cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 146 results. Next

A331081 a(n) = Sum_{i=1..n} d_3(i)*d_3(i+1)/3, where d_3(n) = A007425(n).

Original entry on oeis.org

1, 4, 10, 16, 25, 34, 44, 64, 82, 91, 109, 127, 136, 163, 208, 223, 241, 259, 277, 331, 358, 367, 397, 457, 475, 505, 565, 583, 610, 637, 658, 721, 748, 775, 883, 919, 928, 955, 1045, 1075, 1102, 1129, 1147, 1255, 1309, 1318, 1363, 1453, 1489, 1543, 1597, 1615, 1645, 1735, 1825, 1915, 1942, 1951, 2005, 2059
Offset: 1

Views

Author

N. J. A. Sloane, Jan 10 2020

Keywords

Comments

For background references see A330570.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2;  s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; With[{t = Array[s, 100]}, Accumulate[Most[t] * Rest[t]] / 3] (* Amiram Eldar, Apr 19 2024 *)

Formula

a(n) = A331080(n) / 3. - Amiram Eldar, Apr 19 2024

A333057 Numbers k such that k and k+1 have different (ordered) prime signatures and d_3(k) = d_3(k+1), where d_3 is A007425.

Original entry on oeis.org

2024, 5624, 13688, 15375, 21608, 50300, 62775, 69375, 70784, 108927, 110888, 116864, 118016, 130815, 149768, 152703, 164024, 213759, 221823, 224720, 238975, 242432, 255231, 257175, 283904, 297135, 324224, 341887, 346544, 365295, 366848, 366975, 379647, 455552
Offset: 1

Views

Author

Amiram Eldar, Mar 06 2020

Keywords

Comments

Apparently most of the numbers k such that k and k+1 have the same value of d_3 also have the same prime signature. a(1) = 2024 is the 212th number k such that d_3(k) = d_3(k+1), and up to 10^8 there are 8026247 such numbers k of them only 6414 are not in A052213.

Examples

			2024 is a term since d_3(2024) = d_3(2025) = 90, and the prime signatures of 2024 = 2^3 * 11 * 23 and 2025 = 3^4 * 5^2 are different ([1, 1, 3] and [2, 4]).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2;  d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], d3[#] == d3[#+1] && Sort[FactorInteger[#][[;;,2]]] != Sort[FactorInteger[#+1][[;;,2]]] &]

A379357 Numerators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).

Original entry on oeis.org

1, 4, 5, 11, 13, 41, 47, 122, 259, 269, 299, 152, 167, 172, 59, 4, 13, 79, 85, 43, 44, 5, 16, 161, 83, 254, 517, 29, 92, 833, 878, 6191, 6296, 6401, 6506, 26129, 27389, 27809, 28229, 5671, 5923, 5951, 6203, 6245, 6287, 6371, 6623, 33199, 33829, 34039, 34459, 34669
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 5/3, 11/6, 13/6, 41/18, 47/18, 122/45, 259/90, 269/90, 299/90, 152/45, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.

Crossrefs

Cf. A007425, A061201, A104528, A379358 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
  • PARI
    d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A007425(k)).
a(n)/A379358(n) = Sum_{i=1..N} b_i * n / log(n)^(i-1/3) + O(n / log(n)^(N+1-1/3)), for any fixed N >= 1, where b_i are constants. The same formula holds (with different constants) for any Piltz function d_k(n), for k >= 2, when 1/3 is replaced by 1/k.

A379358 Denominators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).

Original entry on oeis.org

1, 3, 3, 6, 6, 18, 18, 45, 90, 90, 90, 45, 45, 45, 15, 1, 3, 18, 18, 9, 9, 1, 3, 30, 15, 45, 90, 5, 15, 135, 135, 945, 945, 945, 945, 3780, 3780, 3780, 3780, 756, 756, 756, 756, 756, 756, 756, 756, 3780, 3780, 3780, 3780, 3780, 3780, 756, 756, 3780, 3780, 3780
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.

Crossrefs

Cf. A007425, A061201, A104529, A379357 (numerators).

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
  • PARI
    d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A007425(k)).

A097989 Numbers n such that n=tau_3(n)=A007425(n).

Original entry on oeis.org

1, 3, 18, 36
Offset: 1

Views

Author

Lekraj Beedassy, Sep 07 2004

Keywords

Comments

Also, numbers n such that n = sum_d|n (tau(d)), (i.e. n is equal to the total number of divisors of all divisors of n ). - Lekraj Beedassy, Jul 12 2008

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 36, pp 14, Ellipses, Paris 2008.
  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 712 pp. 93;305 Ellipses Paris 2004.

