cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 150 results. Next

A219086 a(n) = floor((n + 1/2)^4).

Original entry on oeis.org

0, 5, 39, 150, 410, 915, 1785, 3164, 5220, 8145, 12155, 17490, 24414, 33215, 44205, 57720, 74120, 93789, 117135, 144590, 176610, 213675, 256289, 304980, 360300, 422825, 493155, 571914, 659750, 757335, 865365, 984560, 1115664
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2013

Keywords

Comments

a(n) is the number k such that {k^p} < 1/2 < {(k+1)^p}, where p = 1/4 and { } = fractional part. Equivalently, the jump sequence of f(x) = x^(1/4), in the sense that these are the nonnegative integers k for which round(k^p) < round((k+1)^p). For details and a guide to related sequences, see A219085.
-4*a(n) gives the real part of (n+n*i)*((n+1)+n*i)*(n+(n+1)*i)*((n+1)+(n+1)*i). The imaginary part is always zero. - Jon Perry, Feb 05 2014
Numbers k such that 16*k+1 is a fourth power. - Bruno Berselli, May 29 2018
The row sums of "Floyd's Triangle", which is a triangular array of natural numbers beginning with the number 1, produce the sequence A006003. A006003 can be bisected to get the Rhombic Dodecahedron Sequence A005917, whose n-th partial sum is n^4, and A317297, whose n-th partial sum is a(n). Interleave n^4 or A000583 back with {a(n)} to get A011863, whose first differences are A019298. Finally, A011863(n)-A011863(n-2) = A006003(n-1). - Bruce J. Nicholson, Dec 22 2019

Examples

			0^(1/4) = 0.000...; 1^(1/4) = 1.000...
5^(1/4) = 1.495...; 6^(1/4) = 1.565...
39^(1/4) = 2.499...; 40^(1/4) = 2.514...
		

Crossrefs

Programs

Formula

G.f.: (5*x^3 + 14*x^2 + 5*x)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = (2*n^4 + 4*n^3 + 3*n^2 + n)/2. - J. M. Bergot, Apr 05 2014
a(n) = Sum_{i=0..n} i*(4*i^2 + 1) = n*(n + 1)*(2*n^2 + 2*n + 1)/2. - Bruno Berselli, Feb 09 2017
a(n) = lcm((2*n + 1)^2 - 1, (2*n + 1)^2 + 1)/8 for n>=1. - Lechoslaw Ratajczak, Mar 26 2017
a(n) = A000217(n) * A001844(n). - Bruce J. Nicholson, May 14 2017
E.g.f.: (1/2)*exp(x)*x*(10 + 29*x + 16*x^2 + 2*x^3). - Stefano Spezia, Dec 27 2019
a(n) = ((2*n+1)^4 - 1)/16. - Jianing Song, Jan 03 2023
Sum_{n>=1} 1/a(n) = 6 - 2*Pi*tanh(Pi/2). - Amiram Eldar, Jan 08 2023

A322468 Numbers that are sums of consecutive tetrahedral numbers.

Original entry on oeis.org

0, 1, 4, 5, 10, 14, 15, 20, 30, 34, 35, 55, 56, 65, 69, 70, 84, 91, 111, 120, 121, 125, 126, 140, 165, 175, 195, 204, 205, 209, 210, 220, 260, 285, 286, 295, 315, 325, 329, 330, 364, 369, 385, 425, 455, 460, 480, 490, 494, 495, 505, 506, 560, 589, 645, 650, 671, 680, 700
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 09 2018

Keywords

Examples

			209 = sum_{k=2..7} A000292(k) so 209 is in the list. 295=sum_{k=5..8} A000292(k), so 295 is in the list.
		

Crossrefs

Cf. A000292 (tetrahedral numbers, a subsequence), A000330 (subsequence), A006003 (subsequence), A005894 (subsequence).
Other sums of consecutive numbers: A034705 (squares), A034706 (triangular numbers), A322479 (square pyramidal numbers), A322610 (centered triangular numbers), A322611 (centered square numbers).

