cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A223087 Trajectory of 80 under the map n-> A006368(n).

Original entry on oeis.org

80, 120, 180, 270, 405, 304, 456, 684, 1026, 1539, 1154, 1731, 1298, 1947, 1460, 2190, 3285, 2464, 3696, 5544, 8316, 12474, 18711, 14033, 10525, 7894, 11841, 8881, 6661, 4996, 7494, 11241, 8431, 6323, 4742, 7113, 5335, 4001, 3001, 2251, 1688, 2532, 3798, 5697
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi;
    t1:=[80];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {80}; While[n = t[[-1]]; s = If[EvenQ[n], 3*n/2, Round[3*n/4]]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {80}, 100] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

A006370 The Collatz or 3x+1 map: a(n) = n/2 if n is even, 3n + 1 if n is odd.

Original entry on oeis.org

0, 4, 1, 10, 2, 16, 3, 22, 4, 28, 5, 34, 6, 40, 7, 46, 8, 52, 9, 58, 10, 64, 11, 70, 12, 76, 13, 82, 14, 88, 15, 94, 16, 100, 17, 106, 18, 112, 19, 118, 20, 124, 21, 130, 22, 136, 23, 142, 24, 148, 25, 154, 26, 160, 27, 166, 28, 172, 29, 178, 30, 184, 31, 190, 32, 196, 33
Offset: 0

Views

Author

Keywords

Comments

The 3x+1 or Collatz problem is as follows: start with any number n. If n is even, divide it by 2, otherwise multiply it by 3 and add 1. Do we always reach 1? This is an unsolved problem. It is conjectured that the answer is yes.
The Krasikov-Lagarias paper shows that at least N^0.84 of the positive numbers < N fall into the 4-2-1 cycle of the 3x+1 problem. This is far short of what we think is true, that all positive numbers fall into this cycle, but it is a step. - Richard C. Schroeppel, May 01 2002
Also A001477 and A016957 interleaved. - Omar E. Pol, Jan 16 2014, updated Nov 07 2017
a(n) is the image of a(2*n) under the 3*x+1 map. - L. Edson Jeffery, Aug 17 2014
The positions of powers of 2 in this sequence are given in A160967. - Federico Provvedi, Oct 06 2021
If displayed as a rectangular array with six columns, the columns are A008585, A350521, A016777, A082286, A016789, A350522 (see example). - Omar E. Pol, Jan 03 2022

Examples

			G.f. = 4*x + x^2 + 10*x^3 + 2*x^4 + 16*x^5 + 3*x^6 + 22*x^7 + 4*x^8 + 28*x^9 + ...
From _Omar E. Pol_, Jan 03 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
   0,   4,  1,  10,  2,  16;
   3,  22,  4,  28,  5,  34;
   6,  40,  7,  46,  8,  52;
   9,  58, 10,  64, 11,  70;
  12,  76, 13,  82, 14,  88;
  15,  94, 16, 100, 17, 106;
  18, 112, 19, 118, 20, 124;
  21, 130, 22, 136, 23, 142;
  24, 148, 25, 154, 26, 160;
  27, 166, 28, 172, 29, 178;
  30, 184, 31, 190, 32, 196;
...
(End)
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A006577 gives number of steps to reach 1.
Column k=1 of A347270, n >= 1.

Programs

  • Haskell
    a006370 n | m /= 0    = 3 * n + 1
              | otherwise = n' where (n',m) = divMod n 2
    -- Reinhard Zumkeller, Oct 07 2011
    
  • Magma
    [(1/4)*(7*n+2-(-1)^n*(5*n+2)): n in [1..70]]; // Vincenzo Librandi, Dec 20 2016
  • Maple
    f := n-> if n mod 2 = 0 then n/2 else 3*n+1; fi;
    A006370:=(4+z+2*z**2)/(z-1)**2/(1+z)**2; # Simon Plouffe in his 1992 dissertation; uses offset 0
  • Mathematica
    f[n_]:=If[EvenQ[n],n/2,3n+1];Table[f[n],{n,50}] (* Geoffrey Critzer, Jun 29 2013 *)
    LinearRecurrence[{0,2,0,-1},{4,1,10,2},70] (* Harvey P. Dale, Jul 19 2016 *)
  • PARI
    for(n=1,100,print1((1/4)*(7*n+2-(-1)^n*(5*n+2)),","))
    
