A285398
Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0; a(n) is the number of cells after n iterations.
Original entry on oeis.org
1, 19, 452, 10948, 266300, 6484372, 157936172, 3847025764, 93707895260, 2282596837492, 55601016789068, 1354367059315396, 32990588541122684, 803607076375862356, 19574804963320797548, 476816346057854861860, 11614615234500986326556, 282916657894827156657460
Offset: 0
Cf.
A007482,
A026597,
A285391,
A285392,
A285393,
A285394,
A285395,
A285396,
A285397,
A285399,
A285400.
-
I:=[19, 452, 10948]; [1] cat [n le 3 select I[n] else 32*Self(n-1) - 195*Self(n-2) + 216*Self(n-3) : n in [1..41]]; // G. C. Greubel, Dec 09 2021
-
{1}~Join~LinearRecurrence[{32, -195, 216}, {19, 452, 10948}, 17]
-
Vec((1 - x)*(1 - 3*x)*(1 - 9*x) / (1 - 32*x + 195*x^2 - 216*x^3) + O(x^20)) \\ Colin Barker, Apr 23 2017
-
def A285398_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-13*x+39*x^2-27*x^3)/(1-32*x+195*x^2-216*x^3) ).list()
A285398_list(40) # G. C. Greubel, Dec 09 2021
A285399
Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0 or 2; a(n) is the number of cells after n iterations.
Original entry on oeis.org
1, 13, 182, 2548, 35672, 499408, 6991712, 97883968, 1370375552, 19185257728, 268593608192, 3760310514688, 52644347205632, 737020860878848, 10318292052303872, 144456088732254208, 2022385242251558912, 28313393391521824768, 396387507481305546752
Offset: 0
Cf.
A007482,
A026597,
A285391,
A285392,
A285393,
A285394,
A285395,
A285396,
A285397,
A285398,
A285400.
A285400
Start with a single cell at coordinates (0, 0, 0), then iteratively subdivide the grid into 3 X 3 X 3 cells and remove the cells whose sum of modulo 2 coordinates is 0 or 3; a(n) is the number of cells after n iterations.
Original entry on oeis.org
1, 18, 378, 7938, 166698, 3500658, 73513818, 1543790178, 32419593738, 680811468498, 14297040838458, 300237857607618, 6304995009759978, 132404895204959538, 2780502799304150298, 58390558785387156258, 1226201734493130281418, 25750236424355735909778
Offset: 0
Cf.
A007482,
A026597,
A285391,
A285392,
A285393,
A285394,
A285395,
A285396,
A285397,
A285398,
A285399.
-
[1] cat [18*21^(n-1): n in [1..40]]; // G. C. Greubel, Dec 09 2021
-
{1}~Join~LinearRecurrence[{21}, {18}, 17]
-
Vec((1-3*x) / (1-21*x) + O(x^20)) \\ Colin Barker, Apr 23 2017
-
[1]+[18*21^(n-1) for n in (1..40)] # G. C. Greubel, Dec 09 2021
A135030
Generalized Fibonacci numbers: a(n) = 6*a(n-1) + 2*a(n-2).
Original entry on oeis.org
0, 1, 6, 38, 240, 1516, 9576, 60488, 382080, 2413456, 15244896, 96296288, 608267520, 3842197696, 24269721216, 153302722688, 968355778560, 6116740116736, 38637152257536, 244056393778688, 1541612667187200
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226,
A180250.
-
[n le 2 select n-1 else 6*Self(n-1) + 2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
-
A:= gfun:-rectoproc({a(0) = 0, a(1) = 1, a(n) = 2*(3*a(n-1) + a(n-2))},a(n),remember):
seq(A(n),n=1..30); # Robert Israel, Sep 16 2014
-
Join[{a=0,b=1},Table[c=6*b+2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6,2},{0,1},30] (* or *) CoefficientList[Series[ -(x/(2x^2+6x-1)),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2011 *)
-
a(n)=([0,1; 2,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-2) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A007484
a(n) = 3*a(n-1) + 2*a(n-2), with a(0)=2, a(1)=7.
Original entry on oeis.org
2, 7, 25, 89, 317, 1129, 4021, 14321, 51005, 181657, 646981, 2304257, 8206733, 29228713, 104099605, 370756241, 1320467933, 4702916281, 16749684709, 59654886689, 212464029485, 756701861833, 2695033644469, 9598504657073, 34185581260157, 121753753094617, 433632421804165
Offset: 0
G.f. = 2 + 7*x + 25*x^2 + 89*x^3 + 317*x^4 + 1129*x^5 + ... - _Michael Somos_, Jul 19 2021
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
See
A008776 for definitions of Pisot sequences.