Programs

  • Mathematica
    tet[n_] := n (n + 1) (n + 2)/6; nMax = 700; t = {0}; Do[k = n; s = 0; While[s = s + tet[k]; s <= nMax, AppendTo[t, s]; k++], {n, (6*nMax)^(1/3) + 1}]; t = Union[t] (* Amiram Eldar, Dec 09 2018 after T. D. Noe at A034705 *)
    anmax = 1000; nmax = Floor[(6*anmax)^(1/3)] + 1; Select[Union[Flatten[Table[Sum[k*(k + 1)*(k + 2)/6, {k, i, j}], {i, 0, nmax}, {j, i, nmax}]]], # <= anmax &] (* Vaclav Kotesovec, Dec 21 2018 *)

A325001 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 5, 1, 5, 16, 15, 6, 1, 6, 25, 34, 21, 7, 1, 7, 36, 65, 56, 28, 8, 1, 8, 49, 111, 125, 84, 36, 9, 1, 9, 64, 175, 246, 210, 120, 45, 10, 1, 10, 81, 260, 441, 461, 330, 165, 55, 11, 1, 11, 100, 369, 736, 917, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. An achiral coloring is the same as its reflection.

Examples

			The array begins with A(1,1):
  1  2  3   4   5    6    7     8     9    10    11     12     13 ...
  1  4  9  16  25   36   49    64    81   100   121    144    169 ...
  1  5 15  34  65  111  175   260   369   505   671    870   1105 ...
  1  6 21  56 125  246  441   736  1161  1750  2541   3576   4901 ...
  1  7 28  84 210  461  917  1688  2919  4795  7546  11452  16848 ...
  1  8 36 120 330  792 1715  3424  6399 11320 19118  31032  48672 ...
  1  9 45 165 495 1287 3003  6434 12861 24265 43593  75087 124683 ...
  1 10 55 220 715 2002 5005 11440 24309 48610 92323 167740 293215 ...
  ...
For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A324999 (oriented), A325000 (unoriented), A325000(n,k-n) (chiral), A325003 (exactly k colors), A327086 (edges, ridges), A337886 (faces, peaks), A325007 (orthotope facets, orthoplex vertices), A325015 (orthoplex facets, orthotope vertices).
Rows 1-4 are A000027, A000290, A006003, A132366(n-1).
Column 2 is A162880.

Programs

  • Mathematica
    Table[Binomial[d+1,n+1] - Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

A(n,k) = binomial(n+k,n+1) - binomial(k,n+1).
A(n,k) = Sum_{j=1..n} A325003(n,j) * binomial(k,j).
A(n,k) = 2*A325000(n,k) - A324999(n,k) = A324999(n,k) - 2*A325000(n,k-n) = A325000(n,k) - A325000(n,k-n).
G.f. for row n: (x - x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * A(n,k-j).
G.f. for column k: (1 - (1-x^2)^k) / (x*(1-x)^k).

A005945 Number of n-step mappings with 4 inputs.

Original entry on oeis.org

0, 1, 15, 60, 154, 315, 561, 910, 1380, 1989, 2755, 3696, 4830, 6175, 7749, 9570, 11656, 14025, 16695, 19684, 23010, 26691, 30745, 35190, 40044, 45325, 51051, 57240, 63910, 71079, 78765, 86986, 95760, 105105, 115039, 125580, 136746
Offset: 0

Views

Author

Keywords

Comments

a(n) is the coefficient of x^4/4! in n-th iteration of exp(x)-1.

Examples

			G.f. = x + 15*x^2 + 60*x^3 + 154*x^4 + 315*x^5 + 561*x^6 + 910*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005920, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. [Bruno Berselli, Apr 25 2010]
Cf. A094952.