  • PARI
    A006370(n)=if(n%2,3*n+1,n/2) \\ Michael B. Porter, May 29 2010
    
  • Python
    def A006370(n):
        q, r = divmod(n, 2)
        return 3*n+1 if r else q # Chai Wah Wu, Jan 04 2015
    

Formula

G.f.: (4*x+x^2+2*x^3) / (1-x^2)^2.
a(n) = (1/4)*(7*n+2-(-1)^n*(5*n+2)). - Benoit Cloitre, May 12 2002
a(n) = ((n mod 2)*2 + 1)*n/(2 - (n mod 2)) + (n mod 2). - Reinhard Zumkeller, Sep 12 2002
a(n) = A014682(n+1) * A000034(n). - R. J. Mathar, Mar 09 2009
a(n) = a(a(2*n)) = -A001281(-n) for all n in Z. - Michael Somos, Nov 10 2016
E.g.f.: (2 + x)*sinh(x)/2 + 3*x*cosh(x). - Ilya Gutkovskiy, Dec 20 2016
From Federico Provvedi, Aug 17 2021: (Start)
Dirichlet g.f.: (1-2^(-s))*zeta(s) + (3-5*2^(-s))*zeta(s-1).
a(n) = ( a(n+2k) + a(n-2k) ) / 2, for every integer k. (End)
a(n) + a(n+1) = A047374(n+1). - Leo Ortega, Aug 22 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
Zero prepended and new Name from N. J. A. Sloane at the suggestion of M. F. Hasler, Nov 06 2017

A005651 Sum of multinomial coefficients (n_1+n_2+...)!/(n_1!*n_2!*...) where (n_1, n_2, ...) runs over all integer partitions of n.

Original entry on oeis.org

1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 98329551, 1191578522, 15543026747, 218668538441, 3285749117475, 52700813279423, 896697825211142, 16160442591627990, 307183340680888755, 6147451460222703502, 129125045333789172825, 2841626597871149750951
Offset: 0

Views

Author

Keywords

Comments

This is the total number of hierarchies of n labeled elements arranged on 1 to n levels. A distribution of elements onto levels is "hierarchical" if a level l+1 contains <= elements than level l. Thus for n=4 the arrangement {1,2}:{3}{4} is not allowed. See also A140585. Examples: Let the colon ":" separate two consecutive levels l and l+1. Then n=2 --> 3: {1}{2}, {1}:{2}, {2}:{1}, n=3 --> 10: {1}{2}{3}, {1}{2}:{3}, {3}{1}:{2}, {2}{3}:{1}, {1}:{2}:{3}, {3}:{1}:{2}, {2}:{3}:{1}, {1}:{3}:{2}, {2}:{1}:{3}, {3}:{2}:{1}. - Thomas Wieder, May 17 2008
n identical objects are painted by dipping them into a long row of cans of paint of distinct colors. Begining with the first can and not skipping any cans k, 1<=k<=n, objects are dipped (painted) and not more objects are dipped into any subsequent can than were dipped into the previous can. The painted objects are then linearly ordered. - Geoffrey Critzer, Jun 08 2009
a(n) is the number of partitions of n where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once in the partition. a(3) = 10: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a. - Alois P. Heinz, Aug 30 2015
Also the number of ordered set partitions of {1,...,n} with weakly decreasing block sizes. - Gus Wiseman, Sep 03 2018
The parity of a(n) is that of A000110(A000120(n)), so a(n) is even if and only if A000120(n) == 2 (mod 3). - Álvar Ibeas, Aug 11 2020