Programs

  • Mathematica
    Select[Range[10^5],Total[(DivisorSigma[0,#]&) /@ Divisors[#]] == #&](* Jean-François Alcover, Sep 14 2011 *)

A109932 a(n) = f^n(n) = f applied n times to n, where f(n) = A007425(n).

Original entry on oeis.org

1, 3, 3, 9, 3, 6, 3, 9, 6, 6, 3, 18, 3, 6, 9, 9, 3, 18, 3, 18, 9, 6, 3, 9, 6, 6, 6, 18, 3, 6, 3, 9, 9, 6, 9, 36, 3, 6, 9, 9, 3, 6, 3, 18, 18, 6, 3, 18, 6, 18, 9, 18, 3, 9, 9, 9, 9, 6, 3, 6, 3, 6, 18, 18, 9, 6, 3, 18, 9, 6, 3, 9, 3, 6, 18, 18, 9, 6, 3, 18, 6, 6, 3, 6, 9, 6, 9, 9, 3, 6, 9, 18, 9, 6, 9, 18
Offset: 1

Views

Author

Amarnath Murthy, Jul 18 2005

Keywords

References

  • Amarnath Murthy and Mihaly Bencze [Beneze], Extending the scope of some number theoretic functions, Octogon Mathematical Magazine, 2003, Brasov, Romania.

Crossrefs

Cf. A007425.

Programs

Extensions

More terms from Robert G. Wilson v, Jul 21 2005
Name edited by Antti Karttunen, Sep 22 2017

A319088 a(n) = Sum_{k=1..n} k^2*tau_3(k), where tau_3 is A007425.

Original entry on oeis.org

1, 13, 40, 136, 211, 535, 682, 1322, 1808, 2708, 3071, 5663, 6170, 7934, 9959, 13799, 14666, 20498, 21581, 28781, 32750, 37106, 38693, 55973, 59723, 65807, 73097, 87209, 89732, 114032, 116915, 138419, 148220, 158624, 169649, 216305, 220412, 233408, 247097
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; Accumulate[Table[k^2*Sum[DivisorSigma[0, d], {d, Divisors[k]}], {k, 1, nmax}]]
  • PARI
    tau_3(k) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(k)[, 2]));
    a(n) = sum(k = 1, n,  k^2 * tau_3(k)); \\ Amiram Eldar, Jan 18 2025

Formula

a(n) ~ n^3 * (log(n)^2/6 + (gamma - 1/9)*log(n) + gamma^2 - gamma/3 - g1 + 1/27), where gamma is the Euler-Mascheroni constant A001620 and g1 is the first Stieltjes constant A082633.

A331077 a(n) = Sum_{k = 1..n} [d(k)*d_3(k)], where d = A000005, d_3 = A007425.

Original entry on oeis.org

1, 7, 13, 31, 37, 73, 79, 119, 137, 173, 179, 287, 293, 329, 365, 440, 446, 554, 560, 668, 704, 740, 746, 986, 1004, 1040, 1080, 1188, 1194, 1410, 1416, 1542, 1578, 1614, 1650, 1974, 1980, 2016, 2052, 2292, 2298, 2514, 2520, 2628, 2736, 2772, 2778, 3228, 3246, 3354, 3390, 3498, 3504, 3744, 3780, 4020, 4056
Offset: 1

Views

Author

N. J. A. Sloane, Jan 10 2020

Keywords

Comments

For background references see A330570.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)^2*(e+2)/2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[s, 100]] (* Amiram Eldar, Apr 19 2024 *)
  • PARI
    lista(nmax) = {my(s = 0); for(n = 1, nmax, s += vecprod(apply(e -> (e+1)^2*(e+2)/2, factor(n)[,2])); print1(s, ", "));} \\ Amiram Eldar, Apr 19 2024

Formula

a(n) ~ c * n * log(n)^5 /5!, where c = Product_{p prime} ((1-1/p)^2*(1+2/p)) = 0.286747428434478734107... (Titchmarsh, 1942). - Amiram Eldar, Apr 19 2024

A331131 a(n) = Sum_{i=1..n} d(i)*d_3(i+1), where d(n) = A000005(n) and d_3(n) = A007425(n).