Programs

  • Magma
    I:=[0, 1, 15, 60]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi Jun 18 2012
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,1,15,60},50] (* Vincenzo Librandi, Jun 18 2012 *)
    a[ n_] := 3 n^3 - 5/2 n^2 + 1/2 n; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = 3*n^3 - 5/2*n^2 + 1/2*n}; /* Michael Somos, Jan 23 2014 */
    

Formula

G.f.: x*(1+11*x+6*x^2)/(1-x)^4. a(n)=n*(3*n-1)*(2*n-1)/2.
For n>0, a(n) = n*A000567(n) - A000217(n-1). - Bruno Berselli, Apr 25 2010; Feb 01 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 18 2012
a(n) = -A094952(-n) for all n in Z. - Michael Somos, Jan 23 2014

Extensions

Edited by Michael Somos, Oct 29 2002

A057027 Triangle T read by rows: row n consists of the numbers C(n,2)+1 to C(n+1,2); numbers in odd-numbered places form an increasing sequence and the others a decreasing sequence.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 10, 8, 9, 11, 15, 12, 14, 13, 16, 21, 17, 20, 18, 19, 22, 28, 23, 27, 24, 26, 25, 29, 36, 30, 35, 31, 34, 32, 33, 37, 45, 38, 44, 39, 43, 40, 42, 41, 46, 55, 47, 54, 48, 53, 49, 52, 50, 51, 56, 66, 57, 65, 58, 64, 59, 63, 60, 62, 61, 67, 78, 68, 77, 69, 76
Offset: 1

Views

Author

Clark Kimberling, Jul 28 2000

Keywords

Comments

Arrange the quotients F(i)/F(j) of Fibonacci numbers, for 2<=i

Examples

			For n=6, the ordered quotients are 1/8, 1/5, 2/8, 1/3, 3/8, 2/5, 1/2, 3/5, 5/8, 2/3; the positions of 1/5, 2/5, 3/5 are 2, 6, 8 (first terms of diagonal T(i, i-1)).
Triangle starts:
  1;
  2, 3;
  4, 6, 5;
  7,10, 8, 9;
  ...
		

Crossrefs

Reflection of the array in A057028 about its central column, a permutation of the natural numbers.
Inverse permutation to A064578. Central column: A057029.
Column 1 is A000124, column 2 is A000217.
Row sums are A006003.

Programs

  • Mathematica
    nn= 12; t = Table[Range[Binomial[n, 2] + 1, Binomial[n + 1, 2]], {n, nn}]; Table[t[[n, If[OddQ@ k, Ceiling[k/2], -k/2] ]], {n, nn}, {k, n}] // Flatten (* Michael De Vlieger, Jul 02 2016 *)

Formula

From Werner Schulte, Sep 09 2024: (Start)
T(n, k) = (n^2 + (-1)^k * (n - k) + (3 + (-1)^k) / 2) / 2.
T(n, 1) = (n^2 - n + 2) / 2 = A000124(n).
T(n, 2) = (n^2 + n) / 2 = A000217(n) for n >= 2.
T(n, k) = T(n, k-2) - (-1)^k for 3 <= k <= n. (End)
G.f.: x*y*(1 + x*(y - 1) - x^4*(y - 1)*y^2 + x^5*y^3 + x^3*y*(y^2 - y - 1) - x^2*(y^2 + y - 1))/((1 - x)^3*(1 - x*y)^3*(1 + x*y)). - Stefano Spezia, Sep 10 2024

Extensions

Corrected and extended by Vladeta Jovovic, Oct 18 2001

A135503 a(n) = n*(n^2 - 1)/2.