Examples

			For n=3, say the first three cans in the row contain red, white, and blue paint respectively. The objects can be painted r,r,r or r,r,w or r,w,b and then linearly ordered in 1 + 3 + 6 = 10 ways. - _Geoffrey Critzer_, Jun 08 2009
From _Gus Wiseman_, Sep 03 2018: (Start)
The a(3) = 10 ordered set partitions with weakly decreasing block sizes:
  {{1},{2},{3}}
  {{1},{3},{2}}
  {{2},{1},{3}}
  {{2},{3},{1}}
  {{3},{1},{2}}
  {{3},{2},{1}}
  {{2,3},{1}}
  {{1,2},{3}}
  {{1,3},{2}}
  {{1,2,3}}
(End)
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_1".
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of: A226873, A261719, A309973.
Row sums of: A226874, A262071, A327803.
Column k=1 of A309951.
Column k=0 of A327801.

Programs

  • Maple
    A005651b := proc(k) add( d/(d!)^(k/d),d=numtheory[divisors](k)) ; end proc:
    A005651 := proc(n) option remember; local k ; if n <= 1 then 1; else (n-1)!*add(A005651b(k)*procname(n-k)/(n-k)!, k=1..n) ; end if; end proc:
    seq(A005651(k), k=0..10) ; # R. J. Mathar, Jan 03 2011
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
          b(n, i-1) +binomial(n, i)*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 29 2015, Dec 12 2016
  • Mathematica
    Table[Total[n!/Map[Function[n, Apply[Times, n! ]], IntegerPartitions[n]]], {n, 0, 20}] (* Geoffrey Critzer, Jun 08 2009 *)
    Table[Total[Apply[Multinomial, IntegerPartitions[n], {1}]], {n, 0, 20}] (* Jean-François Alcover and Olivier Gérard, Sep 11 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[t==1, 1/n!, Sum[b[n-j, j, t-1]/j!, {j, i, n/t}]]; a[n_] := If[n==0, 1, n!*b[n, 0, n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 20 2015, after Alois P. Heinz *)
  • Maxima
    a(m,n):=if n=m then 1 else sum(binomial(n,k)*a(k,n-k),k,m,(n/2))+1;
    makelist(a(1,n),n,0,17); /* Vladimir Kruchinin, Sep 06 2014 */
    
  • PARI
    a(n)=my(N=n!,s);forpart(x=n,s+=N/prod(i=1,#x,x[i]!));s \\ Charles R Greathouse IV, May 01 2015
    
  • PARI
    { my(n=25); Vec(serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n)))) } \\ Andrew Howroyd, Dec 20 2017

Formula

E.g.f.: 1 / Product (1 - x^k/k!).
a(n) = Sum_{k=1..n} (n-1)!/(n-k)!*b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(-k/d). - Vladeta Jovovic, Oct 14 2002
a(n) ~ c * n!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264... . - Vaclav Kotesovec, May 09 2014
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2 , binomial(n,k)*S(n-k,k))+1, S(n,n)=1, S(n,m)=0 for nVladimir Kruchinin, Sep 06 2014
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(j!)^k)). - Ilya Gutkovskiy, Jun 18 2018

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

A005728 Number of fractions in Farey series of order n.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 19, 23, 29, 33, 43, 47, 59, 65, 73, 81, 97, 103, 121, 129, 141, 151, 173, 181, 201, 213, 231, 243, 271, 279, 309, 325, 345, 361, 385, 397, 433, 451, 475, 491, 531, 543, 585, 605, 629, 651, 697, 713, 755, 775, 807, 831, 883, 901, 941, 965
Offset: 0

Views

Author

Keywords

Comments

Sometimes called Phi(n).
Leo Moser found an interesting way to generate this sequence, see Gardner.
a(n) is a prime number for nine consecutive values of n: n = 1, 2, 3, 4, 5, 6, 7, 8, 9. - Altug Alkan, Sep 26 2015
Named after the English geologist and writer John Farey, Sr. (1766-1826). - Amiram Eldar, Jun 17 2021

Examples

			a(5)=11 because the fractions are 0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1.
		

