
a(n) = ((7 + sqrt(13))^(n+1) - (7 - sqrt(13))^(n+1))/(2^(n+1)*sqrt(13)). - Rolf Pleisch, May 19 2011
a(n) = 3^(n-1)*ChebyshevU(n-1, 7/6). - G. C. Greubel, Nov 18 2021
From Peter Bala, Jul 23 2025: (Start)
The following products telescope:
Product_{k >= 1} 1 + 3^k/a(k) = (1 + sqrt(13))/2.
Product_{k >= 1} 1 - 3^k/a(k) = (1 + sqrt(13))/14,
Product_{k >= 1} 1 + (-3)^k/a(k) = (13 + sqrt(13))/26.
Product_{k >= 1} 1 - (-3)^k/a(k) = (13 + sqrt(13))/14. (End)

A180033 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 5*x - 5*x^2).

Original entry on oeis.org

1, 6, 35, 205, 1200, 7025, 41125, 240750, 1409375, 8250625, 48300000, 282753125, 1655265625, 9690093750, 56726796875, 332084453125, 1944056250000, 11380703515625, 66623798828125, 390022511718750, 2283231552734375
Offset: 0

Views

Author

Johannes W. Meijer, Aug 09 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the corner and side squares (m = 1, 3, 7, 9; 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032.
The sequence above corresponds to 56 red queen vectors, i.e., A[5] vector, with decimal values between 47 and 488. The central squares lead for these vectors to A057088.
Inverse binomial transform of A004187 (without the leading 0).
Equals the INVERT transform of A086347 and the INVERTi transform of A180167. - Gary W. Adamson, Aug 14 2010

Crossrefs

Cf. A086347, A180167. - Gary W. Adamson, Aug 14 2010

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
    
  • Maple
    with(LinearAlgebra): nmax:=20; m:=1; A[5]:= [0,0,0,1,0,1,1,1,1]: A:=Matrix([[0,1,1,1,1,0,1,0,1], [1,0,1,1,1,1,0,1,0], [1,1,0,0,1,1,1,0,1], [1,1,0,0,1,1,1,1,0], A[5], [0,1,1,1,1,0,0,1,1], [1,0,1,1,1,0,0,1,1], [0,1,0,1,1,1,1,0,1], [1,0,1,0,1,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{5,5},{1,6}, 30] (* Vincenzo Librandi, Nov 15 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)/(1-5*x-5*x^2)) \\ G. C. Greubel, Apr 07 2019
    
  • Sage
    ((1+x)/(1-5*x-5*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 07 2019

Formula

G.f.: (1+x)/(1 - 5*x - 5*x^2).
a(n) = 5*a(n-1) + 5*a(n-2) with a(0) = 1 and a(1) = 6.
a(n) = ((7+5*A)*A^(-n-1) + (7+5*B)*B^(-n-1))/45 with A = (-5+3*sqrt(5))/10 and B = (-5-3*sqrt(5))/10.
Limit_{k->oo} a(n+k)/a(k) = 2*5^(n/2)/(L(2*n) - F(2*n)*sqrt(5)) with L(n) = A000032(n) and F(n) = A000045(n).
Limit_{k->oo} a(2*n+k)/a(k) = 2*A000351(n)/(A056854(n) - 3*A004187(n)*sqrt(5)) for n >= 1.
Limit_{k->oo} a(2*n-1+k)/a(k) = 2*A000351(n)/(3*A049685(n-1)*sqrt(5) - 5*A033890(n-1)) for n >= 1.
a(n) = A057088(n+1)/5. a(2*n) = 5^n*F(4*(n+1))/3, a(2*n+1) = 5^n*L(2*(2*n+3))/3. - Ehren Metcalfe, Apr 04 2019
E.g.f.: exp(5*x/2)*(15*cosh(3*sqrt(5)*x/2) + 7*sqrt(5)*sinh(3*sqrt(5)*x/2))/15. - Stefano Spezia, Mar 17 2025

A288913 a(n) = Lucas(4*n + 3).

Original entry on oeis.org

4, 29, 199, 1364, 9349, 64079, 439204, 3010349, 20633239, 141422324, 969323029, 6643838879, 45537549124, 312119004989, 2139295485799, 14662949395604, 100501350283429, 688846502588399, 4721424167835364, 32361122672259149, 221806434537978679, 1520283919093591604
Offset: 0

Views

Author

Bruno Berselli, Jun 19 2017

Keywords

Comments

a(n) mod 4 gives A101000.

Crossrefs

Cf. A033891: fourth quadrisection of A000045.
Partial sums are in A081007 (after 0).
Positive terms of A098149, and subsequence of A001350, A002878, A016897, A093960, A068397.
Quadrisection of A000032: A056854 (first), A056914 (second), A246453 (third, without 11), this sequence (fourth).