Original entry on oeis.org

3, 9, 21, 30, 48, 60, 80, 104, 131, 143, 179, 197, 215, 251, 311, 326, 362, 380, 416, 470, 506, 518, 578, 626, 653, 693, 765, 783, 837, 861, 903, 957, 993, 1029, 1173, 1200, 1218, 1254, 1374, 1398, 1452, 1476, 1512, 1620, 1674, 1686, 1776, 1836, 1890, 1944, 2016, 2034, 2094, 2166, 2286, 2358, 2394
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2020

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 62.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate @ Table[DivisorSigma[0, n] * d3[n+1], {n, 1, 60}] (* Amiram Eldar, Mar 05 2020 *)

Formula

a(n) ~ c * n * log(n)^3, where c is a constant. - Amiram Eldar, Mar 05 2020

A000005 d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 8
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is Product p^e(p) then d(n) = Product (e(p) + 1). More generally, for k > 0, sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1) is the sum of the k-th powers of the divisors of n.
Number of ways to write n as n = x*y, 1 <= x <= n, 1 <= y <= n. For number of unordered solutions to x*y=n, see A038548.
Note that d(n) is not the number of Pythagorean triangles with radius of the inscribed circle equal to n (that is A078644). For number of primitive Pythagorean triangles having inradius n, see A068068(n).
Number of factors in the factorization of the polynomial x^n-1 over the integers. - T. D. Noe, Apr 16 2003
Also equal to the number of partitions p of n such that all the parts have the same cardinality, i.e., max(p)=min(p). - Giovanni Resta, Feb 06 2006
Equals A127093 as an infinite lower triangular matrix * the harmonic series, [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, May 10 2007
For odd n, this is the number of partitions of n into consecutive integers. Proof: For n = 1, clearly true. For n = 2k + 1, k >= 1, map each (necessarily odd) divisor to such a partition as follows: For 1 and n, map k + (k+1) and n, respectively. For any remaining divisor d <= sqrt(n), map (n/d - (d-1)/2) + ... + (n/d - 1) + (n/d) + (n/d + 1) + ... + (n/d + (d-1)/2) {i.e., n/d plus (d-1)/2 pairs each summing to 2n/d}. For any remaining divisor d > sqrt(n), map ((d-1)/2 - (n/d - 1)) + ... + ((d-1)/2 - 1) + (d-1)/2 + (d+1)/2 + ((d+1)/2 + 1) + ... + ((d+1)/2 + (n/d - 1)) {i.e., n/d pairs each summing to d}. As all such partitions must be of one of the above forms, the 1-to-1 correspondence and proof is complete. - Rick L. Shepherd, Apr 20 2008
Number of subgroups of the cyclic group of order n. - Benoit Jubin, Apr 29 2008
Equals row sums of triangle A143319. - Gary W. Adamson, Aug 07 2008
Equals row sums of triangle A159934, equivalent to generating a(n) by convolving A000005 prefaced with a 1; (1, 1, 2, 2, 3, 2, ...) with the INVERTi transform of A000005, (A159933): (1, 1,-1, 0, -1, 2, ...). Example: a(6) = 4 = (1, 1, 2, 2, 3, 2) dot (2, -1, 0, -1, 1, 1) = (2, -1, 0, -2, 3, 2) = 4. - Gary W. Adamson, Apr 26 2009
Number of times n appears in an n X n multiplication table. - Dominick Cancilla, Aug 02 2010
Number of k >= 0 such that (k^2 + k*n + k)/(k + 1) is an integer. - Juri-Stepan Gerasimov, Oct 25 2015
The only numbers k such that tau(k) >= k/2 are 1,2,3,4,6,8,12. - Michael De Vlieger, Dec 14 2016
a(n) is also the number of partitions of 2*n into equal parts, minus the number of partitions of 2*n into consecutive parts. - Omar E. Pol, May 03 2017
From Tomohiro Yamada, Oct 27 2020: (Start)
Let k(n) = log d(n)*log log n/(log 2 * log n), then lim sup k(n) = 1 (Hardy and Wright, Chapter 18, Theorem 317) and k(n) <= k(6983776800) = 1.537939... (the constant A280235) for every n (Nicolas and Robin, 1983).
There exist infinitely many n such that d(n) = d(n+1) (Heath-Brown, 1984). The number of such integers n <= x is at least c*x/(log log x)^3 (Hildebrand, 1987) but at most O(x/sqrt(log log x)) (Erdős, Carl Pomerance and Sárközy, 1987). (End)
Number of 2D grids of n congruent rectangles with two different side lengths, in a rectangle, modulo rotation (cf. A038548 for squares instead of rectangles). Also number of ways to arrange n identical objects in a rectangle (NOT modulo rotation, cf. A038548 for modulo rotation); cf. A007425 and A140773 for the 3D case. - Manfred Boergens, Jun 08 2021
The constant quoted above from Nicolas and Robin, 6983776800 = 2^5 * 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19, appears arbitrary, but interestingly equals 2 * A095849(36). That second factor is highly composite and deeply composite. - Hal M. Switkay, Aug 08 2025