References

  • Martin Gardner, The Last Recreations, 1997, chapter 12.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, a foundation for computer science, Chapter 4.5 - Relative Primality, pages 118 - 120 and Chapter 9 - Asymptotics, Problem 6, pages 448 - 449, Addison-Wesley Publishing Co., Reading, Mass., 1989.
  • William Judson LeVeque, Topics in Number Theory, Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
  • Andrey O. Matveev, Farey Sequences, De Gruyter, 2017, Table 1.7.
  • Leo Moser, Solution to Problem P42, Canadian Mathematical Bulletin, Vol. 5, No. 3 (1962), pp. 312-313.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For the Farey series see A006842/A006843.
Essentially the same as A049643.

Programs

  • GAP
    List([0..60],n->Sum([1..n],i->Phi(i)))+1; # Muniru A Asiru, Jul 31 2018
    
  • Haskell
    a005728 n = a005728_list
    a005728_list = scanl (+) 1 a000010_list
    -- Reinhard Zumkeller, Aug 04 2012
    
  • Magma
    [1] cat [n le 1 select 2 else Self(n-1)+EulerPhi(n): n in [1..60]]; // Vincenzo Librandi, Sep 27 2015
    
  • Maple
    A005728 := proc(n)
        1+add(numtheory[phi](i),i=1..n) ;
    end proc:
    seq(A005728(n),n=0..80) ; # R. J. Mathar, Nov 29 2017
  • Mathematica
    Accumulate@ Array[ EulerPhi, 54, 0] + 1
    f[n_] := 1 + Sum[ EulerPhi[m], {m, n}]; Array[f, 55, 0] (* or *)
    f[n_] := (Sum[ MoebiusMu[m] Floor[n/m]^2, {m, n}] + 3)/2; f[0] = 1; Array[f, 55, 0] (* or *)
    f[n_] := n (n + 3)/2 - Sum[f[Floor[n/m]], {m, 2, n}]; f[0] = 1; Array[f, 55, 0] (* Robert G. Wilson v, Sep 26 2015 *)
    a[n_] := If[n == 0, 1, FareySequence[n] // Length];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 16 2022 *)
  • PARI
    a(n)=1+sum(k=1,n,eulerphi(k)) \\ Charles R Greathouse IV, Jun 03 2013
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A005728(n): # based on second formula in A018805
        if n == 0:
            return 1
        c, j = -2, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*A005728(k1)-3)
            j, k1 = j2, n//j2
        return (n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 24 2021

Formula

a(n) = 1 + Sum_{i=1..n} phi(i).
a(n) = n*(n+3)/2 - Sum_{k=2..n} a(floor(n/k)). - David W. Wilson, May 25 2002
a(n) = a(n-1) + phi(n) with a(0) = 1. - Arkadiusz Wesolowski, Oct 13 2012
a(n) = 1 + A002088(n). - Robert G. Wilson v, Sep 26 2015

A006369 a(n) = 2*n/3 for n divisible by 3, otherwise a(n) = round(4*n/3). Or, equivalently, a(3*n-2) = 4*n-3, a(3*n-1) = 4*n-1, a(3*n) = 2*n.

Original entry on oeis.org

0, 1, 3, 2, 5, 7, 4, 9, 11, 6, 13, 15, 8, 17, 19, 10, 21, 23, 12, 25, 27, 14, 29, 31, 16, 33, 35, 18, 37, 39, 20, 41, 43, 22, 45, 47, 24, 49, 51, 26, 53, 55, 28, 57, 59, 30, 61, 63, 32, 65, 67, 34, 69, 71, 36, 73, 75, 38, 77, 79, 40, 81, 83, 42, 85, 87, 44, 89, 91, 46, 93, 95
Offset: 0