Original entry on oeis.org

0, 0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440
Offset: 0

Author

Cino Hilliard, Feb 09 2008

Keywords

Comments

Previous name was: Integer values of sqrt(b) solving sqrt(d) + sqrt(b) = sqrt(c) with d^2 + b = c.
Squaring the first equation and setting the result equal to the second, we need d + b + 2*sqrt(d*b) = d^2+b -> d + 2*sqrt(d*b) = d^2 -> d^2 - d = 2*sqrt(d*b)
-> d^2*(d-1)^2 = 4*d*b -> b = d*(d-1)^2/4 -> sqrt(b) = (d-1)*sqrt(d)/2. Setting d = (n+1)^2 yields sqrt(b) = A027480(n).
This is the case k = 2 for FLTR, Fermat's Last Theorem with rational exponents 1/k: Consider x + y = x + y. Then (x^k)^(1/k) + (y^k)^(1/k) = ((x+y)^k)^(1/k).
For k > 2, there are infinitely many solutions to d^(1/k) + b^(1/k) = c^(1/k). E.g., 8^(1/3) + 27^(1/3) = 125^(1/3) at k = 3. However, in conjunction with d^2 + b = c, I could not find any nontrivial solutions.
A shifted version of A027480. - R. J. Mathar, Apr 07 2009
For n > 2, a(n) is the maximum value of the magic constant in a perimeter-magic n-gon of order n (see A342758). - Stefano Spezia, Mar 21 2021
a(n) is equal to the total number of P_3 edge-disjoint subgraphs of the complete graph on n vertices. - Samuel J. Bevins, May 09 2023

Examples

			For d = 9, b = 144, c = 225, 9^(1/2) + 144^(1/2) = 225^(1/2) and 9^2 + 144 = 225. So b^(1/2) = 12 is the 4th entry in the sequence.
		

Programs

  • Mathematica
    Array[# (#^2 - 1)/2 &, 42, 0] (* Michael De Vlieger, Feb 20 2018 *)
  • PARI
    flt2(n,p) = { local(a,b); for(a=0,n, b = (a^3-a)/2; print1(b", ") ) }

Formula

a(n) = 3*A000292(n-1).
From R. J. Mathar Feb 20 2008: (Start)
O.g.f.: 3*x^2/(-1+x)^4.
a(n) = n*(n^2 - 1)/2 = A007531(n+1)/2. (End)
G.f.: 3*x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (k+1)/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
a(n) = A006003(n+1) - A000326(n+1). - J. M. Bergot, Dec 04 2014
E.g.f.: (1/2)* x^2 *(3 + x)*exp(x). - G. C. Greubel, Oct 15 2016
From Miquel Cerda, Dec 25 2016: (Start)
a(n) = A000578(n) - A006003(n).
a(n) = A004188(n) - A000578(n).
a(n) = A007588(n) - A004188(n). (End)
a(n) = A002411(n) - A000217(n). - Justin Gaetano, Feb 20 2018
From Amiram Eldar, Jan 09 2021: (Start)
Sum_{n>=2} 1/a(n) = 1/2.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2) - 5/2. (End)

Extensions

Edited by R. J. Mathar, Apr 21 2009
New name using R. J. Mathar's formula, Joerg Arndt, Dec 05 2014

A209297 Triangle read by rows: T(n,k) = k*n + k - n, 1 <= k <= n.

Original entry on oeis.org

1, 1, 4, 1, 5, 9, 1, 6, 11, 16, 1, 7, 13, 19, 25, 1, 8, 15, 22, 29, 36, 1, 9, 17, 25, 33, 41, 49, 1, 10, 19, 28, 37, 46, 55, 64, 1, 11, 21, 31, 41, 51, 61, 71, 81, 1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 1, 14, 27
Offset: 1

Author

Reinhard Zumkeller, Jan 19 2013

Keywords

Comments

From Michel Marcus, May 18 2021: (Start)
The n-th row of the triangle is the main diagonal of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.
[1 2 3 4 5]
[1 2 3 4] [6 7 8 9 10]
[1 2 3] [5 6 7 8] [11 12 13 14 15]
[1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20]
[1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25]
-----------------------------------------------------------
1 1 4 1 5 9 1 6 11 16 1 7 13 19 25
(End)

Examples

			From _Muniru A Asiru_, Oct 31 2017: (Start)
Triangle begins:
  1;
  1,  4;
  1,  5,  9;
  1,  6, 11, 16;
  1,  7, 13, 19, 25;
  1,  8, 15, 22, 29, 36;
  1,  9, 17, 25, 33, 41, 49;
  1, 10, 19, 28, 37, 46, 55, 64;
  1, 11, 21, 31, 41, 51, 61, 71, 81;
  1, 12, 23, 34, 45, 56, 67, 78, 89, 100;
  ... (End)
		

Crossrefs

Cf. A162610; A000012 (left edge), A000290 (right edge), A006003 (row sums), A001844 (central terms), A026741 (number of odd terms per row), A142150 (number of even terms per row), A221490 (number of primes per row).