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 3*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • G. Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed, Chelsea Publishing Co., New York 1959 Part II, p. 345, Exercise XXI(16). MR0121327 (22 #12066)
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 55.
  • G. H. Hardy and E. M. Wright, revised by D. R. Heath-Brown and J. H. Silverman, An Introduction to the Theory of Numbers, 6th ed., Oxford Univ. Press, 2008.
  • K. Knopp, Theory and Application of Infinite Series, Blackie, London, 1951, p. 451.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Chap. II. (For inequalities, etc.)
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962. Has many references to this sequence. - N. J. A. Sloane, Jun 02 2014
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. Spearman and K. S. Williams, Handbook of Estimates in the Theory of Numbers, Carleton Math. Lecture Note Series No. 14, 1975; see p. 2.1.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 285.
  • E. C. Titchmarsh, The Theory of Functions, Oxford, 1938, p. 160.
  • Terence Tao, Poincaré's Legacies, Part I, Amer. Math. Soc., 2009, see pp. 31ff for upper bounds on d(n).

Crossrefs

See A002183, A002182 for records. See A000203 for the sum-of-divisors function sigma(n).
For partial sums see A006218.
Factorizations into given number of factors: writing n = x*y (A038548, unordered, A000005, ordered), n = x*y*z (A034836, unordered, A007425, ordered), n = w*x*y*z (A007426, ordered).
Cf. A098198 (Dgf at s=2), A183030 (Dgf at s=3), A183031 (Dgf at s=3).

Programs

  • GAP
    List([1..150],n->Tau(n)); # Muniru A Asiru, Mar 05 2019
    
  • Haskell
    divisors 1 = [1]
    divisors n = (1:filter ((==0) . rem n)
                   [2..n `div` 2]) ++ [n]
    a = length . divisors
    -- James Spahlinger, Oct 07 2012
    
  • Haskell
    a000005 = product . map (+ 1) . a124010_row  -- Reinhard Zumkeller, Jul 12 2013
    
  • Julia
    function tau(n)
        i = 2; num = 1
        while i * i <= n
            if rem(n, i) == 0
                e = 0
                while rem(n, i) == 0
                    e += 1
                    n = div(n, i)
                end
                num *= e + 1
            end
            i += 1
        end
        return n > 1 ? num + num : num
    end
    println([tau(n) for n in 1:104])  # Peter Luschny, Sep 03 2023
  • Magma
    [ NumberOfDivisors(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    with(numtheory): A000005 := tau; [ seq(tau(n), n=1..100) ];
  • Mathematica
    Table[DivisorSigma[0, n], {n, 100}] (* Enrique Pérez Herrero, Aug 27 2009 *)
    CoefficientList[Series[(Log[1 - q] + QPolyGamma[1, q])/(q Log[q]), {q, 0, 100}], q] (* Vladimir Reshetnikov, Apr 23 2013 *)
    a[ n_] := SeriesCoefficient[ (QPolyGamma[ 1, q] + Log[1 - q]) / Log[q], {q, 0, Abs@n}]; (* Michael Somos, Apr 25 2013 *)
    a[ n_] := SeriesCoefficient[ q/(1 - q)^2 QHypergeometricPFQ[ {q, q}, {q^2, q^2}, q, q^2], {q, 0, Abs@n}]; (* Michael Somos, Mar 05 2014 *)
    a[n_] := SeriesCoefficient[q/(1 - q) QHypergeometricPFQ[{q, q}, {q^2}, q, q], {q, 0, Abs@n}] (* Mats Granvik, Apr 15 2015 *)
    With[{M=500},CoefficientList[Series[(2x)/(1-x)-Sum[x^k (1-2x^k)/(1-x^k),{k,M}],{x,0,M}],x]] (* Mamuka Jibladze, Aug 31 2018 *)
  • MuPAD
    numlib::tau (n)$ n=1..90 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, numdiv(n))}; /* Michael Somos, Apr 27 2003 */
    