Views

Author

Keywords

Comments

Original name was: Nearest integer to 4n/3 unless that is an integer, when 2n/3.
This function was studied by Lothar Collatz in 1932.
Fibonacci numbers lodumo_2. - Philippe Deléham, Apr 26 2009
a(n) = A006368(n) + A168223(n); A168222(n) = a(a(n)); A168221(a(n)) = A006368(n). - Reinhard Zumkeller, Nov 20 2009
The permutation P given in A265667 is P(n) = a(n-1) + 1, for n >= 0, with a(-1) = -1. Observed by Kevin Ryde. - Wolfdieter Lang, Sep 22 2021

Examples

			G.f. = x + 3*x^2 + 2*x^3 + 5*x^4 + 7*x^5 + 4*x^6 + 9*x^7 + 11*x^8 + 6*x^9 + ...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E17.
  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 579-581.
  • K. Knopp, Infinite Sequences and Series, Dover Publications, NY, 1958, p. 77.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 31 (g(n)) and page 270 (f(n)).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006369 n | m > 0     = round (4 * fromIntegral n / 3)
              | otherwise = 2 * n' where (n',m) = divMod n 3
    -- Reinhard Zumkeller, Dec 31 2011
  • Maple
    A006369 := proc(n) if n mod 3 = 0 then 2*n/3 else round(4*n/3); fi; end;
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end; # N. J. A. Sloane, Feb 04 2011
    A006369:=(1+z**2)*(z**2+3*z+1)/(z-1)**2/(z**2+z+1)**2; # Simon Plouffe, in his 1992 dissertation
  • Mathematica
    Table[If[Divisible[n,3],(2n)/3,Floor[(4n)/3+1/2]],{n,0,80}] (* Harvey P. Dale, Nov 03 2011 *)
    Table[n + Floor[(n + 1)/3] (-1)^Mod[n + 1, 3], {n, 0, 80}] (* Bruno Berselli, Dec 10 2015 *)
  • PARI
    {a(n) = if( n%3, round(4*n / 3), 2*n / 3)}; /* Michael Somos, Oct 05 2003 */
    

Formula

From Michael Somos, Oct 05 2003: (Start)
G.f.: x * (1 + 3*x + 2*x^2 + 3*x^3 + x^4) / (1 - x^3)^2.
a(3*n) = 2*n, a(3*n + 1) = 4*n + 1, a(3*n - 1) = 4*n - 1, a(n) = -a(-n) for all n in Z. (End)
The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.
a(n) = (2 - ((2*n + 1) mod 3) mod 2) * floor((2*n + 1)/3) + (2*n + 1) mod 3 - 1. - Reinhard Zumkeller, Jan 23 2005
a(n) = lod_2(F(n)). - Philippe Deléham, Apr 26 2009
0 = 21 + a(n)*(18 + 4*a(n) - a(n+1) - 7*a(n+2)) + a(n+1)*(-a(n+2)) + a(n+2)*(-18 + 4*a(n+2)) for all n in Z. - Michael Somos, Aug 24 2014
a(n) = n + floor((n+1)/3)*(-1)^((n+1) mod 3). - Bruno Berselli, Dec 10 2015
a(n) = 2*a(n-3) - a(n-6) for n >= 6. - Werner Schulte, Mar 16 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = log(sqrt(2)+2)/sqrt(2) + (1-sqrt(2)/2)*log(2)/2. - Amiram Eldar, Sep 29 2022

Extensions

New name from Jon E. Schoenfield, Jul 28 2015

A094328 Iterate the map in A006369 starting at 4.

Original entry on oeis.org

4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6
Offset: 1

Views

Author

N. J. A. Sloane, Jun 04 2004

Keywords

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.

Crossrefs

Programs

  • Haskell
    a094328 n = a094328_list !! (n-1)
    a094328_list = iterate a006369 4  -- Reinhard Zumkeller, Dec 31 2011
    
  • Mathematica
    Table[{4, 5, 7, 9, 6}, {21}] // Flatten  (* Jean-François Alcover, Jun 10 2013 *)
    LinearRecurrence[{0, 0, 0, 0, 1},{4, 5, 7, 9, 6},105] (* Ray Chandler, Sep 03 2015 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,0,0,0]^(n-1)*[4;5;7;9;6])[1,1] \\ Charles R Greathouse IV, Oct 18 2022

Formula

The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.
Periodic with period length 5.