Programs

  • GAP
    Flat(List([1..10^3], n -> List([1..n], k -> k * n + k - n))); # Muniru A Asiru, Oct 31 2017
  • Haskell
    a209297 n k = k * n + k - n
    a209297_row n = map (a209297 n) [1..n]
    a209297_tabl = map a209297_row [1..]
    
  • Mathematica
    Array[Range[1, #^2, #+1]&,10] (* Paolo Xausa, Feb 08 2024 *)

Formula

T(n,k) = (k-1)*(n+1)+1.

A323718 Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 6, 4, 1, 1, 1, 7, 15, 10, 5, 1, 1, 1, 11, 28, 34, 15, 6, 1, 1, 1, 15, 66, 80, 65, 21, 7, 1, 1, 1, 22, 122, 254, 185, 111, 28, 8, 1, 1, 1, 30, 266, 604, 739, 371, 175, 36, 9, 1, 1, 1, 42, 503, 1785, 2163, 1785, 672, 260, 45, 10, 1, 1
Offset: 0

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n, and the only 0-times partition of n is the number n itself.

Examples

			Array begins:
       k=0:   k=1:   k=2:   k=3:   k=4:   k=5:
  n=0:  1      1      1      1      1      1
  n=1:  1      1      1      1      1      1
  n=2:  1      2      3      4      5      6
  n=3:  1      3      6     10     15     21
  n=4:  1      5     15     34     65    111
  n=5:  1      7     28     80    185    371
  n=6:  1     11     66    254    739   1785
  n=7:  1     15    122    604   2163   6223
  n=8:  1     22    266   1785   8120  28413
  n=9:  1     30    503   4370  24446 101534
The A(4,2) = 15 twice-partitions:
  (4)  (31)    (22)    (211)      (1111)
       (3)(1)  (2)(2)  (11)(2)    (11)(11)
                       (2)(11)    (111)(1)
                       (21)(1)    (11)(1)(1)
                       (2)(1)(1)  (1)(1)(1)(1)
		

Crossrefs

Columns: A000012 (k=0), A000041 (k=1), A063834 (k=2), A301595 (k=3).
Rows: A000027 (n=2), A000217 (n=3), A006003 (n=4).
Main diagonal gives A306187.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Jan 25 2019
  • Mathematica
    ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]];
    Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1,
         b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
    A[n_, k_] := b[n, n, k];
    Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)

Formula

Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n).
A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - Alois P. Heinz, Sep 20 2019

A337886 Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the triangular faces of a regular n-dimensional simplex using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 15, 28, 1, 5, 34, 387, 768, 1, 6, 65, 2784, 202203, 302032, 1, 7, 111, 13125, 11230976, 7109211078, 3098988832, 1, 8, 175, 46836, 254729375, 9393953524224, 50669807706182691, 1831011525739328, 1
Offset: 2

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

An achiral arrangement is identical to its reflection. An n-simplex has n+1 vertices. For n=2, the figure is a triangle with one triangular face. For n=3, the figure is a tetrahedron with 4 triangular faces. For higher n, the number of triangular faces is C(n+1,3).
Also the number of achiral colorings of the peaks of a regular n-dimensional simplex. A peak of an n-simplex is an (n-3)-dimensional simplex.