-
a007484 n = a007484_list !! n
a007484_list = 2 : 7 : zipWith (+)
(map (* 3) $ tail a007484_list) (map (* 2) a007484_list)
-- Reinhard Zumkeller, Nov 02 2015
-
A007484:=[2, 7]; [n le 2 select A007484[n] else 3*Self(n-1)+2*Self(n-2): n in [1..40]]; // Wesley Ivan Hurt, Jan 24 2017
-
A007484 := proc(n) option remember; if n=0 then 2; elif n=1 then 7; else 3*A007484(n-1)+2*A007484(n-2); fi; end;
-
LinearRecurrence[{3, 2}, {2, 7}, 40] (* Harvey P. Dale, Apr 24 2012 *)
Table[(2^-n ((3 - Sqrt[17])^n (-4 + Sqrt[17]) + (3 + Sqrt[17])^n (4 + Sqrt[17])))/Sqrt[17], {n, 0, 20}] // Expand (* Eric W. Weisstein, Jun 09 2019 *)
CoefficientList[Series[(2+x)/(1 -3x -2x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 09 2019 *)
a[ n_] := MatrixPower[{{1, 2}, {2, 2}}, n]//Flatten//Total; (* Michael Somos, Jul 19 2021 *)
-
a(n)=([0,1; 2,3]^n*[2;7])[1,1] \\ Charles R Greathouse IV, Mar 25 2016
-
A007484_vec(N)=Vec((2+x)/(1-3*x-2*x^2)+O(x^n)) \\ M. F. Hasler, Jul 12 2018
-
[(i*sqrt(2))^(n-1)*( i*2*sqrt(2)*chebyshev_U(n, -3*i/(2*sqrt(2))) + chebyshev_U(n-1, -3*i/(2*sqrt(2))) ) for n in (0..30)] # G. C. Greubel, Jul 18 2021
A052913
a(n+2) = 5*a(n+1) - 2*a(n), with a(0) = 1, a(1) = 4.
Original entry on oeis.org
1, 4, 18, 82, 374, 1706, 7782, 35498, 161926, 738634, 3369318, 15369322, 70107974, 319801226, 1458790182, 6654348458, 30354161926, 138462112714, 631602239718, 2881086973162, 13142230386374, 59948977985546, 273460429154982, 1247404189803818, 5690100090709126
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 894
- J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (5,-2).
Cf.
A007482 (inverse binomial transform).
-
a:=[1,4];; for n in [3..30] do a[n]:=5*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
-
I:=[1,4]; [n le 2 select I[n] else 5*Self(n-1)-2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, May 24 2015
-
R:=PowerSeriesRing(Integers(), 25); Coefficients(R!((1-x)/(1-5*x+2*x^2))); // Marius A. Burtea, Oct 16 2019
-
spec := [S,{S=Sequence(Union(Prod(Sequence(Z),Union(Z,Z)),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
seq(coeff(series((1-x)/(1-5*x+2*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
-
Transpose[NestList[{Last[#],5Last[#]-2First[#]}&, {1,4},20]][[1]] (* Harvey P. Dale, Mar 12 2011 *)
LinearRecurrence[{5, -2}, {1, 4}, 25] (* Jean-François Alcover, Jan 08 2019 *)
-
Vec((1-x)/(1-5*x+2*x^2) + O(x^30)) \\ Michel Marcus, Mar 05 2015
-
def A052913_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1-5*x+2*x^2)).list()
A052913_list(30) # G. C. Greubel, Oct 16 2019
A154692
Triangle read by rows: T(n, k) = (2^(n-k)*3^k + 2^k*3^(n-k))*binomial(n, k).
Original entry on oeis.org
2, 5, 5, 13, 24, 13, 35, 90, 90, 35, 97, 312, 432, 312, 97, 275, 1050, 1800, 1800, 1050, 275, 793, 3492, 7020, 8640, 7020, 3492, 793, 2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315, 6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817
Offset: 0
Triangle begins
2;
5, 5;
13, 24, 13;
35, 90, 90, 35;
97, 312, 432, 312, 97;
275, 1050, 1800, 1800, 1050, 275;
793, 3492, 7020, 8640, 7020, 3492, 793;
2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315;
6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817;
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Lakhtakia, R. Messier, V. K. Varadan, and V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
-
A154692:= func< n,k | (2^(n-k)*3^k + 2^k*3^(n-k))*Binomial(n,k) >;
[A154692(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
A154692 := proc(n,m)
(2^(n-m)*3^m+2^m*3^(n-m))*binomial(n,m) ;
end proc:
seq(seq(A154692(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 24 2011
-
p=2; q=3;
T[n_, m_]= (p^(n-m)*q^m + p^m*q^(n-m))*Binomial[n,m];
Table[T[n,m], {n,0,10}, {m,0,n}]//Flatten
-
from sage.all import *
def A154692(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*binomial(n,k)
print(flatten([[A154692(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
A180250
a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]]
LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
-
my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
-
A180250= BinaryRecurrenceSequence(5,10,0,1)
[A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023
A015551
Expansion of x/(1 - 6*x - 5*x^2).
Original entry on oeis.org
0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A057089,
A083858,
A085939,
A090017,
A091914,
A099012,
A135030,
A135032,
A180222,
A180226,
A180250.
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
-
a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A007481
Number of subsequences of [ 1,...,n ] in which each even number has an odd neighbor.
Original entry on oeis.org
1, 2, 3, 7, 11, 25, 39, 89, 139, 317, 495, 1129, 1763, 4021, 6279, 14321, 22363, 51005, 79647, 181657, 283667, 646981, 1010295, 2304257, 3598219, 8206733, 12815247, 29228713, 45642179, 104099605, 162557031, 370756241, 578955451, 1320467933
Offset: 0
For n=2, there are the following three subsequences of [1,2] with the desired property: empty, [1], [1,2].
For n=3, there are the following seven subsequences of [1,2,3] with the desired property: empty, [1], [3], [1,2], [2,3], [1,3], [1,2,3].
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a007481 n = a007481_list !! n
a007481_list = 1 : 2 : 3 : 7 : zipWith (+)
(map (* 3) $ drop 2 a007481_list) (map (* 2) a007481_list)
-- Reinhard Zumkeller, Oct 25 2015
-
LinearRecurrence[{0,3,0,2},{1,2,3,7},40] (* Harvey P. Dale, Feb 29 2012 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 2,0,3,0]^n*[1;2;3;7])[1,1] \\ Charles R Greathouse IV, Mar 02 2016
Comments