  • PARI
    {a(n) = n=abs(n); if( n<1, 0, direuler( p=2, n, 1 / (1 - X)^2)[n])}; /* Michael Somos, Apr 27 2003 */
    
  • PARI
    {a(n)=polcoeff(sum(m=1, n+1, sumdiv(m, d, (-log(1-x^(m/d) +x*O(x^n) ))^d/d!)), n)} \\ Paul D. Hanna, Aug 21 2014
    
  • Python
    from sympy import divisor_count
    for n in range(1, 20): print(divisor_count(n), end=', ') # Stefano Spezia, Nov 05 2018
    
  • Sage
    [sigma(n, 0) for n in range(1, 105)]  # Zerinvary Lajos, Jun 04 2009
    

Formula

If n is written as 2^z*3^y*5^x*7^w*11^v*... then a(n)=(z+1)*(y+1)*(x+1)*(w+1)*(v+1)*...
a(n) = 2 iff n is prime.
G.f.: Sum_{n >= 1} a(n) x^n = Sum_{k>0} x^k/(1-x^k). This is usually called THE Lambert series (see Knopp, Titchmarsh).
a(n) = A083888(n) + A083889(n) + A083890(n) + A083891(n) + A083892(n) + A083893(n) + A083894(n) + A083895(n) + A083896(n).
a(n) = A083910(n) + A083911(n) + A083912(n) + A083913(n) + A083914(n) + A083915(n) + A083916(n) + A083917(n) + A083918(n) + A083919(n).
Multiplicative with a(p^e) = e+1. - David W. Wilson, Aug 01 2001
a(n) <= 2 sqrt(n) [see Mitrinovich, p. 39, also A046522].
a(n) is odd iff n is a square. - Reinhard Zumkeller, Dec 29 2001
a(n) = Sum_{k=1..n} f(k, n) where f(k, n) = 1 if k divides n, 0 otherwise (Mobius transform of A000012). Equivalently, f(k, n) = (1/k)*Sum_{l=1..k} z(k, l)^n with z(k, l) the k-th roots of unity. - Ralf Stephan, Dec 25 2002
G.f.: Sum_{k>0} ((-1)^(k+1) * x^(k * (k + 1)/2) / ((1 - x^k) * Product_{i=1..k} (1 - x^i))). - Michael Somos, Apr 27 2003
a(n) = n - Sum_{k=1..n} (ceiling(n/k) - floor(n/k)). - Benoit Cloitre, May 11 2003
a(n) = A032741(n) + 1 = A062011(n)/2 = A054519(n) - A054519(n-1) = A006218(n) - A006218(n-1) = 1 + Sum_{k=1..n-1} A051950(k+1). - Ralf Stephan, Mar 26 2004
G.f.: Sum_{k>0} x^(k^2)*(1+x^k)/(1-x^k). Dirichlet g.f.: zeta(s)^2. - Michael Somos, Apr 05 2003
Sequence = M*V where M = A129372 as an infinite lower triangular matrix and V = ruler sequence A001511 as a vector: [1, 2, 1, 3, 1, 2, 1, 4, ...]. - Gary W. Adamson, Apr 15 2007
Sequence = M*V, where M = A115361 is an infinite lower triangular matrix and V = A001227, the number of odd divisors of n, is a vector: [1, 1, 2, 1, 2, 2, 2, ...]. - Gary W. Adamson, Apr 15 2007
Row sums of triangle A051731. - Gary W. Adamson, Nov 02 2007
Sum_{n>0} a(n)/(n^n) = Sum_{n>0, m>0} 1/(n*m). - Gerald McGarvey, Dec 15 2007
Logarithmic g.f.: Sum_{n>=1} a(n)/n * x^n = -log( Product_{n>=1} (1-x^n)^(1/n) ). - Joerg Arndt, May 03 2008
a(n) = Sum_{k=1..n} (floor(n/k) - floor((n-1)/k)). - Enrique Pérez Herrero, Aug 27 2009
a(s) = 2^omega(s), if s > 1 is a squarefree number (A005117) and omega(s) is: A001221. - Enrique Pérez Herrero, Sep 08 2009
a(n) = A048691(n) - A055205(n). - Reinhard Zumkeller, Dec 08 2009