Examples

			Table begins with T(2,1):
1   2      3        4         5          6           7            8 ...
1   5     15       34        65        111         175          260 ...
1  28    387     2784     13125      46836      137543       349952 ...
1 768 202203 11230976 254729375 3267720576 28271133933 183296831488 ...
For T(3,4)=34, the 34 achiral arrangements are AAAA, AAAB, AAAC, AAAD, AABB, AABC, AABD, AACC, AACD, AADD, ABBB, ABBC, ABBD, ABCC, ABDD, ACCC, ACCD, ACDD, ADDD, BBBB, BBBC, BBBD, BBCC, BBCD, BBDD, BCCC, BCCD, BCDD, BDDD, CCCC, CCCD, CCDD, CDDD, and DDDD.
		

Crossrefs

Cf. A337883 (oriented), A337884 (unoriented), A337885 (chiral), A051168 (binary Lyndon words).
Other elements: A325001 (vertices), A327086 (edges).
Other polytopes: A337890 (orthotope), A337894 (orthoplex).
Rows 2-4 are A000027, A006003, A331353.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a triangular face *)
    lw[n_,k_]:=lw[n, k]=DivisorSum[GCD[n,k],MoebiusMu[#]Binomial[n/#,k/#]&]/n (*A051168*)
    cxx[{a_, b_},{c_, d_}]:={LCM[a, c], GCD[a, c] b d}
    compress[x:{{, } ...}] := (s=Sort[x];For[i=Length[s],i>1,i-=1,If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]]+=s[[i,2]]; s=Delete[s,i], Null]]; s)
    combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1]
    CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
    CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n},m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
    CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[If[OddQ[Total[1-Mod[#, 2]]], pc[#] j^Total[CX[#, m+1]][[2]], 0] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition using a formula for binary Lyndon words. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337884(n,k) - A337883(n,k) = A337883(n,k) - 2*A337885(n,k) = A337884(n,k) - A337885(n,k).

A034956 Divide natural numbers in groups with prime(n) elements and add together.

Original entry on oeis.org

3, 12, 40, 98, 253, 455, 850, 1292, 2047, 3335, 4495, 6623, 8938, 11180, 14335, 18815, 24249, 28731, 35845, 42884, 49348, 59408, 69139, 81791, 98164, 112211, 124939, 141026, 155434, 173681, 210439, 233966, 263040, 286062, 328098, 355152, 393442, 434558, 472777
Offset: 1

Author

Patrick De Geest, Oct 15 1998

Keywords

Comments

Natural numbers starting from 1,2,3,4,...

Examples

			{1,2} #2 S=3;
{3,4,5} #3 S=12;
{6,7,8,9,10} #5 S=40;
{11,12,13,14,15,16,17} #7 S=98.
		

Programs

  • Maple
    s:= proc(n) s(n):= `if`(n<1, 0, s(n-1)+ithprime(n)) end:
    a:= n-> (t-> t(s(n))-t(s(n-1)))(i-> i*(i+1)/2):
    seq(a(n), n=1..40);  # Alois P. Heinz, Mar 22 2023
  • Mathematica
    Module[{nn=50,pr},pr=Prime[Range[nn]];Total/@TakeList[Range[ Total[ pr]], pr]](* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Oct 01 2017 *)
  • Python
    from itertools import islice
    from sympy import nextprime
    def A034956_gen(): # generator of terms
        a, p = 0, 2
        while True:
            yield p*((a<<1)+p+1)>>1
            a, p = a+p, nextprime(p)
    A034956_list = list(islice(A034956_gen(),20)) # Chai Wah Wu, Mar 22 2023

Formula

From Hieronymus Fischer, Sep 27 2012: (Start)
a(n) = Sum_{k=A007504(n-1)+1..A007504(n)} k, n > 1.
a(n) = (A007504(n) - A007504(n-1))*(A007504(n) + A007504(n-1) + 1)/2, n > 1.
a(n) = (A000217(A007504(n)) - A000217(A007504(n-1))), n > 0.
If we define A007504(0) := 0, then the formulas above are also true for n=1.
a(n) = (A034960(n) + A000040(n))/2.
a(n) = A034957(n) + A000040(n). (End)
Previous Showing 41-50 of 150 results. Next