Programs

  • Magma
    [Lucas(4*n + 3): n in [0..30]]; // G. C. Greubel, Dec 22 2017
    
  • Mathematica
    LucasL[4 Range[0, 21] + 3]
    LinearRecurrence[{7,-1}, {4,29}, 30] (* G. C. Greubel, Dec 22 2017 *)
  • PARI
    Vec((4 + x)/(1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    
  • Python
    from sympy import lucas
    def a(n):  return lucas(4*n + 3)
    print([a(n) for n in range(22)]) # Michael S. Branicky, Apr 29 2021
  • Sage
    def L():
        x, y = -1, 4
        while True:
            yield y
            x, y = y, 7*y - x
    r = L(); [next(r) for  in (0..21)] # _Peter Luschny, Jun 20 2017
    

Formula

G.f.: (4 + x)/(1 - 7*x + x^2).
a(n) = 7*a(n-1) - a(n-2) for n>1, with a(0)=4, a(1)=29.
a(n) = ((sqrt(5) + 1)^(4*n + 3) - (sqrt(5) - 1)^(4*n + 3))/(8*16^n).
a(n) = Fibonacci(4*n+4) + Fibonacci(4*n+2).
a(n) = 4*A004187(n+1) + A004187(n).
a(n) = 5*A003482(n) + 4 = 5*A081016(n) - 1.
a(n) = A002878(2*n+1) = A093960(2*n+3) = A001350(4*n+3) = A068397(4*n+3).
a(n+1)*a(n+k) - a(n)*a(n+k+1) = 15*Fibonacci(4*k). Example: for k=6, a(n+1)*a(n+6) - a(n)*a(n+7) = 15*Fibonacci(24) = 695520.

A368152 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 3 - x^2.

Original entry on oeis.org

1, 1, 3, 4, 6, 8, 7, 27, 25, 21, 19, 66, 126, 90, 55, 40, 204, 392, 504, 300, 144, 97, 522, 1363, 1884, 1851, 954, 377, 217, 1425, 4065, 7281, 8011, 6435, 2939, 987, 508, 3642, 12332, 24606, 34044, 31446, 21524, 8850, 2584, 1159, 9441, 35236, 82020, 127830
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
    1
    1    3
    4    6    8
    7   27   25   21
   19   66  126   90   55
   40  204  392  504  300  144
   97  522 1363 1884 1851  954  377
  217 1425 4065 7281 8011 6435 2939 987
Row 4 represents the polynomial p(4,x) = 7 + 27*x + 25*x^2 + 21*x^3, so (T(4,k)) = (7,27,25,21), k=0..3.
		

Crossrefs

Cf. A006130 (column 1); A001906 (p(n,n-1)); A090017 (row sums), (p(n,1)); A002605 (alternating row sums), (p(n,-1)); A004187, (p(n,2)); A004254, (p(n,-2)); A190988, (p(n,3)); A190978 (unsigned), (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 3 - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 3 - x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(13 + 6*x + 5*x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(3*x + 1 + 1/k).

A056566 Fibonomial coefficients.

Original entry on oeis.org

1, 34, 1870, 83215, 3994320, 186135312, 8771626578, 411591708660, 19344810307020, 908637119420910, 42689423937884208, 2005443612183077232, 94214069697350815795, 4426039514623184676790, 207929935924379904006970, 9768275694729434277258589, 458901121999204061365680096
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Crossrefs

Cf. A010048, A000045, A001654-8, A056565, A001906 (signed), A004187, A049660 (signed), A049668.

Programs

  • Mathematica
    a[n_] := (1/65520) Times @@ Fibonacci[n + Range[8]]; Array[a, 20, 0] (* Giovanni Resta, May 08 2016 *)
  • PARI
    b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
    vector(20, n, b(n-1, 8)) \\ Joerg Arndt, May 08 2016

Formula

a(n) = A010048(n+8, 8) = Fibonomial(n+8, 8).
G.f.: 1/p(9, n) with p(9, n)= 1 - 34*x - 714*x^2 + 4641*x^3 + 12376*x^4 - 12376*x^5 - 4641*x^6 + 714*x^7 + 34*x^8 - x^9 = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2)* (1 + 18*x + x^2)*(1 - 47*x + x^2) (n=9 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references).
Recursion: a(n) = 47*a(n-1) - a(n-2) + ((-1)^n)*A001658(n), n >= 2, a(0)=1, a(1)=34.
G.f.: exp( Sum_{k>=1} F(9*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025

A078368 A Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 19, 360, 6821, 129239, 2448720, 46396441, 879083659, 16656193080, 315588584861, 5979526919279, 113295422881440, 2146633507828081, 40672741225852099, 770635449783361800, 14601400804658022101
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 357*a^2 =+4 with companion sequence b(n)=A078369(n+1), n>=0.
This is the m=21 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..20 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366 and A049660. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 19's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,18}. Milan Janjic, Jan 25 2015

Crossrefs

a(n) = sqrt((A078369(n+1)^2 - 4)/357), n>=0, (Pell equation d=357, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

Formula

a(n) = 19*a(n-1)-a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = (ap^(n+1)-am^(n+1))/(ap-am) with ap = (19+sqrt(357))/2 and am = (19-sqrt(357))/2.
a(n) = S(2*n+1, sqrt(21))/sqrt(21) = S(n, 19); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
G.f.: 1/(1-19*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*18^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/17*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/38*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
Previous Showing 31-40 of 66 results. Next