For n > 1, a(n) = 2 + Sum_{k=2..n-1} floor((cos(Pi*n/k))^2). And floor((cos(Pi*n/k))^2) = floor(1/4 * e^(-(2*i*Pi*n)/k) + 1/4 * e^((2*i*Pi*n)/k) + 1/2). - Eric Desbiaux, Mar 09 2010, corrected Apr 16 2011
a(n) = 1 + Sum_{k=1..n} (floor(2^n/(2^k-1)) mod 2) for every n. - Fabio Civolani (civox(AT)tiscali.it), Mar 12 2010
From Vladimir Shevelev, May 22 2010: (Start)
(Sum_{d|n} a(d))^2 = Sum_{d|n} a(d)^3 (J. Liouville).
Sum_{d|n} A008836(d)*a(d)^2 = A008836(n)*Sum_{d|n} a(d). (End)
a(n) = sigma_0(n) = 1 + Sum_{m>=2} Sum_{r>=1} (1/m^(r+1))*Sum_{j=1..m-1} Sum_{k=0..m^(r+1)-1} e^(2*k*Pi*i*(n+(m-j)*m^r)/m^(r+1)). - A. Neves, Oct 04 2010
a(n) = 2*A038548(n) - A010052(n). - Reinhard Zumkeller, Mar 08 2013
Sum_{n>=1} a(n)*q^n = (log(1-q) + psi_q(1)) / log(q), where psi_q(z) is the q-digamma function. - Vladimir Reshetnikov, Apr 23 2013
a(n) = Product_{k = 1..A001221(n)} (A124010(n,k) + 1). - Reinhard Zumkeller, Jul 12 2013
a(n) = Sum_{k=1..n} A238133(k)*A000041(n-k). - Mircea Merca, Feb 18 2013
G.f.: Sum_{k>=1} Sum_{j>=1} x^(j*k). - Mats Granvik, Jun 15 2013
The formula above is obtained by expanding the Lambert series Sum_{k>=1} x^k/(1-x^k). - Joerg Arndt, Mar 12 2014
G.f.: Sum_{n>=1} Sum_{d|n} ( -log(1 - x^(n/d)) )^d / d!. - Paul D. Hanna, Aug 21 2014
2*Pi*a(n) = Sum_{m=1..n} Integral_{x=0..2*Pi} r^(m-n)( cos((m-n)*x)-r^m cos(n*x) )/( 1+r^(2*m)-2r^m cos(m*x) )dx, 0 < r < 1 a free parameter. This formula is obtained as the sum of the residues of the Lambert series Sum_{k>=1} x^k/(1-x^k). - Seiichi Kirikami, Oct 22 2015
a(n) = A091220(A091202(n)) = A106737(A156552(n)). - Antti Karttunen, circa 2004 & Mar 06 2017
a(n) = A034296(n) - A237665(n+1) [Wang, Fokkink, Fokkink]. - George Beck, May 06 2017
G.f.: 2*x/(1-x) - Sum_{k>0} x^k*(1-2*x^k)/(1-x^k). - Mamuka Jibladze, Aug 29 2018
a(n) = Sum_{k=1..n} 1/phi(n / gcd(n, k)). - Daniel Suteu, Nov 05 2018
a(k*n) = a(n)*(f(k,n)+2)/(f(k,n)+1), where f(k,n) is the exponent of the highest power of k dividing n and k is prime. - Gary Detlefs, Feb 08 2019
a(n) = 2*log(p(n))/log(n), n > 1, where p(n)= the product of the factors of n = A007955(n). - Gary Detlefs, Feb 15 2019
a(n) = (1/n) * Sum_{k=1..n} sigma(gcd(n,k)), where sigma(n) = sum of divisors of n. - Orges Leka, May 09 2019
a(n) = A001227(n)*(A007814(n) + 1) = A001227(n)*A001511(n). - Ivan N. Ianakiev, Nov 14 2019
From Richard L. Ollerton, May 11 2021: (Start)
a(n) = A038040(n) / n = (1/n)*Sum_{d|n} phi(d)*sigma(n/d), where phi = A000010 and sigma = A000203.
a(n) = (1/n)*Sum_{k=1..n} phi(gcd(n,k))*sigma(n/gcd(n,k))/phi(n/gcd(n,k)). (End)
From Ridouane Oudra, Nov 12 2021: (Start)
a(n) = Sum_{j=1..n} Sum_{k=1..j} (1/j)*cos(2*k*n*Pi/j);
a(n) = Sum_{j=1..n} Sum_{k=1..j} (1/j)*e^(2*k*n*Pi*i/j), where i^2=-1. (End)

Extensions

Incorrect formula deleted by Ridouane Oudra, Oct 28 2021
Previous Showing 11-20 of 146 results. Next