A028394 Iterate the map in A006369 starting at 8.

Original entry on oeis.org

8, 11, 15, 10, 13, 17, 23, 31, 41, 55, 73, 97, 129, 86, 115, 153, 102, 68, 91, 121, 161, 215, 287, 383, 511, 681, 454, 605, 807, 538, 717, 478, 637, 849, 566, 755, 1007, 1343, 1791, 1194, 796, 1061, 1415, 1887, 1258, 1677, 1118, 1491, 994, 1325, 1767, 1178
Offset: 0

Views

Author

Keywords

Comments

It is an unsolved problem to determine if this sequence is bounded or unbounded.

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.

Crossrefs

Programs

  • Haskell
    a028394 n = a028394_list !! n
    a028394_list = iterate a006369 8  -- Reinhard Zumkeller, Dec 31 2011
  • Maple
    G := proc(n) option remember; if n = 0 then 8 elif 4*G(n-1) mod 3 = 0 then 2*G(n-1)/3 else round(4*G(n-1)/3); fi; end; [ seq(G(i),i=0..80) ];
    f:=proc(N) local n;
    if N mod 3 = 0 then 2*(N/3);
    elif N mod 3 = 2 then 4*((N+1)/3)-1; else
    4*((N+2)/3)-3; fi; end; # N. J. A. Sloane, Feb 04 2011
  • Mathematica
    nxt[n_]:=Module[{m=Mod[n,3]},Which[m==0,(2n)/3,m==1,(4n-1)/3,True,(4n+1)/3]]; NestList[nxt,8,60] (* Harvey P. Dale, Dec 13 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n-1)/3, , (4n+1)/3 ] }, {8}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)

Formula

The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.

A094329 Iterate the map in A006369 starting at 16.

Original entry on oeis.org

16, 21, 14, 19, 25, 33, 22, 29, 39, 26, 35, 47, 63, 42, 28, 37, 49, 65, 87, 58, 77, 103, 137, 183, 122, 163, 217, 289, 385, 513, 342, 228, 152, 203, 271, 361, 481, 641, 855, 570, 380, 507, 338, 451, 601, 801, 534, 356, 475, 633, 422, 563, 751, 1001, 1335, 890, 1187, 1583
Offset: 1

Views

Author

N. J. A. Sloane, Jun 04 2004

Keywords

References

  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.

Crossrefs

Programs

A185590 Iterate the map in A006369 starting at 44.

Original entry on oeis.org

44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66, 44
Offset: 1

Views

Author

N. J. A. Sloane, Feb 04 2011

Keywords

Comments

Periodic with period length 12.

References

  • A. O. L. Atkin, Comment on Problem 63-13, SIAM Rev., 8 (1966), 234-236.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270. (beware of typo: Lagarias says the orbit of 144 (not 44) has period 12.)

Crossrefs

Programs

  • Haskell
    a185590 n = a185590_list !! (n-1)
    a185590_list = iterate a006369 44  -- Reinhard Zumkeller, Dec 31 2011
  • Mathematica
    f[n_] := If[Mod[n, 3] == 0, 2*n/3, Round[4*n/3]]; a[1] = 44; a[n_] := a[n] = f[a[n - 1]]; Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jun 10 2013 *)

A217729 Trajectory of 40 under the map n-> A006369(n).

Original entry on oeis.org

40, 53, 71, 95, 127, 169, 225, 150, 100, 133, 177, 118, 157, 209, 279, 186, 124, 165, 110, 147, 98, 131, 175, 233, 311, 415, 553, 737, 983, 1311, 874, 1165, 1553, 2071, 2761, 3681, 2454, 1636, 2181, 1454, 1939, 2585, 3447, 2298, 1532, 2043, 1362, 908, 1211, 1615
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;
    t1:=[40];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {40}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, , (4n + 1)/3]}, {40}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)
Previous Showing 21-30 of 43 results. Next